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1 Introduction

The geometric structure of surface mapping class groups has been object of intense study in recent
years, especial1y due to its connections with the geometry of Teichmül1er space and the theory of
hyperbolic3-manifolds. Of particular importance in this sense is the proof of Thurston's Ending
Lamination Conjecture, recently announced by Brock, Canary and Minsky [13] (see also I7J and
[6] for another proof), building on work due mainly to Minsky. We remark that an alternative
approach has been suggested by Rees [37].

We refer the reader to [26J for a thorough survey on surface mapping dass groups. Let E be a
surface of negative Euler characteristic, of genus 9 and p punctures (note that 3g - 3 + P 2 O).
The mapping class group Mod(E) of E is the group of self-homeomorphisms of E up to homotopy.
It is well-known that Mod(E) is finitely presented (see [23] and [41] for explicit presentations) and
that it is generated by a finite col1ection of Dehn twists about simple dosed curves on E.We want
tostudy the group Mod(E) from the point of view of Geometric Group Theory,that is, we would
like to examine actions of Mod(E) on different metric spaces (for which the mapping class group
will act by isometries) in order to obtain information about Mod(E). This, in turn, will provide us
with valuable information about the spaces that Mod(E) acts on.

In Section 2 we will describe three natural examples of spaceson which Mod(E) acts on: the
Teichmüller space of E, complexes associated to E, such as the curve complex, and Mod(E) itself
(or any Cayley graph for Mod(E)).

In Section3 we will introduce hyperbolic groups and explain why Mod(E) faíls to be a hyperbolic
group. In Section 4 we will discuss relatively hyperbolic group structures, and we will show that
Mod(E) is not a "strong relatively hyperbolic group". Final1y, in Section 5 we will present a
generalisation of this resulto
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2 Actions of Mod(~)

2.1 Teichmüller space

We refer the reader to [24J for a detailed study of Teichmüller spaces. The Teichmüller space T(~)

of ~ is perhaps the most classical space on which Mod(~) acts. The space T(~) is the set of
finite area hyperbolic structures on int(~) up to homotopy. More specifically, a point in T(~) is an
equivalence class [(S, f)J, where S is a finite area hyperbolic structure on int(~) and f : int(~) --> S
is a homeomorphism, called the markíng of S. Here, we declare two pairs (S, f) and (R,g) to be
equivalent if and only if 9 o f-l is homotopic to an isometry between S and R. The mapping class
group Mod(~) acts naturally on T(~) by changing the marking.

Topologically, the space T(~) is homeomorphic to jR6g-6+2P. However, the geometry of T(~) is
much more complicated. The space T(~) admits two classical metrics, for which the mapping class
group is (except for sorne low-dimensional cases) the full isometry group by results due to Royden
[38J and Masur-Wolf [32J respectively. Theyare:

1. Teichmüller metric: Equipped with this Finsler metric, T(~) is a proper, geodesic metric
space. We note that the Teichmüller metric on T(~) is not non-positively curved in any sense
(see [30J and [33]). However, Masur and Minsky [31J showed that the result of "coning-off"
the thin regions of T(~) is a Gromov-hyperbolic space (see Section 3 fo¡:- definitions), but no
longer locally compacto

2. Weil-Petersson metric: This is a Riemannian metric ofnegative sectional curvatures, although
these are not bounded away from O(see, for instance, [42]). Endowed with this metric, T(~)
is a CAT(O) space (see [11J for definitions). However, the Weil-Petersson metric is not com
plete, the reason being that one can "pinch" geodesics on ~ in finite time. The completion
of the Weil-Petersson metric is obtained by adding "noded" Riemann surfaces [29J. The re
sulting complete space is not locally compactanymore: a noded Riemann surfaces does not
have a relatively compact neighbourhood in the completion. The action of Mod(~) extends
a cocompact action on the completion, with quotient the Deligne-Mumford compactification
of moduli space. Pespite being CAT(O), the Weil-Petersson Teichmüller space is rarely nega
tively curved even in the weakest of senses: it is shown in [14J that the Weil-Petersson metric
is Gromov-hyperbolic (see Section 3) if and only if the surface is a twice-punctured torus or
a five-times punctured sphere. (See [2J for a somewhat simpler proof using only the Weil
Petersson geometry; see also (4] for another proof, which is similar in spirit to that in [14].)
For more details on the Weil-Petersson metric we refer the reader to [42]..

