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Barrelled spaces of class n and of class %,
by
J.C. Ferrando & M. Lépez - Pellicer

Abstract. We study the properties and the separation of
the barrelled spaces of class n and Xy We show that
every non-normable Fréchet space contains a dense
barrelled subspace of class n-1 which is not of class n.
The totally barrelled spaces are barrelled spaces of
class % and l°:(X,J6) is and example of a barrelled space
of class %o which is not totally barrelled.

From now onwards by "space" we mean "Hausdorff locally convex space over
the field of the real or complex numbers”. If A is a subset of a space <A>
denotes its linear span. If B is a bounded absolutely convex subset of a space
E, then E B denotes the normed space over its linear hull. If [Ei, iel) is a
family of spaces, E = ﬂ Ei and J is a subset of I, then E(J) denotes the
subspace of E consisti;xeglof those elements of support J. A space E is
Baire-like (unordered Baire-like), [9]1 ([16]), if given an increasing
(arbitrary) sequence of closed absolutely convex subset of E covering E then
one of them is a neighbourhood of the origin. E is suprabarrelled or (db),
[13] ([11}), if given an increasing sequence of subspaces of E covering £ then
one of them is dense and barrelled. E is ordered suprabarrelled, [5}, a if
given an increasing sequence of subspaces of E covering E there is one of them

which is suprabarrelled. E is totally barrelled [15], if given a sequence of

subspaces of E covering E there is one of them which is Baire-like.

1980 Mathematics subject classification (Amer.Math,Soc.): Primary 46A07; secondary 46A03,
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The suprabarrelled spaces are called in [8] barrelled spaces of class
one. These spaces are Baire-like, and taking into account that every dense and
barrelled subspace of a Baire-like space is always Baire-like ([1],16(5)) it
results that E is suprabarrelled if given an increasing sequence of subspaces
of E covering F there is one of them which is Baire-like,

Following [8], for each positive integer n>1, E is called barrelled space
of class n if given an increasing sequence [En}‘::’=1 of subspaces of E covering
E there is an Ep which 1is barrelled of class n-1. We must note that since E is
Baire-like we can choose the subspace Ep above being dense in E. E is called a
barrelled space of class %, if E is a barrelled space of class n, for
n=1,2,3,... . The ordered suprabarrelled spaces are barrelled spaces of class

2 and in [6] is proved that l:’(X,A) is a barrelled space of class Xy

1. Permanence properties of the barrelled spaces of class n and of class Xy

As it is well known, the barrelled spaces of class 1 and 2, and the
barrelled and Baire-like spaces are stable under separated quotients,
completions, countable-codimensional subspaces and arbitrary products, and
satisfy the three-space problem ([101,{13],[3] and [5]). We are going to show
that these properties are shared by each one of the barrelled spaces of class
n. From these facts it follows immediately that the barrelled spaces of class

Xy have these properties as well.

Proposition 1. For every positive integer n, if E is a barrelled space of
class n and F is a closed subspace of E, then EIF is a barrelled space of

class n.

Proof. For brevity, we will denote the barrelled spaces of class n by Cn. As

the property is true for n=1,2, we will assume that it also holds for some n,



and we will prove that it also holds for n+1. Let F be a closed subspace of
Ee Cn+1' We must show that E/Fe Cn+1’ If k is the canonical mapping from E onto
E[F and[Hilo;’=l is an increasing sequence of subspaces of E/F covering E/F
there is some positive integer p such that k'l(Hp)e Cn. Then, by the induction
hypothesis, as F is a closed subspace of k‘l(HP), we have that

H =k(H )/[Fe C . Therefore E/[FeC .
P P n n+1

Proposition 2. For every positive integer n, if Fe Cn and F is a dense subspace

of a space E, then Ee Cn.

