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Abstraet

For "smooth" real functions u(x, y) in a given domain, a simple
inequality estimating lengths of level sets of u in terms of lengths
of level sets of derivatives of u is obtained. The inequality estab
lishes in fact "Rolle's theorem" for functioIIS of two variable and also
admits corresponding interpretations in complex analysis. On the
other hand the inequality admits interpretations in hydrodynamics
01' electrornagnetic fields and can be considered as a result in these
subjects.

Let D be a dornain with smooth boundary uD of finite Euclidean length
l(D) and let 'u(x, y) be a function of two real variables which is continuously
differentiable with its the first and second derivatives in the closure D. Consider
the zeros of u(x,y), that is the set l(u) := {(x,y) E D I 'u(x,y) = O}, usually
called level sets of u, and assume, for sirnplicity, that the set d\:les not degenerate
so that l(u) consists only on curves: here we consider illtersection point of l(u)
(if there are some) as starting 01' terminal points of the curves. Thus we exclude
a trivial case when u vanishes identically in some sub domains in D. Denote by
c(D) the class of similar functiollsand by L(D, J) the totallength of all curves
composing 1(/) for the function f.

We prove the following

Theorem 1. For any u(x, y) E c(D)

L(D, u) :s; Vi {L(D, u~) + vl2L(D, u~)} + l(D).

This inequality can be regarded as a result in real analysis (as anana
logue of Rolle's theorem for functiolls of two variables) and in complex analysis
(Gamma-lines) as well as the inequality admit, likely different interpretations
in the applied sciences (two interpretations are givell below).

Inequality (1) as an analog ofRolle's theorem for real functions oftwo
variables. At the early stage of mathernatical education we learn that Rolle's
theorem, that is between arbitrary two zeros of a real continuous function of
one variable there is a·Zer~. of the derivative, is not true in general for complex
functions. There are nurn~rous atternpts to obtain sorne analogous assertions
foranalytic functions w t~ a given domain D whose meaning is similar: for
w satisfying certain hypothe~isandhavingenough "powerful" set of zeros in a
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sub domain d the derivative w' also has zeros (sorne 01' all) in d. The following
particular but astonishing Gauss' theorem was the first, and also tillpresent the
most simple and applicable, result of this kind: any disk involving all zeros of a
given complex polynomial P involves alsoall zeros of derivative P'. Hundreds
similar studies were made since then.

However, we are not aware whether someone tried to get an analogue of
the Rolle's theorem in the real case, say for function u(x, y) E C 2 of two real
variables given in a domain D. In this case, we deal clearly with essentially
different type of objects, since zeros of function u are in general curves but not
points and also wehave two derivatives u~ and u~. But we still can look for a
regularity whose meaning is essentially the same: if we have enough "powerful"
set of zetos of u in D then u: and (01') u~ also should have correspondingly
"powerful" set of zeros. Now we can clearly see that inequality (1) is exactly
this type of assertion and thus it can beconsidered as an analogue of the Rolle's
theorem.

Interpretations of inequality (1) in terms of Gamma-lines in complex
analysis. Let r be a curve in the complex plane, D be a domain in the complex
plane and let lJ) be a meromorphic function in D. We define Gamma-lines (01'
better Gamma-set) of w in D as preimages w -1 (r) n D. Note that the concept
of Gamma-set is similar to that of the classical concept of a-points (that is set
of w- 1(a), a E iC). So that we can follow classical studies in complex analysis
related to these studies and consider Gamma sets in those nUll1erous problems
where previously a-points were studied. However it is pertinent to mention that
investigations of Gamma-sets can bring a lot of uew information both inside
purecomplex analysis in its applications in pure mathematics (see [1], [2]) and
in applied topies. Particularly this is due to the circumstance that for the
straight line r := {wl Imw = h} Gamma-lines are level sets of Imw, which have
a lot of interpretations in the applied science, also those meutioned aboye.

Que oftheuaturalconcepts to be studied is the length L(D,r, w) ofGamma
seto

At the end of 70s so called tangent variation principie has been established
(see [1]) giving upper bounds for L(D, r, w) for arbitrary w, D and large classes
of r. It was applied to obtain for Gamma-sets sorne results analogous to the
first and second fundamental theorems in Nevanlinna theory of a-points. Later
on, upper bounds for Gamma-sets were studied for other particular classes of
functions, domains and curves, see [1], p. 3.

Now we show that inequality (1) gives another type of upper bounds for
L(D,r,w).

Assume first that w is an analytic function in D. Then making use of the
following notations X := {wl Imw = O}, Y := {wl Rew == O} and w(z) =
u(x, y) + iv(x,y) we note that L(D,u) = L(D,X,w), L(D,u~) = L(D,X,w')
and L(D, u~) = L(D, -v~) = L(D, Y,-w') = L(D, Y, w') so that inequality (1)
yields

L(D, X, w) ::; v'2 {L(D, X, w') + L(D, Y, w')} + l(D). (2)
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The same is true for arbitrary llIeromorphic function w in D. lndeed, we
caIl remove from D small neighborhoods U¡ of zeros of w (finite nUlllber, since
w is meromorphic fUIlction in the closure of D), then apply (2) in D\ U¡ u" then
let tend the diameters Ui to zero.Since the lengths of L(Ui, X, w) tend to zero
together with the diallleter of Ui (see [1], p. 20) it follows that (2) is valid also
for our meromorphic function.

Inequality (2) can also be COllsidered frolll another point of view. In Value
distribution theory of llIerolllorphic functions w in the complex plane we meet
often results which compare nUlllbers of zeros of w and numbers of zeros of w'
in disks {zllzl < ro} 01' compare Nevanlinna characteristic functions T(r, w) and
T(r, w').

Clearly, inequality (2) is a similar assertion for Ganlllla~lines; fortunately it
is valid for arbitrary domain.

Hydrodynamic:: and electromagnetic interpretations of inequality (1).
Let 'U(x,y) bean electric potential. Then solutions of 'U(x, y) = A (equal to
solutions of u(x, y) ~ A = O) are equipotential lines, where the potential is
equal to A. The magnitudes u~ and u~ mean components of the electric field in
directions x and y; u~ = -v~ since the correspondiIlg complex potential w is an
analytic function. Clearly, inequality (1) can now be read as a general theorem
related to arbitrary electromagnetic field.

Another example. Let 'U(x, y) be the velocity at the point (x, y) in aplane
flow. Then solutions of u(x, y) = A are those lines where the velocity is equal
to A. The magnitudes u~ and u~ mean component of the accelerations in
directions x and y; again u~= -v~. Thus all magnitudes in this inequality
have hydrodynamic interpretations and inequality (1) can be considered as a
theorem in hydrodynamics.

It is interesting that in both the aboye interpretations we can clearly see
meaning of the inequality. Consider, what happen along a segment p with
the endpoint (xo, Yo) in the flow. Denote u(xo, Yo) = A and assume that the
velocity u increases when we move along p in a small neighborhood of (xo, Yo).
This means that acceleration is positive in this neighborhood. Then to meet
again this value A on p accelerations along p should necessarily decrease so that
atsome points on p this acceleration will beequal to zero. Inequality (1) gives
a quantitative description of this physically clear phenomena.

An analogue of Theorem 1 for several variables and proofs will be given in
another publication.

I should like to thank Arturo Fernandez and the Departments of Mathemat
icsof UNED at Madrid for their hospitality.
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