Remark 1 In {8}, Bowditch shows that if d is any complete Gromov hyperbolic metric on Te
ichmüller space, invariant under the action of the mapping class group, thenthe action of Mod(~)
on Teichmüller space must be parabolic. Effectively, this implies that there is no natural metric of
negative curvature on Teichmüller space, even in the weakest of senses. Thus we see that there is a
strong obstruction on the geometry of Teichmüller space coming fromthe structure of the mapping
class group.
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2.2 Complexes associated to surfaces

Another natural class of spaces on which Mod(E) acts are the so-called "complexes associated
to hyperbolic surfaces". These are infinite, finite-dimensional connected CW-complexes built from
topological information on E and for which Mod(E) is, except in a few cases, the full automorphism
group. Qne source of difficulty when dealing with these complexes comes from the fact that they
are normally locally infinite (each vertex has infinite valence). Among these complexes, the curve
complex and the pants complex are of particular interest for us (let us remark that another complex,
the trnin-trnck complex has been recently used by Hamenstiidt to derive important properties for
Mod(E)).For the rest of the exposition, unless otherwise stated, by a curve on E we will mean a
non-trivial free homotopy class of simple closed curves on E which are not homotopic to a puncture.

Definition 2 (Curve complex) The curve complex C(E) is the simplicial complex whose vertex
set is precisely the set of curves on E and where a collection A of curves spans a simplex if and
only if we can represent the elements of A disjointly on E.

The simplicial dimension of C(E) is clearly 3g - 4 + p, that is, the number of curves in a pants
decomposition of E minus 1. In the case of a three-holed sphere, or pair of pants, the curve complex
is the empty seto For the four-holed sphere and the once-puncture torus, the curve complexis an
infinite collection of isolated points; however, one can easily modify the definition to get a connected
graph (the Farey graph see [31]).

We tUfn C(E) into a metric space by giving each simplex a Euclideanstructure. The geometry
of CCE) was studied by Masur and Minsky [31], where they showed that the curve complex is
Gromov-hyperbolic (see Section 3). A somewhat simpler proof of this result is given in [9J. The
curve complex was used by Harer [21] to study cohomological properties of mapping class groups;
the automorphism group of C(E) was studied by Ivanov [25].

The pants complex P(E) is a 2-dimensional CW-complex whose vertices are pants decompositions
of E and one connects two vertices by an edge if and only if the corresponding pants decompositions
are related by an "elementary move" (see for instance [12] for definitions). Qne then fills certain
simple loops of P(E), which correspond to algebraic relations in the mapping class group, with
2-cells. The pants complex has been successfully used to compute presentations for Mod(E) (see
[23] and [41]).

Remark 3 In addition, these two complexes encode the large-scale geometry (that is, up to qua
siisometry, see Section 3) of Teichmüller space. More specifically, the curve complex C(E) is qua
siisometric to the so-caUed "electric" Teichmüller space (see (3i)) and the pants complex P(E) is
quasiisometric to the Weil-Petersson metric (see (12]).

2.3 Cayley graphs

In this subsection, we consider an arbitrary finitely generated group G.Following Gromov [20], we
will consider the group G as a metric space, equipped with the word metric with respect to sorne
generating seto The group G then acts byisometries on a metric space, itself, or equivalently it
acts by isometries on the Cayley grnph (see below) with respect to sorne generating seto From this
apparently obvious consideration one can deduce an extraordinary number of properties the given
group.
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Figure 1: (a) G = Z2; (b) G = F 2 ; (e) G = PSL(2,Z)

Definition 4 (Cayley graph) Let G be a finitely generated group and let n be a finite generating
set (which one normally assumes to be symmetric). The Cayley graph Cay(G, n) with respect to n
is the graph whose vertices are the elements of G and where two vertices g, g' E G are joined by an
edye if and only i¡ g' = wg, ¡or some w En.

Example 5 Figure 1 shows (compact parts of) the Cayley graphs ¡or Z2, F 2 and PSL(2, Z) with
respect to the standard symmetric generating sets.