Proof. The property is true for n=1,2. We assume that it holds for some n>2,
and we show that this property is also true for n+1. So let Fe Cn+l be a dense

subspace of some space E and let [Ei}

°i°=1 be an increasing sequence of subspaces
of E covering E. Clearly, there exists a positive integer p such that EPmF is
a dense subspace of F belonging to the class Cn. Since F is dense in E we have

that Eme is a dense subspace of Ep which belongs to Cn. The conclusion

follows now from the induction hypothesis.

Proposition 3. For every positive integer n, if Ec Cn and F is a countable

codimensional subspace of a space E, then EeC .
n

Proof. As the property is true for n=1,2,..., we are going to show that it
holds for some n+1, when it is true for some n>2. So let F be a countable
codimensional subspace of Ee Cn and let {Fi, i=1,2,...} be an increasing
sequence of subspaces of F covering F. If G denotes an algebraic complement of
F in E, since [G+Fi, i=1.2,...} is increasing and covers E, there is a
positive integer p such that G+Fp € Cn. The conclusion now raises from the

induction hypothesis.



Proposition 4. For every positive integer n, if (Ei, iel} is a family of

spaces such that Eie Cl1 for every i€l, then the product E = [ E € Cn .
€1

Proof. We carry out the proof in three steps.

Step 1. If I={1,2} the property is true for n=1,2. We assume that
property holds for some n22 and we show that it also holds for n+1. So we
suppose that E1 and E2 are members of the class Cn+1 and that {FJ_)";=l is an
increasing sequence of subspaces of E covering E. Clearly there is some pe N
such that FPF\Ei is a dense subspace of Ei which belongs to Cn, and this for
i=1,2. According to the induction hypothesis, (Fmel) X (Fmez) is a dense
subspace of FP belonging to Cn. The conclusion is now a consequence of
proposition 2.

Step 2. If I=N the property is true for n=1,2. We assume that this
property holds for some n-122 and that it does not hold for n. So we suppose

that EieCln for i=1,2,.... and that E = [ Ei € Cn_l\ Cn.
iEN

o0

Therefore there is an increasing sequence {F , }j . of dense
ifj =
Y7

subspaces of E covering E such that FJ_ eCn_z\ Cn_l. Given j1 there is an
1

o0
increasing sequence {Fj ; } o of dense subspaces of Fj covering Fj such
2 S 2 1 1
that every Fj i€ Cn-3\ Cnn. Continuing in this way we obtain a countable
12 -
family F. . of dense subspaces of E such that Fjj ; eCl\C.

P22 Y2
o0

Given j . ,....] we obtain an increasing sequence A{F . .
Ipdy s & 4 RS N I

of dense subspaces of E which are Baire-like and not suprabarrelled and,

therefore,  given jl'jz""’jn 2’jn1 there is an increasing  sequence

{Fjj i, j}j o of dense subspaces of E which are not barrelled
12" n-2'n-I'n: n

Let Tjj i be a barrel of Fjj jwhich is not a neighborhood of the
i RREN
origih in F,_ , and let B = denote its closure in E. Now we
Jied i
12 "n 12 °n
define



L. .= UG |
Wrdar =1 2

and so on until L :== U G. . and Gj =nL.

o= Y 1 ijlJ
The sequences
o0 o0
{G. } j _1 and {G. j j ‘} j —1
iJiF iy ) i=
are increasing and covers £ and L _  , being
1‘]2..._]](
o
ij cl. . =UG

for 1<k<n-1.

There is some positive integer p such that Gp contains the subspace
E(p+1,p+2,..) of E. In fact, if this property were not true, then would
exists some xe E(r+1, r+2,.)\ Gr, r=1,2... . The projection of these
points in every Ei are contained in a finite set, and therefore,
A= [{,\'r, r=1,2,...) is a Banach disk in E, and given that [Gs, s=1,2,...}

covers EA, there is some 5,€ N such that for §,>5, Gs‘ n EA is a Baire space
1

00

which is a dense subspace of EA, and, given s;>s1, as_ Ule‘s covers Gs,

' 20 12 1

there exists an so(s; ) such that for s;>s2(s;), Gs,s‘ is a Baire space which
- 12

is a dense subspace of EA.
. . . . . ’ ’ 2 ’ z
Continuing in this way we find ss(sl,sz), ,sn(sl,sz,...,sn_l) such

that Gs's_ ~ N EA is a Baire space which is a dense subspace of EA for
5y

2"
’ s 4 ’ 7 7 e
s> 5,8 > sz(sl) o 5> sn(sl ,sz,,..,sn_l).

