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ABSTRACT. The aim of this note is to gather sorne of recent results presented in rny
talk September 22,2004 in Departamento de Mathemáticas de la U.N.E.D in Madrid. 1
would like to thank Professor Pedro Jemenez Guerra forhis invitation to give this talk
and a stimulating discussion after the talk. The talk entitled as aboye covered sorne of
recent results jointly obtained with my colleagues B. Cascales (Murcia), .J. C. Ferrando
(Elche), M. Lopez-Pellicer (Valencia), S. Saxon (Gainesville) and A. Tood (New York).
The main idea of my talk was to present sorne technics and ideas from descriptive
set topology related to K-analytic spaces, analytic spaces and quasi-Suslin spaces, to
study concrete problems from functional analysis like characterizations of distinguished
Fréchet spaces, dual metric spaces and tightness conditions for function spaces Cc(X).
Our approach providcs also a ncw dcscription of distinguishcd F'réchet spaccs in tcrms
of tightness and c!ominating ordinals. Several results of Bierstedt-Bonet~.Kaplansky,
Talagrand, Morris-Wulbertare essentially extended. '\

Reeall that a loeally eonvex spaee (les) is ealled a dual metric space if it has a
fundamental sequenee of bounded sets and every strongly bounded sequence in the
dual is equieontinuous. Clearly every Grothendieek (DF)-spaee is dual metric and
every dual metrie spaee belongs to class <5.

In [4] Caseales and Orihuela introdueed the class <5 of those les E for whieh there is a
family {A", : a E NN} ofsubsets ofits topological dual E' (ealled its <5-representation)
sueh that:

(a) E' = U{A", : a E NN};
(b) A", e A¡3 when a ~ (J;

(e) in each Aa, sequences are equicontinuous,
where the set of natural numbers N is endowed with the diserete topology and NN
with its product topology.

Casealesand Orihuela obtained the following two important results:

(1) Every lcs E in class <5 is angelic, both in the original and the weaktopologies.

(2) Every compact set in E is metrizable.
1
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Last result (2) answers a question of Floret [13].

Note that condition (c) implies that every set Aa is bounded in the strong topol~

ogy (3(E', E) of E'. Moreover every Aa is countably o-(E', E)-relatively compacto
AIso each Aa is bounding, Le. every continuous real-valued map on the weak dual
(E', o"(E', E)) is bounded on Aa. This facts have sorne nice applications. For instance,
if the weak dual (E', O"(E', E)) is realeompaet, Le. (E', O"(E' , E)) is homeomorphic to
a closed subspace of IR! for sorne J, then every bounding set in (E', o"(E', E)) must
be relatively compacto Therefore every set Aa is relatively compact; consequently
the weak dual (E', o"(E', E)) is covered by an ordered family of compact sets. Never
theless, this property does not ensure that (E', o-(E', E)) is a K-analytic space. Our
Theorem 3 below describes relations between tightness of the weak topologyof a les
E in class (!j and several properties of the weak dual of E like Lindelof or K-analytic
properties.

EXAMPLES OF SPACES IN CLASS (!j

AH (LM)-spaces(hence also aH (LF)-spaces), dual metric spaces (hence (DF)
spaces), the spaces of distributions D' (Ü) and real analytk functions A (Ü) for open
Ü e IR!''!, etc., belong to class (!j, see [3], [8].

The class (!j is stable by taking subspaces, separated quotients, completions, count
able direct sums and countable products, [4]. The foHowing results show the impor
tance of quasibarreHed spaces in class (!j. Note that "almost aH" important spaces
in class (!; are quasibarreHed, although Grothendieck (DF)-spaces need not to be
quasibarrelled.

Theorem 1 [8]. Let E be a quasibarrelled les. The lollowing assertions are equiva
lent:

(1) E E (!j.

(2) The strong dual (E', (3(E',E)) is a quasi-(LB)-spaee.

(3) E admits a (!j-basis, i.e. a basis 01 neighbourhoods 01 zero {Ua : a E NN} in E
sueh that Uex e U(3 lor all (3 S; a in NN.

