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1. INTRODUCTION

Recently, 1. Izmestiev and M. Joswig ([6] and [5]) have shown that for any trian­
gulation .6. in a manifold N, there is an associated group II(.6.), called the group of
projectivities of .6.. This group has sorne similarities with the fundamental group,
even though it is not a topological invariant. In fact, the action of it on the set of
vertices of a simplex of .6., permits the construction of branched coverings over N.
In this way, they show that any closed orientable 3-manifold M arises;¡¡.s a branched
covering over S3 from sorne triangulation of S3. Their proof uses thetheorem that
asserts that any closed orientable 3-manifold M is a simple 3-branched covering over
S3 witha knot K as branched set (see [3J and [8]). They start from a tubular neigh­
bourhood R of the knot K and give a triangulation for it. Now, using handlebody
decomposition, they attach triangulated k-handles to finally find the triangulation
.6. of S3 from which M arises as a branched covering of S3. Unfortunately, their
proof is not constructive. Nevertheless, this result is important because it shows
how to consider branched coverings in a combinatorial way.

In this paper we approach the problem from another point of view (see [11]). It
is known that any 3-rnanifold can be obtained as a ball with identified faces. Here
we study very special kinds of balls with identified faces that we call butterflies.
We show that for any knot diagram there is one butterfiy that gives S3, once the
faces are identified. Then weshow that for any knot that admits a representation
of its fundamental group in the symmetric group of 3 elements, and that sends the
meridians to transpositions, it is possible to triangulate algorithmitically the given
ball, and to identify its faces so as to obtain the desired triangulation of S3.

Now, since from these triangulation we obtain a 3-manifold M, a natural trian­
gulation arises in M and hypothetically all the machinery of combinatorial topology
could be used to identify M. And using the results of A. Thompson ([12], [13J and
[14]) there is hope to be able to prove or disprove the Poincaré Conjecture.
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2. KNOTS AND BUTTERFLIES.

In this seetion, we study a special class of balls with faces which are identified by
topological refiections. These balls are called butterfiies since the identifieations of
each pair of faces recall how a butterfiy closes its wings. Here are formal definitions.

Let F be a eonnected, closed, orientable surfaee. A polygon (01' n-gon, n 2: 1)
in F is a tameembedding of the 2-disk in F together with a set of n 2: 1 points
in its boundary which are called the vertices of the polygon. The closures of the
eonneeted components of the eomplement of the vertices in the boundary of a
polygon are ealled the edges of the polygon. (An edge is an are if n2: 2 01' a circle if
n = 1.) A polygonization of F is a decomposition of F in a union of a finite number
of polygons such that (i) the interiorsof the distinct polygons of the decomposition
are disjoint; and (ii) if two arbitrary polygons intersect, their intersection is at
the same time a union of vertices and edges, and a connected 0-, 01' 1-dimensional
manifold. (Therefore they can intersect in just one vertex, 01' in anarc formed
by various edges, 01' in a circle; and, in this case, F must be S2.) The union R
of the boundaries of the polygons of the decomposition is then a connected graph
embedded in F, since it is a union of vertices and edges. We say that the graph R
poligonizes F.

Example 1. Figures 1 and 6 show different poligonalizations of B2.
Let A and B be two polygons of a polygonization of S intersecting in exactly one

edge a of R and assume that A and B have the same number of edges. (This number
might be one for the trivial polygonization of S.) Select a topolo~ical refiection
a : A -+ B which is orientation reversing in S, fixes each point of a, and sends
vertices (resp. edges) of R n A into vertices (resp. edges) of R n B. The refiection
along a will be denoted by a also and we say that a : A -+ B is an a-refiection.

Definition 1. Given n E N, n 2: 1, an n-butterfiy (B, R, T) is a 3-ball B with a
polygonizatüm of its boundary S by a graph R into 2n polygons, together with a
subset T of n mutually disjoint edges of R, such that the polygons are identified by
a-refiections in pairs, a E T. (To be identified, two faces must share exactly an
edge a E T. The identification of a pair of faces is then achievedby an a-refiection
along this common edge.) The 2n polygons of an n-butterfiy are called wings, the
union of the edges along which we made the refiections is called the trunk T and n
is called the butterfiy number.

The result of the identification of pairs of wings of an n-butterfiy (B, R, T)
is a 3-pseudomanifold M(B, R, T) (See, for instance [10].). Denote by p : B -+

M(B, R, T) the natural projection.

Definition 2. In the identification p:B -+ M(B, R, T) = S3 the image p(T) o.f the
trunk T is a (linked) graph K embedded in S3, and we say that the graph (knot, or
link) K in S3 can be represented by an n-butterfiy, or that K admits an n-butterfiy
representation, or that (B, R, T) is an n-butterfiy representation of K.

Let (B,R,T) be a butterfiy and p: B -+ M(B,R,T) = S3t he natural projec­
tion. We now make a classification of the set of vertices of R. A vertex V of R will
be called an A-vertex iff VE T. (It will be generically represented by A.) The
vertex V of R will be called an E -vertex iff it is not an A-vertex but V E p-lp(A).
(It will be generically represented by E.) Finally the vertex V of R will be called
a B-vertex iff V tJ. p-lp(A) for any A-vertex A. (It will be generically represented
by B.)
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The set p-lp(V) will be denoted by {V}. The set of {V} c1assifies the set of
vertices of R.

In the sequel we will consider definitions and concepts about knots, links and
their projections as explained in [1].

It is obvious that the trivial knot is the only one admitting a 1-butterfiy. rep­
resentation (just identify the northern and southern hemispheres of S by refiection
in the equator R = T).

Let us recall that for each rational number p/q (p > q > O) there is a knot
denoted by the same number p/q.

