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Introduction

Let D be a polygon in the complex plane with n vertices and interior
angles Ta;, 0 < o; < 2, 1 <1< n; the exterior angles are given by wu; if
a; + i = 1.

The Schwarz-Christoffel conformal mapping from the upper-half plane
onto D is given by the formula

(1) f(z) = ‘/Oz (.’J.'; - ai)ux dz(z — an)#n + 'B

for real numbers a; < --- < a, and constants o and S.

There is ample literature on the subject, see for example {1], [3], [2]. We
find it necessary however to make some remarks on this formula.

First, even though (1) is explicit enough there is no known relation be-
tween the values of the a; ’s and the lengths of the sides of the polygon. This
implies that we may not take an infinite product in the integrand without
any justification; yet this is the kind of formulas we consider here. Also, the
formula (1) is a necessary but not a sufficient one, since for some values of
the a; s the mapping is not one to one (see [4]). To establish the necessity
one needs to consider the behavior of f(z) at oo, a possibility also clearly
excluded for infinite points a;.

We will also need some variations of (1) which we recall.

One of the points a; may be located at oo, the formula remaining the
same, and one of the vertices of the polygon may be at oo, where we use
the relation py + -+ pp = 2. ,

The formula for mapping the unit disc conformally onto D is equally the
same one, where now |a;| =1, 1 < ¢ < n and the formula for the conformal
mapping onto the exterior of the polygon is given by

g(2) = a/ e (z — a))* - (z — ap)*" % +
1

With/\=z wi | a;
=1 -
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This paper explores the possibility of infinitely many points a; in the real
line {(or the unit circle). We obtain results for two kinds of “polygons”.

2)

Polygons with an infinite number of sides. This is the case for ex-
ample of an infinite stair with internal angles alternatively equal to
7/2 or 3w /2. The formula in this case is

1) = [ VianGa) de

The zeros of the denominator cos(z) correspond to a; = (2i +
)w/2, p; = 1/2 and the zeros of the numerator sin (z) to a; =
i7l’, M = -1 / 2.

Fractals. This is the case for example of the interior of Koch’s
snowflake where the formula on the interior of the unit disc is

z 1o
g(2) =/0 H (1+2%%) dz

n=0

A similar generalization of (2) gives the conformal'mapping onto
the exterior of Koch’s snowflake.

To obtain the figures in the text the reader will need a mathe-
matical software such as Derive, Maple or Mathematica; we explain
in each case how to obtain them.

As far as we know none of these formulas have been considered
before and this same novelty of the subject precludes complete and
general results. We may hope that this paper will motivate the
reader to look into more diverse results and perhaps general theo-
rems.

We point for example at an open problem:

Find the formula for a conformal mapping of the upper-half plane
into the interior of a polygon of the following kind




(the formula without the two angles 7/2 is obtained here). This
mapping is of importance in the study of differentials on hyperellip-
tic surfaces of infinite genus as considered in a pioneering work by

Myrberg, see [5].

Polygons with an infinite number of sides

(1) The infinite stair.
The first example we consider is the mapping defined on the upper

half plane by the formula

1) = [ Vin@) da

The image is given in Figure 1 where the curves are the images
of horizontal and vertical segments; they can be defined directly by

a(s) = (Re (Numint(y/tan(z), z = 0 to 0.6 + s7)),
Im (Numint (y/tan (z),z = 0 to 0.6 + s7)))

01 <s<11

for a vertical segment and

B(s) = (Re(Numint (/tan(z), = = 0 to 0.09i + s)),
IM (Numint (\/tan(z), z = 0 to 0.097 + s)))
04<s<10

for a horizontal segment.

1 2 3 4 5 s 7
Z
FIGURE 1. The infinite stair. f(z) = / Vtanz dx
0

The image of the real axis is the infinite stair with steps of equal
length



/”/2 Vian(z) dz = mv2/2.

To actually prove that this formula defines a conformal mapping
we proceed as follows.
Consider the triangle of Figure 2.

~
(0) - Pi/2

@)

FIGURE 2.

The image of half the imaginary axis (1) is given by

/is \/tan(z)dx:—_ 7 /s \/Mdt: —~141 /s et — et »
’ 0 V2 0 et +et

for 0 < s < 4+00. Thus it is the half line making an angle of 37/4
with the positively oriented real axis. The image of (2) is the real
segment [0, 7v/2/2] and the image of (3) is a half line parallel to the
first one beginning at 7 v/2/2 as in Figure 3.