(4) For every a = (nk) E NN there exists a lamily 01 absolutely eonvex closed
subsets

01 X sueh that

(a) D n1 ,n2, ... ,nk e Dm ¡,m2, ... ,mk' il ni ~ mi lor i = 1,2, , k.

(b) For every a = (nk) E NN we have Dn1 e Dn1 ,n2 e e Dn ¡,n2, ... ,nk and the
sequenee is bornivorous.
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(e) Jf W",:= Uk Dn1 ,n2, ... ,nk' where o E NN, then the family {W", : o E NN} is a
basis of neighbourhoods of zero in E.

In a series of papers [7], [8], [10], [11] we studied sorne tightness conditions for
spaces in g and those spaces in class g which have countable tightness whenendowed
with their weak topology. The following two results extend a classical Kaplansky
result and provide many applications.

THEOREM 2 [7]. (1) Every quasibarrelled spaee in class Q5 has eountable tight
ness. Henee all (LM)-spaees, dual metrie spaees (henee (DF)-spaees), the spaees of
distributions D'(f!) and real analytie functions A(n) for open f! e ]RN have eountable
tightness.

(2) Jf a les E in class Q5 has eountabletightness, then the spaee E endowed with its
weak topology a(E, E') has also eountable tightness.

Recall that a topological space X has eountable tightness if for every set A in X
alld every x E A (c1osure in X) there exists a coulltable subset B of A whose closure
cOlltains x.

THEOREM 3 [7]. For a les E in class Q5 the following eonditions are equivalent:

(a) (E,a(E, E')) has eountable tightness.

(b) (E',a(E',E)) is K-analytie.

(e) (E',a(E',E)) is realeompaet.

(d) (E', a(E', E)) is Lindelaf.

(e) (E', a(E', E))n is Lindela! for every n E N.

On the other hand the following very interesting applicable result (Arkhangelski
Pytkeev-McCoy [1], [16]) provides a nice link between tightness of Cp(X) and Lindelof
property of X.

(+) Tightness of Cp(X) is eountable íff ever'y finite pT'Oduet of X is Lindelaf.

Note that Theorem 3 does not apply for spaces Cp(X) of continuous functions
on X with the pointwice topology. This follows from the following two results of
Cascales-Kf}kol-Saxon [8J and of Kf}kol-Lopez-Pellicer-Todd [15] combined wit,h (+):
(1) The spaee Cp(X) belongs to class Q5 iff X is eountable.

(2) Jf X is an uneountable K-analytie spaee, then the weak dual of Cp(X) is not a
K-analytie spaee.

The following fact due to Cascales-Orihuela [5] supplements Theorem 3: A bar
relled spaee E belongs to class Q5 iff its weak dual is K-analytie. This combined with
Theorem 1 yields the following interesting consequence.

COROLLARY 1. A barrelled spaee E has a Q5-basis iff its weak dual is K-analytie.

Recall that a Hausdorff topological space X is a quasi-Suslin space (resp. K
analytie), if there exists a map T : NN --> 2x (resp. a map T: NN --> 2x such that
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T(a) is compact for each a E NN) such that

(a) U{T(a): a E NN} = X.
(b) If an is a sequence in NN which converges to a in NN and xn E T(an) for al!

n E N, then the sequence (Xn)n has an adherent point in X belonging to T(a);
Rogers [20J proved that K-analytic spaces and K-Suslin spaces (in sense of [23])

coincide in the category of completely regular Hausdorff spaces. It is easy to see
that a regular Hausdorff space X is K-analytic iff it is quasi-Suslin and LindelOf.
For every K-analytic space X there exists an ordered family {T(a) : a E NN} of
compact subsets of X covering X, see Talagrand [21] but, as Talagrand has shown
[22], there are topological spaces not K-analytic, but covered by an ordered family
{T(a) : ex E NN} of compact sets.

We note another interesting result which provides also a nice application of (+).
Every separable les EQ5 has eountable tightness in o"(E, E').