The following theorem is a translation of [9, page 164] to our language of but­
terflies.

Theorem 1. Every 2-bridge knot or link p/q can be represented as a 2-butterfiy.
Except, for the trivial knot or the link 2/1 (Hopf link) the butterfiy will have E­
vertices.

Proof. For shortness we give the proof only for the rational knot5/3. Without
difficulty, it could be generalized to every other 2-bridge knot or link. We start from
the following 2-butterfiy and we show that performing the refiections illustrated by
arrows in the figure, we obtain the knot ~.

Figure 1

This butterfiy has four wings; FDHAGC; FEJBID; JEFCGA and AHDIBJ,
which areidentified two by two by the refiections made along the edges FD and AJ,
that are indicated by arrows. The trunk is {FD,AJ}. The vertices C,G,H,I,B
and E are E-vertices.

Now, we make a sequence of deformations in order to be able to visualize the
knot i. First of all, we stretch out the points placed on the butterfiy "equator",
obtaining a cylinder. Next we rotate the "upper lid" ofthe cylinder an angle 3(:g:).
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Finally, making the identifications indicated by the arrows on the "upperand
lower Uds" of the cyUnder, the knot i becomes visible.

I=H

J E=B F=I C=D G =H

Figure 3

o

Example 2. Similarly Thurston showed in [15] that the Borromean rings admits
a 6 -butterfty representation. In this butterfty there are 12 A-vertices and 8 B·
vertices. See Figures 4a and 4b.
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Figure 4a Figure 4b
A butterfiy for the Borromean rings.

3. REPRESENTING KNOTS AS BUTTERFLIES.

Actually, every knot or link can be represented by an n-butterfiy, for sorne n EN.
This representation will depend on the diagrarn of the knot or link, so for each knot
or link we have an infinite nurnber of butterfiy representations.
Theorem 2. Every knot or link admits an n-butterfiy representation, for some
nEN.

Proof. There is a more detailed proof in (4]. Let K be a knot (or ,:link) which is
ernbedded in S3 = JR3 U {oo}, we assurne that it is as fiat as pos~ible as in the
following picture.

B
Figure 5

To get a butterfiy that represents the knot we cut along a cone of the knot. The
next picture illustrates the boundary of the 4-butterfiy representation of the eight
knot. We envision that the interior of the butterfiy is placed over the papero We
can see 20 edges. Three of thern go to the point at infinity. The trunk has 4 edges
that forrn the knot before cutting the cone off and we have 8 wings identified in
pairs.
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A regular diagram oí a knot (or oí a link), like the one in Figure 5 or 7a, can be
thought oí .as a disjoint union oí ares in aplane. These ares will be ealled the ares
oí the diagram.

We remark that the last theotem is eonstruetive. Now, we make explicit the
algorithm íor constructing a butterfiy from a given regular diagram.

AIgorithm for constructing a butterfiy associated to a diagram of a
knot:

Let DK be a regular diagram oí a knot (or link) K , which we assume oriented
in order to fix notation. Without 10st oí generality we can assume that K is not
the trivial knot (for this case we have a l-butterfiy representation).We also assume
S30 ríented. The positive orientation oí S3in our figures will be given by a right
handed screw.

Step 1. The diagram DK of K is a finite colleetion T oí disjoint (oriented) ares
in aplane P (The plane of the paper; see Figure 7a. The projection oí DK onto P
has no kinks and is connected.).

Figure 7a Figure 7b
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Step 2. We consider the regions R;, determined in the plane P by the projeetion
of K (See Figure 7b.). In the interior of eaeh bounded region we ehoose a point
and label it by B(R;,). For the unbounded region Ro, we label B(Ro) the point at
the infinity. These points are B-vertiees.

Step 3. Each end (or A-vertex) of an are a of the eolleetion T is joined, using
an are in P, with eaeh of the B-vertiees that belong to the adjaeent regions to the
are a. So the paper beeomes polygonalized by the graph R whieh is the union of
the trunk T and the added ares. (See Figure 6.)

Step 4. Over the plane of the paper P, we assume that there is a 3-ball Di<:, with
the indueed orientation, whose boundary is the polygonalized plane P, oriented as
the boundary of the oriented 3-ball Di<:.

Step 5. The adjaeent faces to eaeh are a of S are identified by an a-refieetion
that is indieated by double arrows. We denote by A the wing (or faee) identified
with the wing A. The faee A will be plaeed at the right side of the oriented are a.
(See Figure 6.)

Then (Di<:, R, T) is the wanted butterfiy. It will be ealled the butterfty associated
to the diagram DK of the knot K. For shortness, we denote it simply by Di<:.

For each are a of the trunk T, there are two adjaeent wings in Di<: that are
identified by a refieetion along a and they have the following shape:

A+-_.......;:.....--~------4.A

Figure 8
On eaeh wing we distinguish two types of vertiees:
A vertices are the ends of the differents ares of T.
B vertices are those that come from the vertex of the eone once we cut it off.

They eorrespond to the points B(R;,) given in the algorithm.

Example 3. Applying this algorithm to the regular diagram ofthe Borromean rings
shown in Figure 4b, we recover the butterfty representation discovered by Thurston
(Figure 4a).

4. PAINTING BUTTERFLIES.

As in the preeedent seetion, we will assume that the butterfiy is oriented; its
boundary has the indueed orientation, and the trunk of the butterfiy is oriented. If
a is an edge of the trunk, its adjacent faces are A at its right side, and A at its left
side.Reeall that the refieetion along a is denoted by a.

Definition 3. Jf each (oriented) edge of the trunk of a butterfty is endowed witha
permutation we say that the butterfty is painted.

