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Let (R,m) be a (commutative, Noetherian) local ring. A (not
necessarily finitely generated) R-module is said to be a balanced big
Cohen-Macaulay R-module (bbCM R-module) if any system of parameters
for R is an M-sequence. A such R-module ever exists provided the ring
R contains a field as a subring (see [Ho] Th.5.7 and [Ba-st]). Recent
ly some questions concerning bbCM modules and flat extensions of rings
have been settled. Let M be a bbCM R-module and p € SuppR(M) such that

p € AssR(M/(a1, ceer ar)M) for some M-sequence a eeer ar; then M is

'
a bbCM RFrmodule provided R is catenary (Foxby, ;rivate communication,
Takeuchi [Ta]). On the other hand Ogoma has constructed a counterexem
ple for the above question in general ([0g]§5 II). It has also been
proved that given a flat, integral extension of local rings R =S and
M a bbCM R-module then M X>S is a bbCM S-module and that the analogous
result is not true when S = R. R
This paper deals with the following more general question:

let R > S be a flat morphism of local rings (R,m), (S,n); let M be a
bbCM R-module. When is M §>s a bbCM S-module?. We obtain necessary and
sufficient conditions for the above question have an affirmative answer. .
In fact, let M be a bbCM R-module; we say that a prime ideal of Spec(R)
belongs to the little suoport of M (supp (M)) if there exists some in_
teger i = 0 such that u (p,M) # 0. By [Sh] Th.3.2 p € supp, (M) if and
only if p € AssR(M/(a1, cees ar)M) for some M-sequence Ayr eeer @ .
THEOREM 1.- The following are equivalent:
(i) ™ ﬁ@ S is a bbCM S=module
(ii) nM g) S) # M Q S and VY ¢ € supp (M %S)

1) h(q/ps) = depth(Ca)

2) h(q) + dim(s/q) = dim(S) , where p = ¢_, C = S/pS and ¢ = qC.
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COROLLARY 2 (O'Carroll [0'Ca]).- Let R > S be a flat, integral exten
sion of local rings and M a bbCM R-module. Then M §>S is a bbCM S-mod.

COROLLARY 3 (Foxby, private communication, Takeuchi [Tal).- Let R be
a catenary local ring and M a bbCM R-module. Then V p € suppR(M) Mp is
a bbCM Rp—module.

COROLLARY 4.- Let R be a local ring. Suposse that R is an homomorfic
image of a Cohen-Macaulay ring and that M is a bbCM R-module. Then
M g R is a bbCM R-module.

COROLLARY 5.- Let R be a local ring. Suposse that R satisfies the

secord chain condition and that M is a bbCM R-module. Then M g)Rh is a
h

bbCM R -module.

We also obtain the following counterexemples:

PROPOSITION 6.- Let R be a non catenary local domain containing a
field. Then there exists a bbCM R-module such that M ﬁ)ﬁ is not a
bbCM R-module.

PROPOSITION 7.- Any counterexemple for the localization is a counter

exemple for the completation.

PROPOSITION 8.- There exists a local catenary domain R satisfying

. . s ' h .
the first chain condition such that for any bbCM R-module M M g’R is
not a bbCM Rh—module.

Finnally we remark that the family of rings whose bbCM modu
les localize is larger than catenary rings.
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