Proof. If D is a countable dense subset of E, then O"(E', D) is metrizable, hence
angelie. Therefore (E', o"(E', E)) is angelic, too. Since E belongs to class lB, every
set Aa: from its Q5~representation is countably O"(E', E)-relatively compacto Since
(E',o"(E',E)) is angelic, so each set Aa: is relatively compacto But this applies to
deduce that (E', o"(E', E)) is K-analytic. One of the interesting properties of K
analytic spaces shows that countable products of K-analytic spaces are K-analytic, so
cach snch product is Lindclof. Hcncc cvery finitc product «E', O"(JiJ', E)))n must be
LindelOf for any n E N. Now (+) applies to show that Cp(E', O"(E', E)) has countable
tightness. Since (E, O"(E, E')) isa subspace of Cp(E', o"(E', E)), the conclusion holds.

Q5-CLOSED AND BORNIVOROUS REPRESENTATIONS

A Q5-representation {Aa: : a E NN} of a les E is closed if every set Aa: is O"(E', E)
closed. It is called bornivorous if every bounded set in the strong topology (3(E', E)
of E' is contained in some Aa:.

It turns out that this subclass of spaces in class Q5 is still very large as examples
below show.

EXAMPLE. The following les admit a closed and bornivorous Q5-representation:
(A) Every dual metrie spaeej consequently every (DF)-space and every (LB)-space.

(B) Every quasibarrelled space in class Q5j hence every (LM)-space.

(C) D'(D.), A(D.): For open sets D. e JRN, the space of test functions D(Q) is a
complete Montel (LF)-space, so its strong dual, the space of distributions D'(Q), is a
quasi-complete ultrabornological (hence quasibarrel!ed) and non-metrizable !Cs. The
same holds for A(Q). The spaces D'(Q) and A(Q) belong to class Q5, so both spaces
admit a bornivorous Q5-representation and have Q5-bases.



5

The following theol'em extends Valdivia's Theol'em 24 of [23] fol' lcs with bornivo
l'ous <B-l'epl'esentation.

THEOREM 4 [11]. Let E be a les with a bornivorous <B-representation (for example
a dual metric space).

(I) The following are equivalent:

E has countable tightness.

E is quasibarrelled.

(II) The following are equivalent:

(E, cr(E, E')) has countable tightness.

(E, f.1(E, E')) has countable tightness.

(E, f.1(E, E')) is quasibarrelled.

Theol'em 4 can be applied to get an intel'esting new chal'actel'ization of distin
guished metl'izable complete les (= Fl'échet spaces). Recall that a Fl'échct space E
is distinguished if its stl'ong dual (E', (3(E1

, E)) is bornological, 01' equivalently, bar
relled. If (E' ,{3(E' ,E)) is metrizable, then cleal'ly E is distinguished. But then E is
a Banach space. Thel'efol'e the following natural question arises:

Could purely topological weakenings of metrizability, such asthe countable tightness
succeed here ?

Note that the Fréchet-Urysohn property is also to strong: Ind~ed, if E = ]Rl\l,
then its strong dual is ep, Le. the l'lo-dimensional vector space endowed with the
finest locally convcx topology, which is not Fréchet-Urysohn but bornological, so E is
distinguished. Recall that a topological space X is Fr'échet- U1ysohn if for every set
A in X and every point x fl'om the closure of A there exists a sequence of elements
of the set A which converges to x, see Nikyos [16] for details. Theorem 4 applies to
get the following

COROLLARY 2. A Préchet space E is dístinguished 'ijf its strong dual has count"
able tightness.

This interesting observation will be extended latero In order to get another re
sults related to distinguished spaces in terms of tightness we need the following few
concepts.

For a, {3 E Nl\l with a = (ak)k and {3 = (bk)k we write a::;' {3 to mean that ak ::; bk
for ahnost aH (Le., all bui finiiely many) k E N.

Thus a ::; {3 implies a ::;' {3, but not conversely. It is easily seen that every
countable set in (Nl\l, ::;') has an upper bound, and this is not true for (Nl\l, ::;).

