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Algebras of Riemann matrices and
the problem of units
by

Gonzalo Riera

In a paper written in 1934 (c¢f {[1]) H.Weyl considers the
correspondences of a Riemann surface into itself as associated to some
algebras of matrices. He does so in an unusual way since instead of the matrix
of periods Z on a surface he considers a real mairix R 2g x 2g formally
equivalent to the former but much more suited to algebraic considerations.
Latter C.L.Siegel (c.f. [2]). completed the study in much the same fashion but

leaving open a number of questions that we shall explain.

Riemann Matrices.

Consider a basis of closed curves Ocl,...,oczg in HI(M,Z), where M is a
compact Riemann surface of genus g. A basis of analytic differentials dwl,...,
dw2g in H 1‘O(M,a:) is said to be dual to the basis of curves if

Re I afwi = 00 = C
o, J 1j

i
where o denote the intersection product.
In this case the Riemann relations imply that the matrix
Im I dw. = s,
o i ij
i
is symmetric positive definite. Multiplication by i in the vector space of

differentials is represented in terms of the basis (a’wi) by a real matrix R
such that R* = -I.
We have the relations
R=C'S, ¢=-< & =85,

where ’ is the transposition.



In other words, the matrix R defines a complex structure in the real
vector space R’® and the matrices C, § define an hermitian scalar product by
the formula

<u,v> = w'Sv - iw'Cv.

Example: g = 1.
M is given as the quotient of € by the lattice generated by 1 and
T=7r + it, t > 0. These two vectors form a basis of Hl(M,Z) and we have
dw1 = (i/t)dz, dw2 = (I + ir/Hdz
since, for instance,

Re j dw = Re(-I + irft) = -1 = -(1.7),
T

Here then
0 -1 1t rit rit (r2+t2)/t
C = , S = 2 o |» R= .
1 0 rit (F+0Mt -1/t -rft
This example can be generalized in much the same way to any Riemann

surface with a canonical basis.

Correspondences.

An (m,n) correspondence between two surfaces M, N associates to each
point p in M n transforms Pl in N varying holomorphically with p and to
each point ¢ in M m transforms - in M varying holomorphically with g.

To give a more precise definition consider the surface M x N. If M and N
are given as curves in P and P, with points (xo,... ,xk) in M and
(yo,...,yl) in N then the points

px .

17

define the product surface in P .
(k+1)(1#1)-1

The surface M x N carries two pencils of curves M x n, M X N with

algebraic intersection /. A correspondence is then defined as an algebraic



curve I'c M x N. To each point p in M the transforms are given as
p><M.I‘=pl + ...+pninN
and for each point g in N we have

F.qu=q1+...+qninM.

Examples.
(1) The circle I7: P y2 = [ in affine coordinates deflines a (2,2)

correspondence from P tOP.

(2) The lines x = constant define a (2,2) correspondence from a circle

to an elipse

P .t2+y2=1

(3) Consider a surface C of genus 2 with an autemorphism G; o® = id and
Ci<o> = Tl is of genus /. Then if T is the hyperelliptic involution
C/<ot> = T,. The surface C defines in a natural way a (2,2) correspondence

fromT toT.
1 2



(4) Let T be a discrete Fuchsian group acting on the unit disc D and I‘]
I"2 be two Fuchsian groups such that [T : Fl] =n, [[": Tz] = m. Then the
identity in D gives an (n,m) correspondence from D/T° , fo /T, 5

Or, let /T admit a group of automorphisms G. For two subgroups H P H2 in

G we have a correspondence from (/T )/H1 to (0/T" )/Hz.

Algebras of Matrices.
Let I' be a correspondence from M to M. As p varies over a cycle a in

Hl(M,Z) the n points p, .. +p together vary over a cycle

28
I“*(Oti) =jzlaﬁocj . a € Z.
Thus T is represented by a matrix 4 : Hl(M,Z) -—_ HI(M,Z) with integer

coefficients.

Theorem (Lefchetz).
A necessary and sufficient condition for an integral matrix A to be given by

an algebraic correspondence T is that AR = RA.

(Actually Lefchetz did not prove this theorem in this language but this is a

translation of his theorem to decide when a cycle I" is algebraic in M x N)



Theorem (Torelli).
A necessary and sufficient condition for an integral matrix ¥A such that

AR

E3

A = C'AC.