If (B, R, T) is a butterfiy representation of a knot K, each (oriented) edge a of
the trunk T defines a meridian generator of the knot group of K as follows. Take
an interior (base) point O inside B and run an oriented are from O to an interior
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point in A and another oriented arc from the corresponding point in Ji back to O.
The (oriented) union of these two arcs representsa meridian generator of the knot
group that will be denoted by a*. Ifw is a representation of the knot group into the
symmetric group En ofthe numbers 1,2, oo., n we can'endow the (oriented) edge a of
the butterfiy with the permutationw(a*). (If the representation w sends meridians
to elements of ~n of order two, then the permutations w(a*) and (w(a*))-l coincide
and the orientation of the trunk becomes irrelevant.) In this way, we have obtained
a painted butterfiy, denoted by (B, R, T, w).

In thesequel we will.assume that for n < m there is a natural inclusion of ~n as
a subgroup ofEm induced by the inclusion {1, 2, ... , n} e {1, 2, oo., m}. In this way
an element of ~n acts in the set {1, 2, ... ,m} fixing the numbers {n + 1, oo., m}.

Let Li. be a triangulation of a compact connected surface M 2 , with or without
boundary. an n-coloration of Li. is a function C : V --> {1,2, ... ,n} , where V is
the set of vertices of Li. such that the three vertices of each triangle of Li. have
three different assigned colors. The numbers 1,2, oo., n areca11ed the colors. (an
n-coloration is not necessarily surjective. In this way any n-coloration is trivia11y
an n+1-coloration.)

We will understand that the boundary of a butterfiy is triangulated if we havea
triangulation for the butterfiy boundary, such that a11 the triangles become identi­
fied by couples when we identify the butterfiy wings using the refiections along the
edges of the trunk.

If w is a representation of the knot group of K into the symmetric group ~n,

(B, R, T) is a butterfiy representation of K and the boundary of ~he correspond­
ing painted butterfiy (B, R, T, w) is triangulated by Li. and colored by C : V -->

{1, 2, oo., m}, m> n, we say that C is compatible with w iff under the a-refiection
(a is the arc shared by A and Ji) the color k matches with color w(a*)(k), that is,
for every vertex v E A we have C(a(v)) = w(a*)(C(v)).

(l 3)(2)

2

Figure 9

Example 4. Apainted butterfly lor the knot 3/1. The Figure 9 illustrates a
triangulation Li. of a butterfly (B, R, T) that represents the rational knot 3/1 (trefoil
knot). It is 4-colored by C as shown. It turns out that the map of the group ol3/1
into ~3 sending the two generating meridians a* and (3* (associated to the trunk
T) to the permutations (12)(3) and (13)(2), respectively, is a homomorphism w
(representation) into ~3' It is easy to see that the coloration C is compatible with
the representation w.
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5. MAIN THEOREM

Theorem 3. Let K be a knot with a given regular diagmm DK. Suppose that
w : 11"1 (S3\K)-+ E3 is a representation sending meridians to tmnspositions. Then
there is a triangulation ti. of the boundary of the butterfiy Di< and a 4-colomtion
of ti. which is compatible with w.

Proof of the Main Theorem. Our purpose is to find a triangulation of the butterfiy
boundary and a 4 -coloration compatible with the representation w. In other words,
we need a triangulation of the boundary of the butterfiy Di< such that if two
triangles are identified by an a-refiection whose associated transposition is (i j),
i,j E {1,2,3}, the a-refiection sends colors (i,j) to colors (j,i), and leaves the
remaining two colors fixed. (The nUlnber 4 remains always fixed.) In particular, in
an a·refiection with permutation (i j) the vertices upon the arc a are colored with
one of the remaining numbers.

First of aH, we construct an initial triangulation ti., and we assign four colors to
the vertices in such a way they are compatible with w. After that we will refine ti.
in order that colors along adjacent vertices be different.

Let us describe the set of verticesof ti.. This set contains aH the A and B vertices
given in the AIgorithm before. Moreover, it also contains a point, which is taken
in the interior of each arc of the diagram. We denote genericaHy these points by D
and we say that they are D venices.

Figure 10
Now, we describe the edges of ti.. On one hand, the curves AB and AD that

are contained in the boundary of the wings are edges of ti.. On the other hand, we
notice that each wing has only one D vertex in its boundary. From that point we
trace disjoint curves (except in D) toward every B and A-vertex (that is not an
end of the arc that contains the point D). These additional curves are contained
in the same wing that contains the point D andare also edges of ti. by definition.

We already have the triangulation ti.. We remark that each triangle has one
vertex of each type.

Now, we color the vertices of ti.. In order to get a 4-coloration compatible with w,
first of aH, we color the A and D vertices which are the only ones lying in the edges
a of the trunk. If the permutation associated to the edge a is (i j), the vertices of
a are to be given a color in {1,2,3,4} - {i,j}.

Assign the number 4 to D vertices and the color {1,2,3} - {i,j} to A vertices.
The color 4 given to D vertices is compatible with w because w fixes 4. We observe
that the colors given to the A vertices are also compatible with w. In fact, this is
trivial for the A-vertices that are ends of the arc aj they remain fixed under the
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a-reflection. Hence, let Us consider an A vertex that belongs to the adjacent wings
to a but is not an end point of a. Its corresponding point under the a-reflection is
another A vertex, and these two A vertices arise from the same crossing point of the
diagram. So, their colors also match under the permutation (i j) associated to a
because w associates to each arc a transposition in ~3 and the only possibilities for
the A vertices that arise from the same crossing point are the foHowing: A vertices
belong to arcs with the same associated transposition (Figure Ha) or belong to
arcs with different associated transpositions (Figure 11b). (Actually, the fact that
the colors of the A-vertices match is a consequence of the Wirtinger relations that
are verified at each crossing point of the diagram.)