Obviously Ls,s . N EA is a Baire space which is a dense subspace of

NN
E, and the barel B, L., .nE, is a zero-neighborhood in
A slsg...sn sls2...sl_l A
Ls{sé"'s,; N E,. and from density, being Bs;sé..,s!; n E, closed in E,, we have
that Bs,s_ . contains AA, being A>0.
5008



The inclusion A ¢ L | o for
§S o0
12 n

7 ’ s ’ 7 ’ 7
sp > 8, 8> sz(sl), e oS> sn(sl,sz,...,s ).

n-1
implies that A ¢ Gs_ ., dif
§_ +es8
12 n
’ 4 ’ ’ ’ 7 7
> > - .
5 S 5 SZ(SI) ’ e Sn(sl'SZ sn-l)
Obviously A ¢ Ls,s, , if
1 2."811_1
’ ’ ’ ’ AN 4 s
> >
5 S 5 s2(s 1)’ St 7 Sn-l(s 175 sn-z)’
and this inclusion implies that A ¢ G | | . if
S esel
s12 n-1
’ ’ ’ 7’ 7’ ’ 7
> > S ).
5 S 5y Sz(sl)’ -1 > sn(sl Sy ’6n~2)

Following these ‘inclusions we obtain finally A(;GS_ , for sI > 5 which
1
contradicts that x. € A\ GS_.
1 1

On the other hand, since the sequence {Gs}s=p is increasing and covers
the finite product E(1,2,...,p), which belongs to the class Cn because of the
step above, there is some q, 2 p such that an E(1,2,..,p) is dense in

1

E(1,2,...,p) and belongs to the class Cm' This shows that Gq contains the
1

subspace {Gq n E(1,2,.‘.,p)} x E(p+1,p+2,...) which is dense in E and belongs
1
to the class Cn_1 as a consequence of the induction hypothesis and the step 1.

By proposition 2 it follows that que Cn_l and, a fortiori, que Cn_l. Thus
there is some q,€ N such that Gqu2 is a dense a subspace of E of class n-2.
Following in this way we obtain quqz‘“qn.l which is suprabarrelled and dense
in E, and, finally quz"‘ n which is dense in E .and barrelled. This
implies that B P is a neighborhood of the origin in E, which is a
contradiction.

Step 3. We suppose now that I is non-countable and that Ei € Cn for some
fixed positive integer n and for every i€ 1. We denote as E o the 'subspace of E

consisting of those vectors of E with countable support. Given that E o is



dense in E, according to proposition 2 we only need to prove that E0 € Cn. This
is proved for n=1 in [13], theorem 35, and for n=2 in [5], theorem 3. We prove
this property in general by induction. So we suppose that Eie Cn, for ie I,

and that Eoe Cn_l\ C.
Then, as in the step 2, changing E by Eo’ we obtain the countable family

not barrelled. Let 7 . be a barrel of F .~ 'which is not a
J 1J2'"Jn J lJ2mJn
neighborhood of the origin in Fj, , and let B ; denote its
RRE o
closure in Eo'

We are going to show now that there is some <B‘j j> which contains
RN
. th let x < j g =12,
E. On the contrary, let lejzmjne EN lejz“‘jn> for j j,-j =1
Since every x. . . has a countable support there exists some countable
gy
subset H of I such that Xi5€ E(H), for jl,jz...,jn=1,2,... . By step 2
RRSN

EM)e Cn, and, therefore, there exists n natural numbers PP,P, such

that F ’ pn E(H) is a barrelled space which is dense in E(H). Therefore,
PyeB
from density, B poop contains a neighborhood of zero in E(H), which
Pyep,
implies the contradiction x e <B
PiPyPy PiPy?,
If E=<B >, then the barrelledness of E_ implies that B

0 p]pz...prl Q plp’z'" ;

is a neighbourhood of zero in Eo’ and Tp b is a zero meighbourhood in
1°2"%n

F which is a contradiction.