Consider the triangle of Figure 3.

() > sqri(2)/2Pi

FIGURE 3.



The general theory of conformal mappings applies to these two
triangles so that from the bijection on the boundaries we conclude
conformality in the interior. Using now Schwartz’s reflection princi-

ple as applied to the vertical segments (1), (3) and their reflections
the mapping can be extended to the entire upper half-plane.
This formula can be generalized to zig-zag patterns via

f(2) = /0 Z  sin¥(z) i

cost(x)

O0<vy, pn<l)
(2) The hairy half-plane.

We consider now interior angles 7/2 at a; = (2i + 1)7/2)
(¢ € Z) and 2 ath; = (2i + 1)7.

The formula is therefore

* cos(z/2)
0 +/cos(z)

and the image is in Figure 4.

f(z) = dz

To establish conformality it is first necessary to prove that the
length of the segment from an angle 7/2 to the point of the hair is
equal on both sides, i.e. that
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cos(z/2)

cos (z)

FIGURE 4. The hairy half-plane. f(z) = / dz
0



T cos(z/2) iz = /2 _cos(z/2)
w2 \/—cos(z) 1r \/—cos(z) ’

an equality easily obtained by the change of variable z — 27 —z.

The proof can now be completed in the same way as in the infinite
stair by considering first the image of a triangle with vertical sides
at 7 and 37 and extending the mapping by Schwartz’s reflection
principle.

In a similar fashion we obtain a formula for the hairy plane which
can be considered a polygon with infinitely many sides and interior
angles alternatively equal to 27 and 0.

This means taking

1(2) =/0’ sin(x) dz

cos(z)

as in Figure 5

= i o
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FIGURE 5. The hairy plane. f(z) = / tan m rdx
0

(3) Half a stair.
In order to consider only one half of the stair in 1 we have to
take analytic functions having half as many zeros and that implies
looking at the I" function. Indeed the formula

_[* ra/2-a)
=] i

defines such a conformal mapping as seen in Figure 6.



To prove, however, that such a mapping is conformal we cannot
use the arguments in numbers 1 ar 2 since there is no symmetry
with respect to a line. We then recall the formula

1 = z
S, §. 1 _) ~xfn
T(a) e’z LII ( +n e
so that
1/2
= et [ X lim II_VI _Loa/n —z/n e/t
.7,'—-1/2 N—o+oo ned 1+1/2-—12

[TARSA R X

00,00,
[/ Iz"l,'{l/:"z
I
TR

|
161,
I

A
; 7,
10,70/
2,
I

X
SR
RORORRD
R
SRR
AT

AN
\\‘:\ &

F1GURE 6. Half a stair or The stairway to the abyss. f(z) =

The classical Séhwérz—Christoffel formula can be applied to each finite
product in the right hand side giving a stair with a finite number of steps.

These conformal mappings converge uniformly to the required mapping
since for each positive integer the integrals

m+1/2
J

To obtain a half-stair with a horizontal step to the left one would naturally
take

are finite.



z I'(—z)
/o VTaz-o “

Finally, to obtain half a hairy plane we take

[t r/2-a)
=f, e o

1
as in Figure 7, or half a hairy half plane via

VI(/Z=3) / T(~z/2)

and so on.

FiGure 7. Half a hairy half plane.

2 I(1/2 - 2) .
/_1 Tz °

b) F(z):/ﬂz E—%{——i——;—)@—dx

f(2)
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Fractals

(1) Koch’s snowflake
Let us recall that Koch’s snowflake is obtained as the limit of a
series of polygons defined as follows

Step 0

Step 1

Step 2

and so on.
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At each step we consider the Schwarz-Christoffel mapping of the
unit disc into the interior of the polygon; we use the notation of the

introduction throughout.
Step0 : o =1/3, p=2/3, ar=exp(2rik/3)(k=1,2,3)

F1GURE 8. Interior of Koch’s snowflake. Step 0.

z dz
Flz) = /1 (z - 1)23(z — exp(27 i/3))?/3(z — exp(4mi/3))2/?

