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by
Tomasz Natkaniec
1. Definitions. R denotes the real line. For a given .set X let RX be the
family of all real-valued functions defined on X. We can consider the

following operations defined on RX.

(A) Algebraic operations.
V fge RS [+ 8 x> flx)+g(x),  fg 1 x v fix)g(x),
erRX V a€e R (af) : x > a(flx)).

The set RX with such defined operations forms an algebra of functions (over

X

R). If Yo R” then _£(Y) denotes the subalgebra of RX generated by Y. Of

course, in general ¢(Y) may be different from Y.

(B) Operations of lattice.
V f,ge RX max(f.g) : x+— max(f{x),g(x)),
min(f,g) : x> min(f{x).g(x)).
If Yc RX then J%Y) denotes the lattice generated by Y, i.e. the smallest

lattice of functions containing Y.

(C) The Baire system.
For YC RX let @B(Y) denotes the Baire closure of Y, i.e. the collection
of all pointwise limits of sequences taken from Y

B(Y)={f:X— R | 3 {fn)neN fneY and f: x —> limfn(x)].

N300

For every ordinal a<o; we define the family Qa( Y) as follows:

@B (Y)=B( U BY).
o B<a%
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Finally @B(Y)= U @a{Y).
o<W
1

Example. If X =R, Y= 6 is the family of all continuous functions
iR >R, then A(6)= 6, )= 6 and 930‘(6) is the family of all

functions of the Baire class o.

Many mathematicians have studied some families of functions, and algebras
and Baire systems generated by those families (e.g. Kuratowski, Sierpinski,
Preiss, Mauldin, Miller). In Bydgoszcz we have studied also lattices of

functions.

2. One-to-one functions. Let 921 be a family of all one-to-one functions

f:R —>R.

(A) It is easy to see that every function f: R— R is a sum of two
one-fo-one functions. Indeed, list every reals in the sequence (xg)& < We
define (inductively) two one-to-one functions fl’ f2 : R—»R such that:

fifxg) € RN{Usg) 1 Beo) U Uty - fytsg) 1 pecil}
and
f2(xoc) =f(x(x) - fj(x(x) for each o < «.
Then f1 and f2 are one-to-one and f = f1 + f2. Thus /{(%) = RR

(B) Similarly we can prove that every function f : R — R is a pointwise

limit of some sequence of one-to-one functions. Thus @ ( 9% )= QB}( 7% ) = RR .

(C) A little more complicated situation is in the case of the lattice
generated by the one-to-one functions [5]. First we introduce the family
A=f:R--R | dneN VyecR card(fj(y)) <n .
Foreveryf € 92 we define no(f) = max{n | JyeR card(fl{y)) = n). Let finally

%n ={ feqk | no(f) <n ). Then = U 9% and we can prove (by induction) that:

n=1
(i) if fige %” then max(fg) € %2’1 and min(f,g) € %2’2,

(i1} every function f& %n can be expressed as a maximum of four functions
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from the class %”_ Iz (Observe that in this realization of f appears
only the operation of maximum; the operation of minimum is not
necessary)

Consequently we obtain that (9% = x.

3. Differentiable functions. Let Diff be the family of all differentiable
functions. Of course Diff is an algebra of functions, £ (Diff) = Diff and it
is well-known that B(Diff) = B(6) = &8 I Evidently Diff is not a lattice and
Z. Grande posed in [7] the problem to characterize the lattice generated by
differentiable functions .

In [11] we proved that .Z(Diff) = J, where J is the family of all
continuous functions f : R — R such that

(1) the set N(f) of all points at which f is not differentiable is a

finite union of discrete sets,
(2) for every point x € R there exist the right-hand derivative f _;_(x)

and the left-hand derivative f° at this point.

It is easy to see that Diff ¢ J ,J is a lattice of functions and
therefore, F(Diff) ¢ J. The proof of the inclusion J'c Z(Diff) is based on

the following lemma.

Lemma. For AC R let der(A) denote the set of all accumulation points of A
which belong to A. Also let
dero(A)=A and a’erk+I(A):der(derk(A)).
Then for every C< R and for every n=0,1..., the following are equivalent:
(i) C is a union of n discrete sets,

(ii) der'(C)=@.

The idea of the proof that JS'c A(Diff) looks as follows. We define



g =Diff and S =(fed | de(N(f)) =D ).

Then J= U J ,, and we can prove that for every function f € J' there exist
neN

functions f]’ f2, f3, f4 € J;;-I such that
f= min(max(fl, fz), max(f3,f4)).