.~B
k A

a 4•D

B~B
I(ij)

(ij)

Figure 11

(ij )1
B~B

k A
a 4•D

B~B
1(j k)

(ik)

Now, we proceed to color B vertices. Recall that for each region Ri, determined
by the projection of the knot, there is exactly one B vertex denoted by B (Rd .

We note the obvious fact that starting in a region ~, it is possible to tour aH
the regions going transversally across the arcs of the knot. For instance, here is
a curve visiting all the regions: Our initial point is a point Q in a given region.
Then we move following a parallel curve to the knot until we again find Q. Once
there, we traverse the knot and we choose another point in the adjacent region to
the initial one, that we label R. We continue touring the regions moving along a
parallel curve to the knot until we find R and we stop there. In this way we have
passed throughevery region because every region is bounded by the knot.

Figure 12
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Now, let us give the coloring rule for the B vertices. We start by assigning any of
the numbers 1,2 or 3 to one of them. Once it is colored the others become colored
in the foHowing way: if R;land Ri2 are two regions that share an arc to which is
associated the transposition (í j) and if we have assigned the color k E {1, 2, 3} to
B(Ril)' then the vertex B(Ri2) gets the color (í,j)k, Le., the image of k under the
transposition (í j).

This coloring ruleand the fact that starting in any region we can travel to any
other region guarantees that it is enough to choose the color of only one of the
B(R;) to get aH the B vertices colored. Moreover, since we have three options for
coloring the first one,each of the three gives a different coloration of the B(Ri)
vertices. (Incidentaly, we will see later that these different colorations might give
rise to different triangulations.)

We need to prove that given the color ofB(R;), then the color of B(Rj) is
independent of the chosen path between B (Ri) and B (Rj ). In fact, it is enough to
observe what happens with the colors of B vertices of the four regions sharing a
crossing point.

Let R;l' R;2' Ria and Ri4 be the four adjacent regions to a fixed crossing point.
If we give the color, for example, to B(R;l) then the colors of B(R;2)' B(Ria) and .
B(R;4) are determined. In fact, the two possible cases are:

D
A

(ij)k~(ij)(jj)k =k
B(R j ) B(R¡. )

4 J
(ij)

Figure 13a
1. The three arcs have the same

associated transposition.

(ij) Ji

~
.

(ij)k
B(Ri¡J B(Ri)

a A 4 (il)
I
D

(il)k = A

(j I)(i l) (íl) k ~ (il)(ij)k
B(R j4) I B(R

j3
)

(j 1)

Figure 13b
2. The three arcs have differerit

associated transpositions.

So, the color of one of the B(R;)d etermines the color of the rest. Furthermore,
because of the coloration rule, we have that these colors are compatible with w.
(Again, aH this is a consequence of the Wirtinger relations that are verified at each
crossing point of the diagra.m.) In this way, we have colored aH the vertices of the
triangulation ~.

However, this coloration is not in general a 4-coloration, because we could get
two adjacent vertices with the same color. Since the only vertices that are given the
number 4 are D-vertices and they are not adjacent, then the only adjacent vertices
that could have the same color have to be A or B-vertices. Let us assume that we
have a fixed A-vertex that has color k and is an end of an arc a with associated
transposition (í j). Suppose that it connects to a B-vertex with the same color k.
In the Figure 14a we illustrate what happens at the crossing point, at which the
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fixed A belongs.

(ij) D

(i'j)

Figure 14b

((i'j')i (i'j"W

_--"7R-----,-.._,k

A (i']')k

(i']')k ~. (i']')k

~ I ~
((i']') i (i']')j)

Figure 14a

Actually, there are two B-vertices that connect to the same fixed A-vertex, and
both have to have the same color k because the number k is fixed under the action
of (i j). Now, let a' be the arc that pass over at this crossing point. Suppose that
the associated transposition of a' is (i' jI), then we see that the A and B-vertices
placed on the other side of the arc a' have the same color (i' j')k. 'rherefore there
are four vertices to be adjusted by subdivision. We take a point in the interior
of each of these four edges in such a way that all four become identified by the
refiections performed along a and a'. We call these points C-vertices. We add
them to the initial set of vertices of J:::,.. Now, we trace curves from each of these
C-vertices to connect them to the two D-vertices placed in the two adjacent wings
to C. We add these new edges to the triangulation J:::,.. See Figure 14b. To color
these tour C vertices, we take any of them and color it with i E {1, 2, 3} ~ {k},
if it belongs to the arc whose ends are colored with k. Immediately, because of
the Wirtinger relations the colors of the other three are determined and they are
compatible with w. We see this situation in Figure 14b. Moreover, the coloration
of the four C points around a crossing point is local, that is, it is independent of the
coloration of any other C vertex placed at a different crossing point (if it exists).
Since, it is possible to color the four C vertices wherever they appear, we get a
4-colored triangulation compatible with w. O

Definition 4. A triangulation obtained by the method givenin the last proof is
called a canonical 4-colored triangulation.

Remark 1. We observe that given a diagram of a knot, it is probable that the
number of canonical4-colored triangulations would be more than three. In fact, once
a color is electedforB(Rl) we will have sorne crossing points (probably different with
each of the three elections) where we have to adjoin type C vertices. Furthermore,
since we have two choices for coloring the C vertices at each crossing point we will
have many options for choosing the coloration.
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Fígure 15

Figure 15 shows a regular diagram for the 2-bridge knot 61 , (See the knot table
in [7J.) with a canonical 4-colored triangulation for the boundary of its associated
butterfly. For simplicity, we have placed the point at the infinity in several places
in the picture, but we note that 00 represents only one point.