Note that words in the group G correspond to paths from la in Cay(G, n), and that relations in
G correspond to closed paths in Cay(G, n). We can turn any Cayley graph of a given group into a
metric space by deeming each edge to have length 1 (note that this is essentially the word metric
on G). The geometry of the group (or that of any of its Cayley graphs) has important algebraic
consequences, for instance, if a group G is finitely generated and hyperbolic (see the next section)
then it is finitely presented and satisfies a linear isoperimetric inequality [19].

In Section 3 will see that surface mapping class groups are never hyperbolic except forsome low"
dimensional cases. However, it will be possible to endow mapping class groups with a weak structure
(but not a strong one) of relatively hyperbolic group, as we will discuss in Section 4.

3 Gromov-hyperbolicity

For a detailed discussion on Gromov hyperbolic spaces and groups see [19]. Let X be a metric
space, which from now on we assume to be a geodesic space, that is, every two points of X can
be joined by a path in X of length equal to the distance between them. This assumption on X,
despite being quite restrictive, simplifies the exposition in great manner; for a discussion in a more
general setup, see [19]. By a triangle in X we mean three points x, y, z E X and three geodesic
paths connecting them pairwise. Given a set T S;;; X and r .:::: O, we will denote by N(T, r) the
neighbourhood of T of radius r, that is, the set {x E XI d(x,T) S r}, where d represents the
distance function on X.
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Definition 6 (Thin triangles) Let X be a geodesic metric space and let b.. be a triangle in X
with sides al, a2, a3. Let ó ~ O. We say that b.. is ó-thin if ai ~ N(ajUak, ó), forall i, j, k E {1, 2, 3}
distinct.

Definition 7 Let X be a geodesic metric space. We say that X is ó-hyperbolic if there exists Ó ~ O
such that every triangle in X is ó-thin. Jf the value of the constant ó is not relevant we will simply
say that X is Gromov hyperbolic.

Example 8 Jt is an easy calculation to see that hyperbolic plane 1HI2 is Gromov hyperbolic (in fact,
this is true for IHIn, for all n E N). Any complete, simply-connected manifold of pinched negative
sectional curvatures is Gromov hyperbolic (see {19}, p.52). A less expectable example 01 a Gromov
hyperbolic space is given by a (simplicial) tree, that is, a graph with no loops: these spaces are
O-hyperbolic. On the other hand, Euclidean plane lE2 is obviously not Gromov hyperbolic, and the
same happens for any space that contains an isometric copy of lE2 .

A much more surprising example of a Gromov hyperbolic space is the curve complex of a surface,
as we mentioned in Section 1.2. This is the content of the following remarkable result, due to Masur
and Minsky [31J.

Theorem 9 (Hyperbolicity of the curve complex, [31]) Let E be a surjace of negative Euler
characteristic and consider the curve complex C(E) of E. Jf C(E) is connected, then it is Gmmov
hyperbolic.

The concept of Gromov hyperbolicity is very robust, as it is invariant under quasi-isometries, that
is, maps that preserve distances up to a bounded additive constant. Roughly speaking, two spaces
are quasiisometric if they look the same when looked at from far away. Formally,"\.Ve have the
following definition.

Definition 10 (Quasi-isometries) Let (XI,dl ) and (X2,d2) be geodesic metric spaces. We say
that a map </> : Xl --t X 2 is a (A, r, e)-quasiisometry if there are numbers A ~ 1, l' ~ O, e ~ O such
that the following is satisfied:

1. 1dl(X,y) - r $ d2 (</>(x) , </>(y)) $ Adl(x, y) + 1', for all x,y E Xl and,

2. For all z E X2there is x E Xl sueh that d2(z, </>(x)) $ c.

We say that Xl and X2 are quasiisometrie if there is a (A,r, e)-quasiisometry between them, for
sorne A.~ 1,1' ~ O,e 2: O.

Example 11 A metrie spaee of bounded diameter is quasiisometrie to a point. The lattice zn is
quasiisometrie to Euclidean spaee lEn of the same dirnension, and zn is quasiisometrie to zm if and
only if m = n. The Cayley graph of PSL(2, Z) (see Fig. 1 (e)) is quasi-isometrieto the simplieial
3-valent tree. The Farey graph is quasi-isometrie to a simplieial tree (a prool of this faet can be
found in {3} and it is due, in that form, to Brian Bowditch)
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The next result states the invariance of Gromov hyperbolicity under quasiisometries. For a proof,
see [19].