_ /z dz
=) o

This conformal mapping is portrayed in Figure 8.
Step 1: ax =exp(27ik/12) (0 < k < 11)

o =1/3, pm=2/3 k=0,2,4,68,10

o =4/3, w=-1/3 k=1,3,57,911
The formula for the conformal mapping is

z 8 1/3
F(z) = /1 %x-ﬁ—i’—ll-;—ﬁ dz

and the image of the unit disc appears in Figure 9.
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FIGURE 9. Interior of Koch’s snowflake. Step 1.

Step 3 : ar = exp(2rik/48) (0 < k < 47)
k = 0,2,6,8,10,14,16,18,22,
o =1/3, pe=2/3, 24,26, 30, 32, 34, 38, 40, 42, 46
o =3/4, p=-1/3 allother k

Although the combinatorics is not automatic, the formula for the
conformal mapping is

[ [(z® + 1)(z* + 1)]*/3
PO = || e e P

with the image of the unit disc in Figure 10.
We may generalize

Stepn: ax=ezxp(2rik/(3x4")),0<k <3 x4"
with an integrand of the form

(28 + 1) (x4 + 1) -« (a84" " + 1)]1/3
[(z3 — 1)(23 + 1)(z12 + 1) - - - (234" + 1)]?/3
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FIGURE 10. Interior of Koch’s snowflake. Step 2.

Theorem:
The formula for the conformal map from the interior of the unit

disc to the interior of a Koch’s snowflake is

2 +o0
F(2) =/ I +25)dz, 2l <1.
0

n=0

Proof.
The wording “a Koch'’s snowflake”

means that it is the limit of polygons with the same angles as the
polygons in Koch’s pattern, but with unequal sides.
First, we rewrite the integrand for step n as

(1+2%)(1+a%) - (1 +357) / (1= 2342

(module a cube root of 1) so that for |z] < 1 the integrand converges
to the one indicated in the statement of the theorem.

The fact that the lengths are not equal to the lengths in Koch’s
pattern can already be seen at Step 2:

Define
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1
a= / (14 2213 / (1 — 22)%3 dr = 1.13856
Q

b= / : 28 (1+ 22)V3 / (1 — 22?3 dz = 0.270237
so that 0
F(l)=a+b
is one vertex of the polygon. But then

F(ewi/ﬁ) — e‘lri/& (a _ b)
The image of a circular sector from 0 to 1 to exp(n 1/6) is therefore
a polygon of the following form

Flexp(Pi/6i})

exp(Pi/6i)(a-b)

0 a+b Fa1j

FIGURE 11.

If the lengths were equal to the regular snowflake then the vertex
F(exp(mi/6)) would be equal to the vertex of the isosceles triangle
with basis a + b and basal angle 7 /6.

The side would equal (a +b) / /3. But

(a+b)/vV3 < (a-b)
showing that necessary the second length in the small triangle is
shorter than the first one, leading to a location of F'(ezp(wi/6))
slightly “higher” than it should be.
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Observe also that the location of this last vertex implies (the
angles being as required) that the map is one-to-one on the boundary
and therefore conformal throughout.

In general the mapping in step n differs from a regular snowflake,
with all sides equal, but it does not differ too much.

If we analyze a sufficiently general case as in step 3 say, we have
the mapping

z 9611/3
f(z) = /0 (1 +z%)(1 + 22 E—%ﬁ—,;;;—z—',;dx-

It is easy to obtain the points

P*=f(1)=135 , Q" = f(e"/™),
R = f(eW/®) |, §* = f(e"i).

If we compare them to a regular snowflake with vertices P,Q, R, S
we obtain points at a distance smaller than 0.1

FIGURE 12.

what is to be noticed is that for the image not be one-to-one on
the boundary the point @Q* should differ largely from @), to be below
PO for example; the position of P*, Q*, R*, S* forces then the actual
polygon to be free of self-intersections, the angles being 7/3 or 27/3.
In dotted line we draw such a possible polygon in Figure 12.

The sequence of conformal converges then to a non-constant (since
F'(0) = 1) conformal map.



We check that the image is not all of C.

Claim:

F(1) = /0 1 ﬁ (1+25%) dz < 3/4

n=0

Indeed, with y =2% wehave 0<y<1and

T+y)A+y)A+y") - = T+y+ (i +5)+
<l+y+2y +4y%+- -
o0

=1+Z 2"y4"

=0
Thus the integral is bounded from above by "

1 +00 +o00 on
4" .6 .
/0 1+ Z 2"z %z = 1+ Z 6 4

n=0 n=0
+00 k
1 1 4
St X 773

We also check that the image is not a disc.
Set

1 +oo 1 +00
,a=/ H (1 +2%*") dz, b=/ 28 H (1+2%Y) dz
0 ' 0 e

n=1

Then F(1) =a+band 0<b<a.
But

F(eri/G) — e7ri/6(a _ b)
has modulus smaller than F(1).

