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This is the text of an address to the departamento de matemdticas
fundamentales, U.N.E.D., Madrid, March 1990. It is an outline of a
method of representing one topological category, for example, the
category of cell decompositions of n-manifolds, by another, for example,
the category of cell decompositions of oriented surfaces. This method

also yields a non-commutative product of topological objects.



Representations of Maps

Lynne D. James

1. Introduction

We begin by outlining some examples of the well-known relationship
between categories of topological objects, such as a cell decomposition
of an n-manifold, algebraic objects, such as a conjugacy class of
subgroups of a particular group, and combinatorial objects, such as an
edge-coloured graph. See, for example, [BM], [BSl, f[cs], [G], [Jol,
[Js1, [Lal, [Li], (R], [S], [V1], [V2].

We then outline a method of representing one topological category by
another. This method makes use of functors between the corresponding
algebraic categories. In fact this idea can be seen as a generalization
of the use of outer automorphisms of groups to induce operations on
topological categories. Such operations c¢an, in turn, be seen as a
generalization of the well-known Poincaré duality which, for maps on
surfaces, interchanges vertices and faces. See, for example, [JaI],
[Ja2], [JT], [LT], IW]. Two theorems are stated without proof and there
follows a concrete example of a representation of the category of
non-oriented 3-maps by the category of oriented maps on surfaces.

Finally, we show how the above method yields a non-commutative
product of topological objects. Two theorems are stated without proof
and there follows several concrete examples of products of topological

objects.

2. Topology, Algebra and Combinatorics

2.1 Oriented Maps on Surfaces

We outline the theory of oriented maps on surfaces. A full account

is given in [JS].



Let G be a connected graph, possibly with loops, multiple edges or
free edges. Let S be an oriented surface without boundafy. Then an
oriented map M , on a surface, is an embedding of G in § , without
crossings, such that the connected components of S-G are homeomorphic
to open discs. A morphism is a (possibly branched) covering of maps.

This gives us a topological category.

Let @ be the set of directed edges o« of G . Let G be the
group with presentation G = <x,y|x2 = 1> . Then there is an action of G
on O . The action of x 1is to change the direction of each directed

edge. The action of y 1is to cyclically permute those directed edges
pointing towards each vertex, according to the orientation of the map.

See figure 1, where the orientation is anti~-clockwise.

FIGURE 1

For example, if « 1is a directed edge which bounds a triangular face

then oc(xy)3 = ¢ . See figure 2, where the orientation is anti-clockwise.
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FIGURE 2

For a fixed o e Q we define the map subgroup Ma to be the stabilizer
of « in G. Varying the choice of « € @ produces a conjugacy class
of map subgroups. This gives us an algebraic category whose objects are
conjugacy classes of subgroups M in G and whose morphisms are given
by subgroup inclusions.

Finally, let I be the right coset graph of Ma in G with
respect to the generators x and y . This gives us a combinatorial
category whose objects are (isomorphism classes of) 2-coloured directed
graphs T , 'such that the edges of the first colour are either loops or
form pairs in the obvious way, with morphisms given by coverings of
edge—-coloured directed graphs.

The above topological, algebraic and combinatorial categories are

equivalent. That is, they are related by invertible functors.

2.2 Non-Oriented Maps on Surfaces

We outline the theory of non-oriented maps on surfaces. A full

account is given in [BS].



The theory is similar to that, given in 2.1, for the oriented case.
However, now S is non-oriented (possibly non-orientable) and may have
boundary. We allow the connected components of S-G to be
homeomorphic to either open discs or half discs.

Let Q be the set of blades, or 2-flags, of the map M . A blade

may be thought of as an incidence of vertex, edge and face in M , or as
a maximal simplex within the first barycentric subdivision of M . Let
R . 2_ 2 .2 2
G be the group with presentation G = <r,s,t|r =5 "=t"=(rt)"=1>
Then G 1is a Coxeter group with diagram :igi—: . There is an action
of G on Q . The action of r, s, t 1is to change the vertex, edge,
face, respectively, of o € Q . See figure 3.
oS
oL X
|
L
ol t oA rt=oltr
FIGURE 3

Again, by considering the stabilizers Moc in G of the blades a« € Q ,
we obtain a conjugacy class of subgroups M in G , and thus an
algebraic category.