Figures 16a., b. and c. show the crossing points where we have to subdivide
tú correct coloration discrepances (i.e., where we adjoin e vertices) when we give
different colors to oo. Each figure corresponds to a different canonical triangulation.
For example, Figure 15 illustrates one of the 4-colorations that we could obtain for
the Figure 16a.

Figure 16a
00 is colored with 1.

Figure 16b
00 is colored with 2.

Figure 16c
00 is colored with 3.

The following Theorem is a natural generalization of the last theorem. It applies
to the dihedral representations that occur for the rational knots.

Theorem 4. Let K be a knot with a given diagram. Let w : 1l'l (S3\K) ->

I:2nH be a representation that associates to each arc of the diagram a permutation
(i1, i2)(i3, i4)oo.(i2n-1, i2n)(j), where j =1 ik> for k = 1, .oo, 2n, and all the transposi­
tions are disjoint.Then there is at least a triangulation, of the butterfiy boundary,
associated to the given diagram that is 2(n + l)-colored and is compatible with w.

Proof. We start with the same triangulation A. Sirnilarly to the case before we
assign the color 2(n + 1) to aH D-vertices. To color the other vertices, it isenough
to observe that the Wirtinger relations are verified at each crossing point and we
use them to color the A and B-vertices. If it is neccesary, we have to perform
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subdivisions on.ó. to introduce e-vertices avoiding discrepances and getting a 2(n+
1) -coloration compatible with w. D

6. PATHS Al\ID COLORATIONS.

As wesaid in the introduction, 1. Izmestiev and M. Joswig used the group of
projectivities II(.ó.), where .ó. is a triangulation of a given manifold to construct
branched coverings over it. Here we do not use II(.ó.), instead we use the funda­
mental group of the complement of the codimension 2-skeleton of A in the given
manifold. In Theorem 5 we show how to construct representations of this group in
a symmetric group, inother words with this representation we will show how to
construct branched coverings.

In this section, for simplicity, we restrict our attention to dimension 2, even­
though, aH the results are also true for dimension 3. Let M be a connected com­
pact closed 2-manifold with a triangulation .ó.. In a triangulation .ó., if two different
triangles intersect, their intersection is either one vertex or one edge.

Let us consider the fundamental group of the complement of .ó.oin M, M\.ó.o,
where Ao is the O-skeleton of A. We take the base point * in the interior of a triangle
O'lof.ó. and we denote 71'1 (M\.ó.o, *) by 71'1 (.ó., 0'1).

6.1. Paths of triangles. We say that two different triangles are adjacent if they
share one edge, and that a finite sequence (O'l> ... ,un) of triangles of.ó. is a path oi
triangles if O'i and O'i+! are adjacent triangles, for any i = 1, ... , n - 1. We say that
n is the length of (0'1, ... , O'n). If O'n = 0'1, the sequence (0'1,0'2, ... , UnH, O'n == 0'1) is
caHed a loop of triangles. 8ince I = [O,lJ is compact, forany path a: I -t M\Ao,
there is a unique path of triangles (O'l, ... ,O'n), such that O' crosses (foHowing the
parameter) the triangles in the sequence consecutively. We say that the path of
triangles (O'l> ... , O'n) is associated to 0'.

It is not difficult to see that for any class [O'J of homotopic paths in M\.ó.o, we
can choose a class representative, such that its associated path of triangles has
minimallength. Moreover, this path of triangles is unique. ReciprocaHy, given a
path of triangles (0'1, ... , O'n), then each pair of paths 0', Ó : I -t M\Ao, such that
both start at the barycentre of 0'1, both finish at the barycentre of O'n and both
cross consecutively the same sequence (O'l> ... ,O'n), have to be homotopic. In this
sense, the class [O'J is denoted by [0'1, ... , O'n], where the path (0'1, ... , O'n) has the
minimal lengthamong aH the paths of triangles that are associated to elements in
[O'J. We emphasize that [a] =[O'l> ..., O'nJ means that n is the minimal length.

A path a.
/ '" with its associated path

/' 0"11 of triangles

Figure 17
A path with its associated path of triangles.
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6.2. Propagation of colors. Let 0'1,0'2 be two adjacent triangles of Ll. Let us
assume that 0'1 is 3-colored. There is a natural way to give a 3-coloration to 0'2. In
fact, we keep the given color for the two common vertices of 0'1 and 0'2 and we give
to the third vertex of 0'2 the same color as the other vertex of 0'1. We say that the
color of 0'1 has been propagated to 0'2.8 ee Figure 18. We notice that a triangulation
{0'1' 0'2}, where 0'1 and 0'2 share one edge, become 3-colored.

Nevertheless, ifthe triangulation has more than two triangles, the propagation of
colors does not always produce 3-colorations. For example, a loop (0'1,0'2, ''',O'n =
0'1) of triangles could not get a 3-coloration by propagation because if we start
giving a 3-coloration to 0'1, and we propagate it through the sequence of triangles,
there is no guarantee that the vertices of O'n, that are equal to 0'1, will get the same
colors that we gave at the beginning. Actually, we obtain a permutation of the;
three colors, that is associated to the giving loop of triangles. .

For instance, in Figure 18, if we propagate the givencolor to 0'0 through the
loop (0'0,0'1,0'2,0'3,0'4,0'5,0'1, ao) we get the permutation (1 2) for the colors of 0'0.

Figure 18

The 3-coloration of 0'0 has been propagated to 0'1.