Proposition 12 Let Xl and X 2 be geodesic metric spaces and let </> : Xl --> X2 be a quasiisometry
between them. Then, Xl is Gromov hyperbolic if and only if X 2 is Gromov hyperbolic (although the
hyperbolicity constants will not coincide, in general).

The following result is an ea.sy exercise on finitp.ly generated groups (see [19]) but it will be crucial
in the definition of hyperbolic group.

Lemma 13 Let G be a finitely generated group and let nI, n2 be finite generating sets. Then, the
Cayley graphs Cay(G, nI) and Cay(G,n2) are quasiisometric.

In light of this observation, if Cay(G, n) is Gromov hyperbolic then any Cayley graph for G is
Gromov hyperbolic, by Proposition 12. We are finally ready to give a definition of hyperbolicity for
finitely generated groups. We remark that there are several (equivalent) definitions of hyperbolicity
for groups, see [19].

Definition 14 (Hyperbolic groups) We say that afinitely generated group is hyperbolic ifCay(G, n)
is Gromov hyperbolic for some (and hence, any) finite generating set n.

Example 15 1. The free group F n on n generators is hyperbolic, lor all n.

2. PSL(2, Z) S"! Z2 *Z3 is hyperbolic, since its classical Cayley graph (see Fig. 1) is quasiisometric
to a tree.

3. The fundamental group 71"1 (M) 01 a compad manifold M of pinched negative sectional cur"
vatures is a hyperbolic group, since it is quasiisometric to the hyperbolic space of the same
dimension as M (see (19j, p.62).

4. On the other hand, zn is not hyperbolic for all n ~ 2.

5. In fact, any group containing a free abelian group of rank~ 2 cannot be hyperbolic. Thus
Mod(E) is not hyperbolic unless the surface is a once-punctured torus or a four-times punc
tured sphere, in which case Mod(E) S"! PSL(2, Z).

4 Relatively hyperbolic struetures for mapping class groups

We have just seen that, with the exception of some low-dimensional cases, surface mapping class
groups are never hyperbolic since they contain high-rank abelian subgroups. However, one can
still ask whether mapping dass groups are "hyperbolic relative to"a collection of subgroups. In
fact, Masur and Minsky [31] showed the following result which is to be regarded as a corollary to
Theorem 16.
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Theorem 16 (Weak relative hyperbolicity, [31]) Let E be a hyperbolic surlace 01 genus 9 and
p punctures, with 3g - 3 + p 2:: 2, and consider its mapping class group Mod(E). Let C¡, ... , Cn a
transversallor the action 01 Mod(E) on the set 01 curves on E. Then Mod(E) is weakly hyperbolic
relative to H(c¡), ... ,H(cn ), where H(e;) is the stabiliser 01 the curve Ci in Mod(E), lor all i ==
1, ... ,no

Relatively hyperbolic groups, introduced by Gromov [20] and developed mainly by Farb [17],
Szczeparíski [39] and Bowditch [10], provide a natural generalisation of both hyperbolic groups
and geometrically finite kleinian groups. Let us note that there are two existing notions of rela
tive hyperbolicity: one due to Farb [17J, which we will refer to as "weak relative hyperbolicity";
and another one, due to Gromov-Szczepanski-Bowditch, which we will refer to as "strong relative
hyperbolicity", for reasons that will be apparent shortly. Primary examples of strong relatively
hyperbolic groups are fundamental groups of finite-volume manifolds of pinched negative sectional
curvatures. (compare with Example 15.3).

Let us begin with the definition of weak relative hyperbolicity. Let G be a (finitely generated) group
and let H¡, ... , H n be a finite coIIection of proper subgroups of G. Consider a finite generating set
n for G and let Cay(G, n) be the Cayley graph of G with respect to H. We form an augmentation
Cay*(G, (2) of Cay(G, n) as foIIows: for each translate gHi of Hi we add a llew vertex v(gH;), which
we connect to each vertex of gHi by an edge of length 1/2 (so that the region 9Hi has diameter 1
in Cay*(G,n)). Following Farb [17] \Ve wiII refer to Cay*(G, n) as the "coned-off Cayley graph" of
G with respect to n.