The bounding cardinal b and the dominating cardinal D are defined as the least
cardinality for unbounded, respectively, cofinal subsets of the quasi-ordered space
(Nl\l, ::;'). The cofi:n.ality of an infinite cardinal eis t,he smallest cardinality for cofinal
subsets of e, where S e eis cofinal if, for each ordinal a < e, Le. for each a E e, there
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exists (3 E S such that a ~ (3. It is clear that in any ZFC-consistent system, one has

The Continuum Hypothesis requires al! four of these cardinals to coincide. Yet it
is ZFC-consistent to assume that any of the three inequalities is strict.

Now we are ready to present sorne new facts about famous Grothendieck-Kothe
distinguished space.
EXAMPLE. Grothendieck-Kothe non-distinguished Fréchet space is the vector space
E of al! numerical double sequences x = (Xij) such that for eaeh nEN one has

Pn(X) := L la~7)xi,jl < 00,

ij

where a~7) = j for i :S n and al! j, ag') == 1 for i > n and al! j. The semi-norms Pn
generate a local!y convex topology under which E is a Fréchct spacc. Thc dual E' of
E is identified with the space of double sequence u = (Uij) such that IUij I :S ca~7) for
al! i, j E N and suitable e > Oand n E N.

THEOREM5 [11]. The tightness of the strong dual E' of the Grothendieck-Kothe
F'réchel space E is D, the dominating cardinal. Moreover the tightness of the SPace
(E' , (J (E' ,E")) is between cardinals b and D.

This yields the fol!owing interesting

COROLLARY 3. The Grothendieck-Kothe space is, indeed, a non-distinguished
}''réchet space.

We provide another characterization of distinguished Fréchet spaces in terms of
tightness. Let E be a les and U(E) the basis of al! closed absolutely eonvex neigh
bourhoods of zero. Let ~(E) be the family of al! closed absolutely convex bounded
subsets of E.

A classical result of Grothendieek says that every (DF)-space for which every
bounded setis metrizable is quasibarrelled. Hencea metrizable les whose strong dual
has al! bounded sets metrizable must be distinguished. Fol!owing S. Heinrieh, we say
that E satisfies the density condition, if the fol!owing holds:

Given any function A: U(E) -> 1R+ \ {O} and an arbitrary V E U(E), there exists
a finite subset U ofU(E) and B E ~(E) such that

nA(U)U e B + V.
UEU

In [3] Bierstedt and Bonet studied the Stefan Heinrieh's density condition for
metrizable les. They noticed that for a metrizable les E with its decreasing basis
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(Ull,)n of absolutely convex closed neighbourhoods of zero the density condition is
séüisfied iIT the following holds:

Given an increasing sequence (An)n of strictly positive numbers,there exists a
bounded subset B of E such that, for each n E N, there exists m E N, m > n, and
111 > O with n7=l AjUj e 111B + Un.

In the same paper [3] Bierstedt and Bonet proved:

THEOREM 6. Por a metrizable lcs E the following assertions are equivalent:

(1) E satisfies the densil.y condil.ion.

(2) Every bounded set in the strong dual (E', {J(E', E)) is metrizable.

(3) The space el (E) is distinguished.

Any condition given aboye implies that E is distinguished; the converse fails in
general. There exist refiexive Fréchet spaces E (every such space is clearly distin
guished) but which do not satisfy the density condition. Nevertheless, it turns out
that for echelon K6the spaces the density condition characterizes the distinguished
property. Indeed, Bierstedt and Bonet proved that:

Por an echelon K(jthe space Al = A(I, A) the following assertions are equivalent:

(1) Al is distinguished.

(2) Al salis/i,es the densil.y condi/.ion, .

where J is an arbitrary index set and A := (an)nEf'l is a strictly posi~ve K6the matrix
on J.

Very recently we have shown that

THEOREM 7. A (DF)-space E = (E, r) is quasibarrelled iff every bounded set in
E has countable tightness.