8ince, for each [a] in 1I'1(Ll,0'¡), there is a unique loop of triangles (0"1,0'2, ... ,
O'n-1, O'n = a¡)s uch that [0'] == [0'1,0'2, ... , O'n-l,O'n = O'¡J we may define a map
w(Ll) : 1I'1(Ll,0'¡) -+ E3, such that if [0'] = [0'1,0'2"",O'n-1,O'n = O'd E 1I'1(Ll,0'1)
then w(Ll)([O']) is the permutation associated by the last method to the loop
(0'1,0'2, "',O'n-1,O'n = 0'1)' Then it is possible to prove the next theorem.

Theorem 5. Jf M2 is a compact, connected 2-manifold (with or without bound­
ary) with a triangulation Ll, O'lE Ll and if 0'1 is 3-colored, then the map w(Ll) :
'lr1 (Ll, O'¡) -+ E3 is well defined, and, moreover, it is a representation of the funda­
mental group 11'1 (Ll, 0'1) in E3, which is canonical (up to conjugation).

In conclusion, for each triangulation Ll of M2 there is a canonical representation
w(Ll) : 1I'1(Ll,0'1) -+ E3 . We call it the representation associated to Ll. We notice
that if Ll admits a 3-coloration, then w(Ll) is the trivial representation.

8imilarly in higher dimension, if M 3 is a compact connected 3·manifold with
a triangulation Ll, there is a canonical representation w(Ll) : 1I'1(Ll,0'1) -+ E4
associated to Ll. In fact, if we consider 1I'1(Ll,0'1):;::: 1I'1(M\Ll1,*), where Ll1 is the
l-skeleton of Ll, then all the results of this section generalize without difficulty.
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Remark 2. Notice that given a fixed path of triangles that starts at 0'1, then by
propagation each vertex of 0'1 has a well defined orbit. Moreover, if the path o.f
triangles is 4-colored the orbit of a fixed vertex of 0'1 has only one color, i.e., there
are no permutations of colors inside the orbit.

For example: Let us consider the loop of tetrahedra that surrounds a fixed edge
a, it is easy to see that if the number of different tetrahedra in this loop is even the
loop can be 4-colored, otherwise it will induce the permutation (i j), where ia nd j
are the colors ofthe vertices not placed on a. Jn the first case the orbit ofeach
vertex has only one color, and in the second case the orbit of the vertices o.f a have
only one color but the others have two colors: i and j.

identity------r- ---............

(i j)

i~ij~i%\. -;::-
j. .' . i . . .

. • . ' J .•.. ' J

Figure 19a
An even number of tetrahedra.

Figure 19b
An odd number of tetrahedra.

Definition 5. Let A be a triangulation in a compact connected S-manifold M. Jf a
is an edge in A, a meridian ofa in 7rl (M - A, *) is a loop 0'", that is the composition
of three paths 9 o m 09-1, where 9 ; [O, 1] -> M - A is such that g(O) .':;: *, g(l) is a
point inside a small tubular neighbourhood N oJa, and m : [0,1] -> M - A is such
that m(O) = m(l) = g(l) and turns around a only once keeping inside N.

Notice that ifO'", = [0'1'0'2"oo,O'n-l,CTn = 0'1] = gomog- l is a meridian
of some a E A, then there is one r E {1, 2, .oo, n} such that the tetrahedron O'r
is the first in the sequence that contains a. Without lost of generality we assume
that g(l) is inside it. The path of tetrahedra (0'1'0'2'''',O'r)is called the tail of
the meridiano Moreover, we see that 0'", is the concatenation of the following
three pieces: [O'b 0'2, oo" O'r], [O'r+l, .oo, O'k], [O'r, O'r-l, oo., O'n == CTl] == [O'b 0'2, OO" O'r]-l,
where all the tetrahedra in the middle piece contain a. The loop of tetrahedra
(O'nO'r+b "',O'k,O'k+l = O'r) will be called the real meridiano Notice that k = n-r.

7. THE IZMESTIEV-JOSWIG THEOREM

Here we will find the Izmestiev-Joswig Theorem as a corollary of our Theorem
6. First of all, we start this section defining a special kind of subdivision, since in
Theorem 6 we will need to subdivide tetrahedra without spoiling the coloration,

7.1. Antipyramidal subdivision. Let VlV2V3 be a triangle in a triangulation A of
a 2-manifold M 2• We suppose that the colors of the vertices are the same subindices.
Let B be its barycentre.First we construct its barycentric subdivision. Let Bl, B2

and B 3 be the barycentres of the triangles BV2V3, BVlV3 and BVlV2, respectively,
that we color with their subindices. The antipyramidal subdivision has the follow­
ing 7 triangles B l B2 B3, VlV2B3, VlV3B2, V2V3Bl, vlB2B 3, V2BlB3 Y V3BlB2. We
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extend the coloration of the initial triangle to this new triangulation.

V1

17

Figure 20

Similarly, for dimension 3, if vlv2VaV4is a tetrahedron with barycentre B., its an·
tipyramidal subdivision contains the following 13 tetrahedra BIB2BaB4, VIV2VaB4,

VIV2V4B a, VIVaV4B 2, V2VaV4B l, VI V2B aB 4, vlvaB2B,1, V2vaBIB4, Vav4B I B 2, VI B 2B a

B 4 , V2 B I B aB 4, VaBIB2B4 and V4BIBzBa, where B i is the barycentre of BVjVkV¡,

with j,k,l different numbers in {l,2,3,4}. As in the 2 dimension case, this subdi­
vision has theadvantage that the coloration of the original tetrahedron extends to
it, i.e., it does not spoil it.