Definition 17 With the same notation as above, we say that G is weakly hyperbolic relative to the
subgroups H¡, .. . ,Hn il the coned-off Cayley graph Cay*(G,H), with respect to some generating 8et
n, is Gromov hyperbolic.

Remark 18 Farb shows [n} that il the coned-off Cayley graph with respect to some generating set
is Gromov hyperbolic then the same holds lor any genemting seto Therelore , the notion 01 a weak
relatively hyperbolic group is independent 01 a generating seto

We now give the definition of strong relative hyperbolicity. In his paper [10], Bowditch gives two
equivalent definitions of (strong) relatively hyperbolicity, of which we recan the second. We note
that a graph J:, is said to be jine if for any vertices v, v' of [, and any n E N there are only finitely
many injective paths from v to v' of length n.

Definition 19 (Strong relativehyperbolicity) Let G be ajinitely generated group and H¡, ... ,Hn
a collection 01 proper jinitely generated subgroups 01 G. We say that G is strongly hyperbolic relative
to H¡, ... , Hn il G admits an action on a connected graph K with the lollowing PT'9perties:

1. K is jine and Gromov hyperbolic,

2. There are only jinitely many G-orbits 01 edges and the stabiliser 01 every edge is finite,

3. The conjugates of H¡, ... , Hn are precisely the stabilisers of the verticeS 01 K of injinite
valence.
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In his paper [17], Farb shows that many important examples of weak relatively hyperbolic groups
satisfy a further property which he calls "Bounded Coset Penetration" , or BCP for short. This is a
geometric condition on feUow-travelling geodesicpaths in Cay(G, O) that enter cosets of H l , . .. , H n .

It turns out that weak relative hyperbolicity plus BCP is equivalent to strong relative hyperbolicity
[16J. However, the BCP property is crucial: there are weak relative hyperbolic groups thatare
not strong relatively hyperbolic groups. For instance, the group 71} is weakly, but not strongly,
hyperbolic relative to the subgroup Hm, m) I m E N}. Aswe will shortly see, mapping class groups
constitute another example of this behaviour.

The notion of relative hyperbolicity has important algebraic consequences (see [17] and [1Oj). In
particular, there is a certain "tranference property" in strong relative hyperbolic groups, as it
is often possible to deduce that the group G has a given property provided that the subgroups
Hl ,. " ,Hn have the property. Examples are unilO1m embeddability in Hilbert space [15], exactness
[36] and jinite asymptotic dimension [34]. In light of this, identifying a strong relatively hyperbolic
group structure for a given group becomes an interesting problem. However, for the case of mapping
class groups, we have the fol1owing result.

Theorem 20 ([1]) Let L: be a hyperbolic surlace 01 genus 9 and p punctures, with 3g ~ 3 +p ~ 2.
Then, there is no finite collection H¡, ... , Hn 01 proper subgroups 01 Mod(L:) such that Mod(L:) is
strongly hyperbolic relative to H¡, ... ,Hn .

Remark 21 Jt was already known (see, lor instance, [lO}) that Mod(E)cannot be strongly hy
perbolic relative to the subgroups described in Theorem 16. Jndirect prools 01 Theorem 20 can be
obtained Irom [8] and in [28]. Here, as well as in [1], we will give a hands-on prool 01 the resulto
Behrstock, Drutu and Mosher [5} have recently lound an alternative prool 01 Theorem 20 using the
asymptotic cone 01 the mapping class group.

The main ingredients for our proof of Theorem 20 will be the next two Lernmas on relatively
hyperbolic groups. We note that these results are well-known: the first result foUows frorn work oí
Tukia [40], the second result is implicitin the work of Farb [17] and Bowditch [lOJ and is explicitly
stated in [35J.

Lemma 22 Let G be a jinitely generated group and let Hl,"" Hn be a jinite collection 01 proper
subgroups 01 G. Suppose that G is strongly hyperbolic relative to H¡, ... , Hn . JI A is an abelian
subgTOUp 01 G 01 rank at least two, then A is contained in some Hj , up to conjugation.