4. Darboux functions and almeost continuity. Recall that a function f : R — R
has the Darboux property iff for every connected subset C of R, fiC) is a
connected subset of R. A function f: R — R is said to be almost continuous
(in the sense of Stallings [16]) if for every open set G < R x R containing f,
there exists a continuous function g : R — R lying entirely in G.

Let & (resp. £) denote the class of all continuous functions, (resp.
almost continuous functions) and let & be the family of all Darboux
functions. We have @g Jﬁg D (see e.g.[2]).

The following theorem described the algebra, the lattice and the Baire
system generated by the family of all almost continuous functions (and

consequently, Darboux functions).

Theorem 1. Let f: R — R be any function. Then
(a) f=f; +f, for some functions [ fo € A 110,
(b) f is a poimtwise limit of some sequence of almost continuous
Sfunctions: f= limfi, fie A [10],
(c) #min(max(fl,fz), max(f3, f4)) for some f]' f2, f3, f4 e A [12].
Moreover, if h is Lebesgue measurable or with the Baire property then the
Sfunction fz in (a), (b), (c) may be taken to be Lebesgue measurable or with

the Baire property ([8] and [14]).

Remark. We have also the stronger version of (c) :

[f= max(tl,tz), where t = min(max(fl,fz), f3), ty = min(max(fl, f3),f2) and

fp f2, f3 are almost continuous, but there exist functions f: R — R such
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that f # max(fI,fZ) and f# min(fl,fz) for each f1, f2 € & (and for each
f]’ f2 € { too). The function fix)=x for xe {1,-1} and f{x)=0 otherwise is an

example of such a function.

Theorem 2. Let @QB’a (a1} denote the class of all functions of the Baire
class o with the Darboux property. Then
(a) for every fe @a there exist functions f 7 f2 € @'@a such that
f=r 1 + f 2 [31,
(b) for every fe€ ngc +] there exists a sequence of functions (f’ z)n’
fn € @@’a such that f is a pointwise limit of this sequence [3],
(c) for every f € @(x there exist functions f g f2, f3, f 4 € @@’a such that
f= min(ma,\fl, f2),max(f3, f4)) [12].

Since @@j = ‘/@I [1], the same theorem holds for the class A@}.

Problem 1. Does the analogous theorem for the class /&@a, where o>1 hold ?

J. Ceder characterized those functions which are products of Darboux
functions [4]. This are all functions f: R — R such that f has a zero in
each interval in which f changes sign. A function f: R — R is a quotient of
two Darboux functions if f satisfies the following conditions:

(i) if a < b and fla)f{b) < O then f{c) = 0 for some c € (a,b) and

(ii) the sets [f> 0] and [f < O] are bilaterally c-dense in themselves

[13].

Problem 2. Characterization of functions which are products and quotients of

almost continuous functions.

It is easy to see that the class of all Darboux functions is closed with



respect to the superposition of functions. This is not true for almost
continuous functions; every function f: [0,1] — [0,1] which take every
value c-times in every subinterval, is a superposition of two almost

continuous functions g, 4 : [0,1] — [0,1] [14].

Problem 3. Is every Darboux function a superposition of (two) almost

continuous functions?

5. Maximal additive subfamilies. Let ¥ be a family of real functions. A
subfamily //% (Y) of Y is called the maximal additive family for Y provided
/% (Y) is the set of all functions in ¥ such that f+ge Y whenever f /ﬂd (Y) and
g € Y. Similarly we define the families:
,-“/[ (Y)=(fe Y | VgeY fge Y ),
mm(Y) ={feY | Vge¥ max(fg)e Y ),
M . (Y)=(feY | Vge¥ min(f,g) € Y },

min{
(Y).

Those families are well-known for the class of Darboux functions.

/[l(y) (Y) N Az min

Theorem 4,
(1) H ( D) = //f ( ) = the family of all constant functions [15].
(2) M max( & ) is the family of all upper semi-continuous functions with

the Darboux property [6].
(3)

¥ mm( @ ) is the class of all lower semi-continuous functions with
the Darboux property [6].

(4) “ﬂl(@) = 6.

For the family of all almost continuous functions we have the following

results [9].



Theorem 5. We have:

Problem 4. Characterization of the classes ‘/”max( A) and A

1]

(21

(3]

[4]

[5]

[6]

(71

(1) //[a(“{') = 6,
(2) HfA)= G,
(3) /Mm( A)={f:R—>R [if X9 is a point of right-hand (left-hand)

discontinuity of f then f(xo) = 0 and there exists a sequence ({x_)

nn

such that x ¥ X, (xn 7 xo) and f(xn)=0 for n=12..}

(A).

min
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