## AN ELEMENTARY PROOF OF THE INVARIANCE AND INVERSION OF CHARACTERISTIC PAIRS

## C. Ana Núñez

Dpto. de Algebra. Facultad de Ciencias.

Prado de la Magdalena, S/N. 47005-VALLADOLID (SPAIN)

The purpose of this paper is to give a short and elementary proof of the invariance and the inversion of the characteristic pairs of an irreducible plane algebroid curve, using the concept of saturation given by Campillo in [2]. The inversion and invariance of these pairs is proved by Abhyankar in [1] using direct computations.

Let k be an algebraically closed field, p = charac. k. We will only consider subrings A of k[[t]] containing k[[x]] for some  $x \in k[[t]]$  with  $0 < \operatorname{ord}_t(x) < \alpha$ , and such that the quotient field of A is F = k((t)). Such an A is a complete local noetherian domain of Krull dimension 1 and its integral closure in F is  $\overline{A} = k[[t]]$ . Moreover one has  $k \subset A$  and k is isomorphic to the residue field of A via the canonical map. If we denote by  $v \colon k[[t]] \longrightarrow \mathbf{Z}_+ \cup \{\alpha\}$  the order function relative to t, the semigroup of values of A is  $S(A) = \{v(z) \mid z \in A, z \neq 0\}$  If S is an additive subsemigroup of  $\mathbf{Z}_+$  such that  $\mathbf{Z}_+ - S$  is a finite set, the monomial ring  $A_S = \{\sum_{\gamma \in S} \mathbf{a}_{\gamma} \mathbf{t}^{\gamma} \mid \mathbf{a}_{\gamma} \in \mathbf{k} \}$  verifies the above conditions.

Let A (resp.S) as above. The ring A (resp. the semigroup S) is said to be saturated with respect to a non zero element w  $\epsilon$  A (resp. m  $\epsilon$  S) if the following property holds:

$$(P_w) \quad \text{If} \quad z \in A, \ z_1, \dots, z_r, \ w_1, \dots, w_s \in A - \{0\} \quad \text{and} \quad 1 \in \mathbf{Z}$$
 are such that  $zz_1^{-1}, \ zw_j^{-1}, \ (z_1 \dots z_r)(w_1 \dots w_s)^{-1} \ w^1 \in \overline{A} \quad \text{then}$  
$$z(z_1 \dots z_r)(w_1 \dots w_s)^{-1} \ w^1 \in A.$$

 $(A_m) \quad \text{If } \gamma, \gamma_1, \dots, \gamma_h \ \pmb{\epsilon} \ \text{S} \quad \text{are such that for } i = 1, \dots, h$  either  $\gamma \geq \gamma_i \ \text{or} \ \gamma_i = m$ , then one has  $\gamma + e \ \pmb{\epsilon} \ \text{S} \quad \text{where } e = g.c.d.$   $(\gamma_1, \dots, \gamma_h) \ \geq 0).$ 

(\*) A.M.S. Subject Clasification (1980) 14-B-05, 14-H-20, 13-J-10.

<u>Proposition</u>. – Let A be a ring as above and let S = S(A). If A is saturated with respect to w with v(w) = m then S is saturated with respect to m. Conversely, if S is saturated with respect to m then  $A_S$  is saturated with respect to  $t^m$ . Finally, if  $t^m \in A$ ,  $t^m \notin A$ ,  $t^m \notin A$ ,  $t^m \notin A$ , and A is saturated with respect to  $t^m$  then  $t^m \in A$ .

The proof of the two first assertions consists in direct computations from the definitions. For the last one, observe that if A verifies (Pw) for some  $w \in A - \{0\}$  and  $z \in A$ , then the set  $A(z) = \{w \in \overline{A} \mid wz \in A\}$  is a subring of  $\overline{A}$  containing A, and so local and complete (A(z) only depends on  $\gamma = v(z)$  and its semigroup of values is  $S(\gamma) = \{\gamma' \in \mathbf{Z}_+ \mid \gamma' + \gamma \in S\}$ ). Now, let  $\gamma \in S$  and take  $z \in A$  such that  $z = t^{\gamma}$  + higher order terms. One has  $z(t^m)^{\gamma}z^{-m} \in A$ , so  $(t^{\gamma}z^{-1}) \in A(z)$ . By Hensel lemma and taking into account that  $m \not\equiv 0$  (mod p) one has  $t^{\gamma}z^{-1} \in A(z)$ , so  $t^{\gamma} \in A$ . This proves  $A_S \subset A$  and the converse is evident.