Lemma 23 Let G be a jinitely generated group and let Hl, ... , Hn be a jinite collection 01 pTOper
subgroups 01 G. Suppose that G is strongly hyperbolic relative to Hl,.'" Hn • Then,

1. For any gl, 92 E G, the intersection glHjg1l n 92Hk9;¡1 is jinite lor 1 ~ j =1= k.~ n.

2. For 1 ~ j ~ n, the intersection Hj n gHjg-l is jinite lor any 9 rf, Lj.
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We are finally ready to give a proof of Theorem 20.

Proof [of Theorem 20] Suppose, for contradiction, that Mod(E) were strongly hyperbolic relative
to the proper subgroups H I , ... , Hn .

First, we c1aim that H i cannot contain a (power of a) Dehn twist. For, suppose that there exists a
curve CO on E and an integer no ~ 1 so that 7~o E Hj , where 70 is the (right) Dehn twist about co·
Since 3g - 3 + p ~ 2, by hypothesis, the surface E cannot be a pair of pants, a four-holed sphere
nor a once-punctured torus. Therefore thereexists a curve c¡ on E such that Co and CI are disjoint.
Consider the Dehn twist 71 about C¡. Then 70 and 71 comrnute since Co and CI are disjoint. In
particular, we must have that (7~O) e Hj n 7¡Hj7¡-1. However, since (7~O) is infinite, Lemma 23
implies that TI E Hj. Now take any Dehn twist 7 E Mod(E) about a curve c on E. Since the
curve complex is connected (recall that we are assuming that3g - 3 + p ~ 2), there is a sequence
co, C¡, .. . , Cm = e of simple CUrves so that ek~¡ and Ck are disjoint for 1 :s k :s m. By the argument
we have justused we get that if 7k~¡ E Hj, then 7k E H j , for all k = 1, ... , m and j = 1, ... , n.

In particular, we have that the Dehn twist 7 about e belongs to Hj . But this is irnpossible, since
we know that Mod(E) is generated by (finitely many) Dehn twists and we areassuming that the
subgroups HI,'" ,Hn are proper. Thus the c1aim follows.

Consider now two Dehn twists 7,7' E Mod(E) about disjoint curves e, e' on E. Since 7,7' commute
and are distinct, they generate a rank 2 abelian subgroup A of Mod(E). Thus, by Lemrna 22, we see
that A is conjugate into sorne Hj . However, this contradicts the c1aim in the previous paragraph.
QED

5 Generalisations

In fact, Theorern 20 and its proof are just part of a much rnore general result, applicable to a wide
collection groups, see (1]. Let us begin with a definition.

Definition 24 (Commutativity graph, (1]) Let G be a group and let n be a (possibly infinite)
generating set for G, all of whose elements have infinite order. The cornmutativity graph K(G, n)
for G with respect to n is the simplicial graph whose vertex set is n and in which distinct ver"
tices s, s' E n are connected by an edge if and only il there are non-zero integers n s , n s, so that
(sn., (s,)n.,) is abelian.

Abusing notation, we are making no difference between the elernents of n and the vertices of
K(G, n). We have the following result, see [1].

Theorern 25 (Non-relative hyperbolicity, [1]) Let G be a finitely generated group. Suppose
there exísts a (possibly infinite) generating set n 01 cardinality at least two s'uchthat every element
of n has infinite order and K(G, n) is connected. Suppose further that there exist adjacent vertices
s, s' 01 K(G,n) and non-zero integers n s , n s' so that {sn., (s,)n.,) is rank 2 abelian. Then, G is
not strongly hyperbolic relative to any finite eollection of proper finítely generated subgroups.
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This result represents a generalisation of Theorem 20. In the case of mapping class group, we
took the set of aH Dehn twists as the generating set Q, for which the commutativity graph is the
l-skeleton of curve complex, which is connected. The proof of Theorem 25 is totally analogous
to the proof of Theorem 20, just replacing the set of Dehn twists and the curve complex by an
arbitrary generating set Q and the commutativity graph K(G, Q), respectively. Besides surface
mapping class groups, examples of groups for which Theorem 25 applies: the Torelli group T(E)
of a compact hyperbolic surface of genus 9 ~ 3 (see [27J for definitions); the special automorphisrn
group Aut+(Fn) and the special outer automorphisrn group Out+(Fn) of the free group F n (see [18]
for definitions), SL(n, Z) for n ~ 5; the 3-dirnensional Heisenberg group, and Thornpson's group
F.
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