Finally we have to explain a subtle point that appears when we
draw a figure such as Figure 10.
One cannot write for example

(1 4+ 2831+ 22)V3 = [(1 + 25)(1 + 2?)]/°

since the branch we implicitly use by analytic continuation may not
coincide with the fixed branches of the mathematical software.
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With

u(k, ) = log(exp(r i k/24) — )
v(k, z) = log(z — exp(wik/24)

then the numerator of the integrand is

Num(z) = ezp(1/3(u(l,z) +u(3,z) + u(3,z) + u(4,z) + u(5,z)
+u(7, z) +u(9, z) + u(1l,z) + v(12,z) + v(13, z)
+v(15,z) + v(17,z) + v(19, z) + v(20,z)+
v(21, z) + v(23, z) + v(25,z) + v(27,z)+
+v(28, z) + v(29, z) + v(31, z) +v(33, ) + v(35,z)+
+v(36, z) + u(37,z) + u(39, z) + u(4l,z) + u(43, z)
+u(44, ) + u(45, z) + u(47,1)))

and for the denominator

Den(z) = ezp(2/3(u(0,z) + u(2,z) + u(6, z)+
+u(8, z) + u(10, z) + v(14z) + v(16, )+
+v(18, z) + v(22, z) + v(24, =) + v(26, )+
+v(30, z) + v(32, z) + v(34, =) + u(38,z)+
+u(40, z) + u(42, z) + u(46,z))) .

At any rate, the formula of the theorem with terms of up to 6 - 4%
is sufficiently precise (and simpler to use) and gives Figure 10.
(2) The exterior of the snowflake.
At Step 0 we use the formula of the introduction with a; =

exp(2mif3 x k), u =2/3, 1<k<3.
In this case
A=2/3 Z dr =0 so that the formula is

k=1
2

F(z) = /12 (z® - 1)2/3 T

whose image is in Figure 14.
In the same way, the formulas for steps 1 and 2 are

[ [(c°— )(@® + YP° do
L [@+0R P

and
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s snowflake. Step 0.

?

FIGURE 13. Exterior of Koch

dz
2

12 + 1)]2/3

T

FEYRE

)(

[(z6 + 1) (=4

P -1)(E+1

J

corresbonding to the Figures 15 and 16.

The mapping from the unit disc to the exterior of Koch’s snowflake

is

-1
6-47 d.'L'
) p

+o00
H(l +z
n=0

F(z):/lz(



A 7 4 !
| H’""?"‘*-\/
H / / / . }(

FIGURE 15. Exterior of Koch’s snowflake. Step 2.
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(3) A tree.
We define a sequence of “trees” as follows
Step 0
Step 1
Step 2
4
} _l_ ] | ‘1— ]
4+ +
++
and so on.

We want to define accordingly a sequence of Schwarz-Christoffel
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conformal mappings from the unit disc to the complement of these
trees.

The internal angles al step 0 give a; = a3 = a5 = a7 = 0 with
M1 = pg = ps = py = 1 at the points and ay = a4y = a5 = ag =
3/2, p2 = ps= pe = ps = —1/2 at the corners.

Therefore
z 1+t dz
r= |
is the required formula at step 0.

At step 1 we obtain.

F(z)—-/z 1+g* 1428 dz
T Q-zHv2 (Q4z6)2 g2

with branch at the 32 roots of unity.
Similarly at step 2
/ 1+ z (1 + 28)(1 + z%2) dz
A =z9172 [(1+20)(1 +a59)i/Z 32

The image is portrayed in Figure 17.

At the limit we obtain the formula

F()_/‘ 1+t ooy (L+2*7")  da
A A S R Ty ST VR

for the conformal mapping from the unit disc to the exterior of this fractal.

There are of course many more trees to be considered but the combina-
torics arising from angles and points is not straightforward so that it may
be hard to obtain a general expression for the conformal map. We leave
these as questions for further study.
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FIGURE 16. Exterior of a tree. Step 2.
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