*
RA t0 be the matrix of an isomorphismT : M —» M isthat AA = I, where

(Actually Torelli’s theorem is not written in this way either but it is its

interpretation in this language.
H.Weyl then posses the problem:

Classify all algebras of matrices A that appear as algebras of matrices

commuting with a given R.

This work can be read in Siegel’s lectures (cf. [2]). But we have two
main problems

(a) The matrices A have integral coefficients. We have to consider
then "orders" and not just algebras.

(b) The automorphisms T correspond to units, or to integral elemenis in the
algebra such that aa =1, where 4" is an involution. How do we find
them? What are the possible R for a given genus that admit non-trivial
units? We know for a fact that they can be classified geometrically or as

algebraic curves.

Examples.
(1) Consider the curve of genus 2 admitting a group of automorphisms of
order 24. The normalizer is generated by reflections in a triangle of interior

angles m/6, nt/2, m/4.



Basis o = 2+ 3, o, = -1+ 5, oy = 34+ 7, oy = -5 + 9. In terms of this

basis we have for the two generators of order 6 and 4 respectively the

matrices
0 0 0 -1
_ {1 000 6 _ 4 2 _
A= 0 1 0-1 A=LA " +A"+1=0
0 010
(0 1 0 0
_1-1 0 00 4 52 _
B = 01 0-1 B'=1,B"+1=0
-1 0 10
or, under a change of coordinates that brings
[0 -1 0 0] 0 0 1 0
_ 1 0-10 _lo 0 0-1
C=1lo 10 © C=l1000
0 0 1 0] 0 1 00
0 0 -1 0 0 0 0 1
_ 10 0 1-1 % |0 0 I-I
A=11700 B=11=100
0 1 0 0f -/ 0 00

R has to satisly, AR = RA,BR = RB, R? = I and then we find



0
0
2.
1 -

N~

-1
2
0
0

SO ~N

(2) Consider the curve of genus 2 admitling a group of automorphisms of

order 10 (z 10). 3

A basis of closed curves is o = I+ 2,oc:2 =2+ 3,oc3 =3+ 4,oc4 =4 + 5.

The rotation of order 10 is given by

0 0 0 -1
1 001 10 _ 4 3 2 _
A= 0 1 0-1 AV =L AT -A+A-A+1=0
0011
o 1 0 0
1010
C=1l0.101
0010

To find R such that AR = RA is not altogether trivial. Namely one can check
that if R commutes with A then it has to be in R[A], that is
R = aol + aIA + 02A2 + a3A3 with ap ay, g, Az e R. Hence we have 10
look for solutions of R2 = -1 in the algebra

4 3, 2

R{A] = REY(x X" +x"-x+]) =



REx/(?-2c052m/S)r+1) @ RE(-2cos3miS)r+1) = ¢ @ ¢
as algebras. On the last term we find four such solutions (&%) and tracing
back the isomorphisms we find four such R’s. Now the condition CR positive

definite implies

-B+V5)/4 -(1+V3)/2 (1-V5)/2 -(1+V3)/2
(3+5)2 (V5-1)/4 -1 1
R = (V3)/2)/(5+V3)/2 -1 1 (1-v5)/4 -(3+v3)/2

(1+v5)/2 (V53-D)2 (1+v5)/2 (3+/5)/4

The problem we consider in these examples are the following :
- Characterize the integral elements in the algebra of all matrices
commuting with R
- Characterize the units in these algebras and prove that we obtain all of
the automorphisms back.
- Understand why there are only 3 such algebras in genus 2. (These two and

the last one with a group of order 48).
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These notes collect some of the talks given in the Seminario del Departamento
de Matemdticas Fundamentales de la UN.E.D. in Madrid. Up to now the following

titles have appeared:

Luigi Grasselli, Crystallizations and other manifold representations.
Ricardo Piergallini, Manifolds as branched covers of spheres.
Gareth Jones, Enumerating regular maps and hypermaps.
J.C.Ferrando, M.Lopez-Pellicer, Barrelled spaces of class N and of
class Xo
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Pedro Morales, Nuevos resultados en Teoria de la medida no conmutativa.
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Tomasz Natkaniec, Algebraic structures generated by some families of real
functions.

7 Gonzalo Riera, Algebras of Riemann matrices and the problem of units.

8 Lynne D. James, Representations of Maps.

9 Grzegorz Gromadzki, On supersoluble groups acting -on Klein surfaces.
10 Maria Teresa Lozano, Flujos en 3-variedades.
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