Theorem 6. Given a representation Wo : ?Tl(8a\K) ---7 I:a, that sends eaeh are
of a diagram DJ( (of a knot K) to a transposition, there exists a triangulation
A of 8a whose assoeiatedrepresentation w(.6.) : ?TI (8a\A1) ::=: ?TI (A, 0'1) ---7 I:4
is the natural extension of wo, i.e., w(A) ::=: i o Wo o j, where i : I:3 '-+ I:4 and
j : ?TI (8a\A1) '-+ ?TI (8a\K) are the canonieal inclusions.

Proof. Let (D'k, R, T) be the butterfiy associated to the diagram DK. By Theorem
3, there exists a triangulation A20 n the boundary 8 of the ball D'k, that admits
a 4-coloration and is compatible with wo. Observe that the number 4 is fixed by
i oWo.

Now, we extend this triangulation to the butterfiy interior by using a constructive
theorem of Goodman and Onishi that says that given a 4-colored triangulation of
SZ it is possible to extend it toa 4-colored triangulation of the3-ball B3 (see [2]) ..

Once we have the triangulation of D'k, identifying the butterfiy wings we obtain
a triangulation A of 8a. However, we have to be careful! The obtained triangulation
might not be a good triangulation, since we could get two tetrahedra sharing more
than one face or one tetrahedron with two of its faces identified between them.
If this occurs, it is enough to make an antipyramidal subdivision to each of the
problernatical tetrahedra.

Anyway, the obtained triangulation A of 8a is such that w(A) ::=: i o Wo o j. In
fact, it is enough to see what happens to the meridians (see Definition 5) of all
edges of A, since they are generators of ?Tl{8a\Al)' Let a be an edge in A and let
[O'a] ::=: [0'1,0'2, ... ,O'n-l,O'n ::=: 0'1] ::=: [0'1>0'2, ".,O'r][O'r+l, ... , O'k][O'I, 0'2, "',O'r]-1 be a
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meridian of a, where (0"1> 0"2, ... , O"r) is its tail. Without lost of generality, we could
assume that no common face in the consecutive tetrahedra in the tail is contained
in the boundary S. So the tail is in DÍ< and can be 4 colored. It implies that if we
choose a coloration for O"lth en O"r get colored and vice versa. So, in order to see
what is w(.6.)([O"a]) it is enough to see what happens to the colors of O"r when we
propagate them through the real meridian (O"r, O"r+l, .. " O"k, O"k+1 == O"r)'

We also observe that if a rt p(T), where p : (D'K, R, T) --> 8 3 is the natural
projection, then j ([O"a]) is nullhomotopic in '1rl (83\K), so i °WQO j ([O"a]) has to be
the identity. Now if a E p(T), then [O"a] is a meridian of an arc of K, and so i oWQO
j ([O"a]) == i O wQ([O"a]) is equal to the transposition associated to the arc of K that
contains the edge a.

We have to consider four cases:
a) Suppose the edge a belongs to p(T). In this case there exists exactly one

i E {r, r + 1, oo., k} such that the common face between O"i and O"i+1 has two copies
on 8. So the real meridian is formed by the concatenation of two paths of tetrahedra
(O"nO"r+l,oo.,O"i) and (O"i+l"··,O"k+l == O"r), that are 4-colored because each one is
contained in DÍ<.A ssume that the a-reflection induces the permutation (j k) E :E4 ,

then we see that if VI is, for example, the vertex of O"r with color l E {1, 2, 3, 4}, then
the orbit (see Remark 2) of this vertex has the color l, while it is inside the path
of tetrahedra (O"r, O"r+l, .oo, O"i) and change to the color (j k)l once it is inside the
second piece (O"i+l' oo., O"k == O"r)' So for this case w(.6.) ([O"a]) == i O WQ O j([O"a]) == (j
k) E :E4

b) Suppose the edge a is in the interior of DÍ< (i.e., a rt p(T)).Then for every
i == r, r + 1, ..., k, the common face between O"i and O"i+l does not belong to the
butterfly boundary so the real meridian is contained in D'K, it is 4-colored, and
therefore w(.6.)([O"a]) is the identity in :E4 . (See Remark 2.)

c) Suppose a rt p(T) and p-l (a) is a set of 2 edges of S - T that are placed inside a
pair of wings A, A, In this case there exist exactly two numbers i, s in {r, r+ 1, oo., k}
(i < s), such that the common face between O"i and O"i+l (resp. o"s and O"s+¡) has
two copies on 8. Therefore the real meridian is formed by the concatenation of
three pieces (O"r, O"r+l, oo., O"i)' (O"i+l' oo., O"s) and (O"s+l, oo., O"k+l == O"r)' Each of them
is contained in D'k and is 4-colored, Assume that the reflection, that identifies
the wing A with the wing A induces the permutation (j k) E :E4' Then we see
that if VI is, for example, the vertex of O"r with color l E {1, 2, 3,4}, then the
orbit (see Remark 2) of this vertexhas the color l, while it is inside the path of
tetrahedra (O"r,O"r+l, .•. ,O"i), changes to the color (j k)l once it is inside the second
piece (O"i+1> "',O"s) and changes again to the color (j k)(j k)l== l once it is inside the
third piece (o"s+l, .oo, O"k, O"k+l == O"r)' So for this case w(.6.)([O"a]) is also the identity
in :E4'