Proposition 5. For every positive integer n, if E is a space and F is a

closed subspace of E such that EIF and F belongs to the class Cn, then Ee Cn.

Proof. Let k be the canonical mapping from E onto E/F. As for n=1,2 the
proposition is proved in [13] and [6], we proceed by induction, assuming that
this property holds for some n-122 and that it does not hold for n. So, if E/F

and F belong to the class Cn and we suppose that Ee CM\ Cn then, proceeding

9



exactly as in proposition 4, step 2, we find a dense subspace Fjj . of E
N oy
which is not barrelled and such that Fjj ; nF and k(Fjj j) are
r'2"n r'2"n
barrelled and dense in F and E/F respectively.

Let T . . be a barrel in F, . which is not a neighbourhood of
I I
the origin in F _ , and let B denote its closure in E. The

i 3y
I'2 °n I'2"°n
barrelledness of Fjj ;N F determines the existence of a neighbourhood U
i
of the origin in E such that U  F, . . is contained in B,
J112""]n J1"’.’.'"Jn

On the other hand, since B, . jn U 1is absorbing in F, and

12""n 1'2™"n

k(F. ) is barrelled and dense in E/F, it follows that k(B. . ;N U
i i
is a neighbourhood of zero in E/F. The contradiction follows from proposition

4 of [14].
2. Distinguishing between the different classes.

The chief aim of this section is to show that for each positive integer
n>1, every non-normable Fréchet space contains a dense subspace H which

belongs to the class Cn_1 but not to the class Cn.

Theorem 1. For every positive integer n>1 the product space ® contains a dense

subspace Fe Cn_l\ Cn.

Proof. This is true for n=12 (see[5] and [16]). Let us suppose that it is
true for some n>2 and let us show that it also holds for n+1. By hypothesis
there is a dense subspace F of @ such that Fe Cn‘l\ Cn. Using this subspace F
we consider in G=0" the dense subspaces Er =@ X . x® X F xF x... and

E =U {Er: r=1,2,.... }

As Fe Cn, then by proposition 1 Er & Cn and, therefore E ¢ le.

Next we show that E € Cn. On the contrary, we obviously have Ee Cn_l\ Cn,

10



and exactly as in the proposition 4, step 2, we determine in E the dense

subspaces Fj, o jl,j2,....,jn=1,2,3,... , which are not barrelled,
1'2""n-I'n
the barrel Tjj ; of Fjj i which is not neighbourhood of the origin
12" '2"n
in F, the closure B, ~ of T.. in E, and the subspaces
Iy Iy Iy
L ..G. .,L. . ,.,L andG,,
U v N O Y % )
with jl’jz""’jn=1’2’3"”' There is a positive integer p such that GP
contains {0} x P.. x {0} x F x F x... . This fact follows as in proposition

4, step 2, or directly, considering in this proposition the product E= N E,
iEN
with Ei=F, for i=1,2,... .

o0
On the other hand, since the sequence {Gs}s_p is increasing and covers
the Baire space @, which obviously belongs to the class Cn, there is some

q,>p such that Gq n @° is a dense subspace of ®° and belongs to the class
1

C This shows that qu contains the subspace {qun (Dp} x F x F ... which is
dense in E and of the class Cn-x' By proposition 2 it follows that Gq]e Cn_1
and, a fortiori, que Cn_l. Thus, there is some q26N such that quqz is a
dense subspace of E of class n-2. Following in this way we obtain qu A
which is suprabarrelled and dense in E, and, finally, G which is
dense in E and barrelled. This implies that B oy is a 1n'eignl.llbgurhood of
the origin in E, and T oy a neighbourhood of the origin in Fqlqgmqn,
which is a contradiction.