Consider the case in which A=k[[x,y]] where  $n=v(x) \not\equiv 0$  (mod p) and  $m=v(y)\not\equiv 0$  (mod p). One has a Puiseux's type parametrization

(I) 
$$\begin{cases} x = t^n \\ y = \sum_{i>0} a_i x^{i/n} = \sum_{i>0} a_i t^i \end{cases}$$
, and consider the Puiseux's

exponents  $\{\beta_0,\ldots,\beta_g\}$  given by  $\beta_0=n$ , and  $\beta_{\nu+1}=\min\{i\mid a_i\neq 0\}$  and g.c.d.  $(\beta_0,\ldots,\beta_{\nu},i)<$  g.c.d.  $(\beta_0,\ldots,\beta_{\nu})\}$ , g being characterized by g.c.d.  $(\beta_0,\ldots,\beta_g)=1$ .

Take  $t^* \in \overline{A}$  such that  $y = (t^*)^m$  and set  $x = \sum_{j>0}^m b_j y^{j/m}$ .  $\beta_0^* \dots, \beta_g^*$  the Puiseux's exponents of this parametrization. The main technical result is the following:

Theorem. - If  $n \leq m$  then  $\tilde{A}_{v} = k + \tilde{A}_{x}(y)$ .

First of all, from the property  $(P_x)$ ,  $k + x\widetilde{A}_x(y)$  is a subring of  $\overline{A}$  verifying  $(P_y)$  and containing A, so  $\widetilde{A}_y \subseteq k + x\widetilde{A}_x(y)$ . Set  $S = S(\widetilde{A}_x)$   $S^* = S(\widetilde{A}_y)$ ,  $S^{**} = S(k + x\widetilde{A}_x(y)) = \{n + y - m \mid y \ge m \text{ and } y \in S\} \cup \{0\}$ . Since  $t^n \in A$ , from the proposition one has  $\widetilde{A}_y = A_{S^*}$  and  $k + x\widetilde{A}_x(y) = A_{S^*}$ so it is sufficient to see that  $S^{**} \subset S^*$ . Assume, without loss of generality, that  $y = t^m + higher order terms$ . One has  $(yt^{-m})^n \in \widetilde{A}_v(x)$ , so  $yt^{-m} \in \widetilde{A}_{v}(x)$  and  $xyt^{-m} \in \widetilde{A}_{v} = A_{*}$ . Now, since  $S = \left\{ \begin{array}{l} \beta_{i} + le_{i} & 0 \le i \le g, \ 1 \ge 0 \end{array} \right\} \ V \left\{ \begin{array}{l} 0 \end{array} \right\} \ \text{and} \ n + \beta_{i} - m \in S^{*} \ \ \text{(look at the look)}$ t-expansion of  $xyt^{-m}$ ) one has  $S^{**} \subset S^*$ , as  $S^*$  is saturated with respect to m.

On the other hand  $\beta_0^*, \dots, \beta_{\frac{n}{2}}^*$ , (resp.  $\beta_0, \dots, \beta_g$ ) can be obtained from S (resp. from S) as in the proof of the proposition. Since  $S^* = S^{**} = \{n + \gamma - m \mid \gamma \ge m, \gamma \in S\} \cup \{0\}$ , one has:

Theorem (Inversion formula).- With the assumptions as in the above theorem

- a) If  $n \nmid m$  then  $g^* = g$ ,  $\beta_{0}^* = \beta_{1}$ ,  $\beta_{1}^* = n + \beta_{1} m$ , i = 1, 2, ..., g. b) If  $n \mid m$  then  $g^* = g+1$ ,  $\beta_{0} = m$ ,  $\beta_{1} = n, \beta_{1}^* = n+\beta_{1-1}-m$ , i = 2, ..., g+1

## REFERENCES

- [1] S. ABHYANKAR, Inversion and invariance of characteristic pairs, Am. J. Math. 89 (1967), 363-372.
- [2] A. CAMPILLO, On saturations of curve singularities, Proc. Symp. in Pure Math. 40 (1983), 211-220.
- [3] C.A. NUÑEZ, An elementary proof of the invariance and inversion of characteristic pairs, Preprint, Universidad de Valladolid (1985)
- [4] Studies in equisingularity III, Amer. J. Math. 90 O. ZARISKI, (1968), 961-1023.