d) Suppose a rt p(T) and p-l{a) == {ail:=l is a set of t edges on 8 - T, each of
them placed on the boundary of sorne wing.In this case the real meridian is formed
by the concatenation oft+1 pieces [O"r, O"r+l, oo., O"i , ], [O"i,+l, oo., O"i2] , [O"i2+l' oo., O"i3], oo.,
[O"i.+1> ""O"io+I]' oo., [O"it_I+l'''',O"it], and [<Tit+1> oo.,<Tk,<Tk+l == <Tr], where each of
them is contained in D'ki all the tetrahedra in the piece (<Ti¡+1> oo., <Ti¡+I) contain
the edge a!+l (for any lE {1, 2, .oo, t}), and the common face between O"i¡ and <Ti¡+l,
that we will denote by < <Ti¡, <Ti¡+l >, for any l E {1, oo., t} , has two copies placed
on the boundary 8. Since a does not belong to p(T) , we see (by the construction
of the triangulation .6.2 , given in Theorem 3) that the vertex of both of the copies
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of < O"ip O"i,+1 > (for any l E {1, ... , t}) that is not in p-l(a)is a D-vertex that
has to be colored with the number 4. Moreover, since aH the paths of tetrahedra
(o" i¡ +1, oo'' O"i2)' (O"i2+1' .,., O"i3) , .oo, (O"i r _¡ +1, .oo, O"ir.) are 4-colored and the number 4
is fixed by i o wo, we have that each of these paths has to have an even number of
tetrahedra (see Remark 2). l'he next figure shows one of these pieces.

(j.
IS+1

j

k

(

4'r"-_......- ....._~................._......-"""'!!I~4

(j.
h+1

(j.
Is+2

Figure 21

But also the path formed by the concatenation of (O"n O"r+1' ... , O"i¡ ,",,1 , O"i¡ )-lw ith
(O"i,+l, O"i, +2, ... , O"k-l, O"k)-l, that is (O"i¡ ,O"i¡ -1, oo'' o"r+l, O"r = O"k+l, t1'k'l<~l , ... , O"i,+2,
O"i,+l) is such that aH the common faces between consecutive tetrahedra in the se­
quence do not belong to 8. l'herefore, the path is also in D'K, is 4 colored and also
has the form of the Figure 21. So summing up the number of tetrahedra around a,
we get an even number. l'hen, again w(bo) ([O""J) is the identity in L;4'

l'herefore, in any case we have proved that w(.6.)([O"aJ) = iowo oj([O"a]). O

Here we have the Izmestiev-Joswig Theorem:

Corollary 1. For each closed orientable 3-manifold M there is a triangulation
.6. of 83, such that if p(w(.6.)) : Ñ --+ N is the branched covering associated to the
canonical representation w(.6.) : 1l"1{83\bol ) --+ L;4, then M is one of the components
of Ñ and the restriction p(w(.6.))/M is a simple 3-covering branched over a knot
that is contained in the l-skeleton bolO f .6..

Proof. In fact, it is known that for any 3-manifold M there is a simple 3-covering
branched over a knot (see [3J and [8]). In other words, for each 3-manifold there
is a knot K and one representation Wo : 1l"1(83\K) --+ L;3 that sends each are
of a diagram DI( of K to a transposition in L;3' Therefore the hypothesis of the
last theorem is verified and so the existence of the triangulation of 8 3 is guaran­
teed. Furthermore, if p(wo) : S --+ 8 3 is the branched covering associated to the
representation wo, then S = M. On the other hand, since p(wo) : M -> 8 3 and
p(w(.6.)) : Ñ --+ 8 3 are the branched coveringsassociated to Wo and to w(bo) = w,
respectively, it foHows that M is the component of Ñ such that p(w(.6.))/M is
p(wo). O
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Example 6.

Figure 22

Now, as an example, we are going to construct the triangulation of 8 3 described
in the last corollary for the knot 61 . To obtain it, we follow the constructive
procedures described in [2]. In the last picture, we have a 4-colored triangulation
for the boundary butterfiy associated to the knot 61'

In order to get the desired triangulation on 8 3 , we start cutting th,~ five pyramids
whose vertices are circled in the last picture of the butterfiy. We~recall that the
points labeled by 00 represent the point at the infinity. We obtain a 3-ball B
(contained in the butterfiy) whose boundary is poligonalized (or celled) once we
cut out these pyramids. Its boundary is shown in the following picture.

2-I
2

2

1

Figure 23

Next, we triangulate the base of each of the pyramids, being careful with the col­
oration. We perform these triangulations following [2]. In this way, we obtain a
4-colored triangulation of the boundary of B. It has only one vertex withassigned
color 4. Joining this vertex toall others, using interior edges in B we get a 4-colored
triangulation of B. We denote it by 8(B). On the other hand we triangulate each
of the 5 pyramids in a natural waYi Le., we subdivide each pyramid in order to get
as many tetrahedra as triangles in the base (again by [2] we can choose the triangles
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in the base in such a way that each triangle has 3 different colors on its vertices).
Each of thesetetrahedron has as vertex the same vertex of the respective pyramid,
which is circled in Figure 22 and has color 4. The triangulations of the pyramids
are denoted by Ll(Pi ), i == 1, ... ,5. Thus a 4-colored triangulation for the complete
butterfiy is Ll(B) U (U~=1Ll(F'í)). We observe that we have added neither vertices,
edges nor faces to the butterfiy boundary. AH the additions were performed inside
the butterfiy.

I <lO

Figure 24

Now, to get S3 from the butterfiy, we have to identify the butt~rfiywingsbut also
we have to be sure that we get a good triangulation, Le., two different tetrahedra
can have at most one common face and two different faces can not be identified if
they belong to the same tetrahedron. In order to get a good triangulation we do
antypyramidal subdividivision wherever it is necessary. To be sure we subdivide
aH tetrahedra in each Ll(F'í) (i == 1, ... ,5), while in Ll(B) we subdivide each of the
tetrahedra that have a face that is marked with a square in the foHowing picture.
These marked faces are just those on the butterfiy boundary. We notice that,
perhaps, we are subdividing more tetrahedra than necessary.

Figure 25

FinaHy, we identify the butterfiy wings and we obtain the desired triangulation for
S3.
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