We obtain a combinatorial category of 3-coloured graphs by

considering the right coset graphs ' of Moc in G with respect to the

generators r, s and t .



2.3 Higher Dimensional Maps

We simply remark that, in the same way as given in 2.2, it is
possible to work with the category of n-maps, which includes the cell
decompositions of n-manifolds, by considering the action of the Coxeter
group G with diagram 3-10—?——0-3—-3 see l: on the set Q of n-flags of

n-maps M . See, for example, [Jall, [Lal, [RI], [Vll.

3. Representations of Maps

3.1 Definitions

For i =1,2 let 'JIIl be a category of objects I'Ii , called maps,
which correspond to conjugacy classes of subgroups M‘ , called map
subgroups, in a group G1 . For example, ml might be the category of
oriented 2-maps (maps on surfaces) while mz might be the category of

non-oriented 4-maps.

Now suppose we have a subgroup M in G2 and an epimorphism
0 : Mo G1 . For each map I“I1 in !ml corresponding to map subgroup M1

in Gl we define M? to be the “map in mz corresponding to map

subgroup B_I(Ml) in Gz. We let M? denote O_I(Ml) . Thus we have

the following diagram

G
2
M Mé —>—— 8 G

e 1 M1

M, Tt M
]

K 1

1

We now have a mapping, which we also denote by ] ,

(] R
H .
2] {M1|M1 € iﬂll} > {M1|M1 € Ilﬁl} < ma We call © a representation of
eml by mz .



3.2 Theorems
Our first theorem is little more than a remark and is stated without
proof . It follows from the observation that the representation 6

described in 3.1 is a functor.

THEOREM
In the notation of 3.1, automorphisms and coverings of M1 appear as

automorphisms and coverings of Mf .

Our second theorem follows from the observation that for any given
n € N there are infinitely many free subgroups in the Coxeter group of

2.2 of rank greater than n . It is stated without proof.

THEOREM
There are infinitely many ways of representing the category of n-maps by

the category of 2-maps.

3.3 An Example
Let 3“1 be the category of non-oriented 3-maps M1 . Then M1

corresponds to an algebraic object, namely a conjugacy class of subgroups

M1 in G1 , where G1 is the Coxeter group with diagram
:—EL:—EL?—E—g , and to a combinatorial object, namely the right coset

graph F1 of M1 in G1 with respect to the generators r, s, t

and u .
Let an2 be the category of oriented 2-maps Mz . Then M2
corresponds to an algebraic object, namely a conjugacy class of subgroups

M2 in G2 , where G2 is the group with presentation

G2 = <x.y|x2 = 1> , and to a combinatorial object, namely the right

coset graph Fz of M2 in G2 with respect to the generators x

and vy .



Let R=y'xy, S=yxy', T=x and U= y> . Let M be the

subgroup of G2 generated by R, S, T and U . Then M 1is a normal
subgroup of index 3 in G, with presentation M = <R,S,T,U|R%=S=T%=1>.
Moreover, there is an epimorphism g : M- G1 taking R, S, T, U to
r, s, t, u respectively. This gives us a representation 6 of MH by

HE as described in 3.1.

3.4 A Construction

Given a non-oriented 3-map M1 we show how to construct the
representative oriented 2-map M? , Wwhere 6 is the representation
given in 3.3.

First note the action of R, S, T and U on the set of directed
edges o of an oriented 2-map. See figure 4, where the orientation is

anti-clockwise.

«R =4 ) AT oL

FIGURE 4

For each 3-flag « of M1 there are three directed edges ae ,

aey and mey—l of M? , one for each coset of M in G2 . These

directed edges lie in a square shaped piece of M? . See figure 5.

10



ol
FIGURE S
To construct M? we glue these pieces together using the rule
(ozw)e = oce W , where w € {r,s,t,u} . Thus, for example, we have figure 6
as part of M? , where the orientation is anti-clockwise.
(eer®
€ S P &
9 Y
(dt) o (QLU)e
(ws)®
FIGURE 6
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3.5 An Alternative Description

We give an alternative description of M? to that given in 3.4.

