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A Lie algebra L is said to be minimal non supersolvable if all
its subalgebras, except L itself, are supersolvable. The main results

in this paper are summarized in:

THEOREM: For a solvable Lie algebra L, L is minimal non supersolvable
if and only if one of the following conditions hold:

2
a) L is the nilpotent radical of L, the Frattini ideal of L, ¥(L), equals

2.2 - - - - -
(L7)" and L/¥(L) contains a basis {el,ez,...,e ,x} (where z =z+y(L) and
r
r> 1) such that [e ,} =e i=1,...,r-1 e ,— =c e e e ,
) [ i ] i{l ( ! r=1), [ r x] COel " * C»r‘—l r
r r—
the polynomial X -c X —...—-c_X-c_is irreducible and adx| is
r-1 1 0 v (L)
split.

b) The characteristic of the ground field F is p>0, F= {tp-t: teF},
every chief factor of L below ¢(L) is one dimensional and L/y(L) contains
a basis {eo,...,e 1,x,y} with (e ,y] = (a +i)ei (o a fixed scalar in F),

p- i
le.,x] =e, = (mod. p), [x,y] =x and [e,,e.]=0.
i i+l i j

c) The characteristic of the ground field F is p> 0, F is perfect when
p=2, every chief factor below y(L) is one dimensional and L/y(L) contains
a basis {e ,...,e yX,¥,2} with [e.,z] =e. ¥i, [e,,y]: ie, ¥1i, where

0 p-1 i i i i-1

e =0, [e ,x]=e€. ¥i, where e =0, [x,y]l=2z and [x,z] =[y,z] =[e.,e ]
-1 i i+l P i

=0.
This result provides examples of minimal dimension of solvable

Lie algebras over fields of characteristic p in which the derived sub-
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algebra is not nilpotent (which is not possible in the characteristic

zero case) .
As a consequence of the last Theorem we get:

COROLLARY : Let L be a solvable Lie algebra over an algebraically closed

field F. Then L is elementary (that is, the Frattini subalgebra of every

subalgebra of L is trivial) if and only if L has got a basis {bl""’b ,
C.y,...,C } with [b.,c_]: A .b., where A . eF, and the other products are
1 n i j ij i ij
Zero.
REFERENCES
[1] Stitzinger E.L.: "Minimal non-nilpotent solvable Lie algebras'. Proc.

Amer. Math. Soc. 28 (1971), 47-49.

[2] Towers D.A.: "A Frattini theory for algebras'". Proc. London Math.

Soc. (3) 27 (1973), 440-462.

[3] Towers D.A.: "Lie algebras all of whose proper subalgebras are

nilpotent'. Linear Algebra and its Applications 32 (1980), 61-
73.

A.M.S. clas. 17B30