Finally, as G=a" is isomorphic to ® the conclusion follows.

Theorem 2. Every non-normable Fréchet space E contains a dense subspace Fof

the class Cn_l which is not of the class Cn.

Proof. We use here a standard argument based on the one hand in a known result

of Eidelheit, [4}, and in the other hand in proposition 5 above (see for

11



example [16]) for raising the desired conclusion.
3. Barrelled spaces of class Xy

Proposition 6. If E is a totally barrelled space, then E is a barrelled space

of class Xy

Proof. If I' stands for the class of all the totally barrelled spaces, it is
obvious that I' is contained in the class C1 of the suprabarrelled spaces. We
suppose that I' is contained in Cn and we show now that I" is contained in Cn+1'
Actually, if EeT, let {Ei, i=1,2,...} an increasing sequence of subspaces of E
covering E. As E is totally barrelled there exists some peN such that Ep is
totally barrelled (see [15], theorem 4) and then, by the induction hypothesis,
Epe Cn. This implies that Ee Cn+1'

The theorem 1 of [6] establishes that the space l°0°(X,/6) is a barrelled
space of class Xy On the other hand, in [2] it is shown that this space is
not totally barrelled. This provides the separation between the two classes.

More examples of barrelled spaces of class %, which are not totally barrelled

may be obtained by the following proposition.

Proposition 7. If E is a metrizable barrelled space of class X, and F is an

unordered Baire-like space, then E®“F is a barrelled space of class Xy

Proof. If E is a metrizable space of class Cn, with n£2, and F is unordered
Baire-like, then E®HF is also of the same class Cn (see, [12] and [5]).
Therefore, if E®MF were not barrelled space of class X, there exists some

positive integer n>2 such that E® F does not belong to the class Cn, and,

i

without loss of generality, we may suppose that E®HF € Cn_l\ Cn. Now, as in

12



proposition 4, step 2, we obtain the countable family

{ij : :jl,ja,...,jn=1,2,...} of non barrelled dense subspaces of E®MF
dyd, 2

covering E®“F such that for every se& {12,..n-1} the sequence
{ij . } o is increasing and covers M. .

P2 9s41) s Il

Let Tjj i be a barrel of ij i which is not a neighbourhood of
oy dod,
the origin in M., . and let B, . be its closure in E® F. Now if
3y, SRR u
{Ur, r=1,2,...} is a decreasing base of closed absolutely convex

neighbourhoods  of  zero in E, followings [12] we set

V.. ={yeF . :U®ycB } Clearly each V _ is a closed
Idpdf r P2y Iyt

absolutely convex subset of F. Since F is unordered Baire-like we only must
prove that the countable family {VJ ix : jl,...,jn, r=1,2,...} covers the
=

whole space F. In fact, if this were the case, some V‘j ; would be a
2"
neighbourhood of zero in F and, since Ur® ij i is contained in
12"

... B would be a neighbourhood of the origin in E® F. Then
Wada o H
T,j ; would be a neighbourhood of the origin in M . . , which is a
'2™n 1'2"n
contradiction.

Now if y is any element of F we set Yj = {er : x®yeMj j} It is
=) =

J sl

o0
clear that for every se{1,2,...n-1} the sequence {Y, . } is
I9dsat
o0
increasing and covers Y. . and {Y, } . is also increasing and covers the
J, o iyi=
1 7s 1 i

barrelled space of class XOE. Hence, there exists n positive integers

P PyresP, such that Y bp is dense in E and barrelled. Now, if we
- F2"n

define T:={er 1 x®ye B } it is clear that T Y b is a barrel

1" s n 1°2"%n

inY op’ and therefore there is some neighbourhood of the origin Ur in E
2P

such that Ur is contained in 7. Thus Ulr®yeBpIJ . that is to say,

12"
eV .
= 1P Py

In [15] a totally barrelled normed space E such that E®M12 is not totally

barrelled is obtained. By the proposition E®H12 is barrelled of class Xy

13
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