From figure 6 it is clear that there is a natural colouring by the
set {r,s,t,u} of the edges of each square making up M? . If we split
each vertex of M? then we obtain a closely related map. See figure 7,

where the orientation is anti-clockwise.

s
u t
S r s
u t Y t
s
r r
u t
r
FIGURE 7
This is an embedding of a 4-coloured graph T . In fact I' 1is the

right coset graph Fl described in 3.3. The embedding is according to
the cyclic ordering (r,t,s,u). It may be interesting to compare figure

to [BM, Fig. 1]. We remark that there are many examples of
representations which do not come from embedding the corresponding

edge-coloured graphs.

12



4. Products of Maps

4.1 Definitions
In the notation of 3.1 we remark that a subgroup M in G2
corresponds to an object M in mz . For M1 € ml we define Ml Xq M

to be M? . Thus we have the following diagram.

G,
} "
M1 X9 M M —>9—-—- G1 }
Q9 Ml
M —<T M,
2]
K 1
1

4.2 Theorems

In the notation of 3.1 and 4.1, let Q1 be a set of right coset

representatives for M1 in G1 . Then S'z1 may be identified with a set
of right coset representatives for M? in M. We let Q be a set of
right coset representatives for M in G2 . Then Q1 x 2 may be

identified with a set of right coset representatives for M? in G2

Let w : G 58(Q), nw: G »>S(Q) and w : G = S(Q x Q) be the
1 1 1 2 2 2 1

transitive permutation representations corresponding to the actions, by

right multiplication, on the right cosets of M1 , M and ME: in
G , G and G respectively. These actions correspond to the maps

1 2 2

M, M and M? respectively.

The following theorem is an attempt to justify the adopted product

notation. It is stated without proof.

13



THEOREM

Here the notation is as above.

Firstly, if we fix the second coordinate of Q1 x to that which
represents the coset M in G2 then n, restricts to an action of M
on the first coordinate which ‘is equivalent to "109 , and so
corresponds to the map M1 with an element of twist.

Secondly, the action T, restricts to an action of G2 on the second

coordinate which is equivalent to w , and so corresponds to the map M .

The following theorem follows from the observation that M? is a

subgroup of M .

THEOREM
M1 Xg M covers M .
4.3 Examples

The aim of this section is simply to give the reader a flavour of
the product defined in 4.1. We omit a large amount of detail, and simply
claim that in each given example there exists a representation 6 which
yields the stated product(s)

Recalling the first theorem of 3.2 we observe that the first factor
of the first product in example 1 is a non-oriented cube whose
automorphism group thus includes reflections and is thus isomorphic to
S4 X C2 . This group should then appear as a group of automorphisms of
the product, which is an oriented map on a surface of genus S5, and whose
automorphisms are necessarily orientation-preserving. Recalling the
second theorem of 4.2 we observe that in each example the product map

should cover the second factor.

14



Example 4 is the product yielded by the representation given in 3.3.
Example' 5 is included to demonstrate the factorization of a given map, in
this case an oriented tetrahedron, and the problem of finding irreducible
factors. The stated factorization was obtained by considering the
stabilizer of a point in the natural action of A4 . and the
complementary Klein-4 group. Example 6 is included to demonstrate how
Poincaré duality arises as a special case. Example 7 is included to
demonstrate how the standard representation of a map by a hypermap arises

as a special case. For an account of hypermaps see, for example, [JaZ].
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5. Concluding Remarks

In the notation of 3.1, given a subgroup M in G2 , epimorphisms
8 : Mo G1 induce functors, or representations, 0 : ﬂﬂl > ﬂﬂz taking a
map M1 corresponding to ‘a subgroup M1 in G1 to a map M?
corresponding to the subgroup G-I(Mi)

These are not the only examples of functors @ : Mﬁ - ME . Clearly,
given a subgroup M in G2 , epimorphisms 0 : G1 > M  induce functors,
or representations, 0 : mg > ﬂg taking a map M1 corresponding to a
subgroup M1 in G1 to a map M? corresponding to the subgroup e(Ml),
and such representations behave rather differently to the ones described
in this paper.

It remains an open problem to fully classify all functors

0 : MH - Mg between the sorts of categories discussed in this paper.
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