Skech of the proof. Let (Sn) be a fundamental sequence of absolutely convex closed
sets in E. If E is quasibarrelled, then by Theorem 2 the space E has countable
tightness and the conc!usion follows. Now we prove the converse. Assume that every
bounded set in E has countable tightness. We need the following:

CLAIM 1. The weak dual (E', a(E', E)) is realcompact.

In order to prove Claim 1 it is enough to show that every linear functional f on
(E, a(E, E')) whose restrictions to every separable r-closed subspace of E are contin
uous itself is continuous. But to show that the map f is continuous, it is enough to
check that for every n E N the restriction flSn is continuous. Indeed, since the space
E is assumed to be a (DF)-space, this will show that f is continuous. Fix n E N. We
need to show only that

CLAIM 2. Por every set A e Sn and every x E A (the closure in TISn one has
f(x) E f(A).

Since A is bounded and x E A, then by assumption, there exists a countable subset
B of A such that x E B.Let F be a T-c!osed linear span of B in E. Byassumption
on f, the restriction flF is T-continuous. Hence ¡lB is r-continuous. Consequently
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f is continuous on the TISn-closure of B (since Sn is T-closed). This implies that

f(x) E f(B) e f(A).

We proved that
flSn : (Sn, TISn) -t R

is continuous. But the space E is a (DF)-space, so we conclude that f is T-continuous
and consequently the weak dual of E is realcompact. By Theorem 3 the space
(E, a(E, E')) has countable tightness. By Theorem 4 the Mackey space (E, ¡.t(E, E'))
is quasibarreHed. We add a direct proof to this fact:

For every sequence Q := (nk) E NN set Ba := nk nkS'{ Since E is a (DF)"
space, every sequence in any Ba is equicontinuous, so Ba is relatively countably
compact in (E', a(E', E)). Since (E', a(E', E)) is realcompact, one gets that every
Ba is relatively compact, hence ¡.t(E, E')-equicontinuous. But every bounded set in
f3(E', E) is contained in sorne Ba . Hence every f3(E', E)-bounded set is ¡.t(E, E')"
equicontinous and this proves that (E, Ji,(E, E')) is quasibarrelled.

The last step of the proof is to show that T = ¡.t(E, E')): Indeed, assume on the
contrary that T is strictIy weaker than ¡.t(E, E').
CLAIM 3. There exists n E N such that the topology -rISn is strictly weaker than
p,(E, E')ISn.
Indeed, if for every n E N the equality TISn== Ji,(E, E')ISn holds, then since E is a
(DF)-space one gets that T = ¡.t(E, E'), a contradiction.

Hence there exists n E N such that our claim holds. Then there exists in Sn a set
A which is ¡..t(E, E')ISn-c!osed but not TISn-closed. Hence A is not T-closed. Select

x E A\A, x E Sn

(the closure in T). Since x~ A (which by assumption is ¡.t(E, E') ISn-c!osed), there
exists a ¡.t(E, E')-continuous seminorm p on E such that

Ux f1Sn nA = 0,

where Ux = {y E E : p(x ~ y) < 1}. Rence p(x ~ y) 2: 1 for aH y E A. Let (xn )

be any sequence in A. Fix n E N. There exists a sequence Un) of continuous linear
functionals on E such that

for aH z E E. This sequence is ¡.t(E, E')-equicontinuous, so f3(E' ,E)-bounded. Since
E is a (DF)-space, the sequence Un) is T-equicontinuous. Therefore the polar U :=
{in : n E N}O is a T-neighbourhood of zero and (x + 2-1U) f1 {xn : n E N} = 0. But
(xn) e A e Sn, so x does not belong to the T-closure of the set {xn : nE N}. This
contradicts with the fact that every T-bounded set has countable tightness. Therefore
T = Ji,(E, E') is quasibarrelled.

Last Theorem applies to get the foHowinginteresting
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THEOREM 8. A F'réchet space E is distinguished iff every bounded set in the strong
dual has countable tightness.

This seems to be optimal the best characterization of distinguished spaces in terms
of property (2) from Theorem 6.

APPLICATION TO SPACES Cc(X)

By Cc(X) we denote the space of all realvalued continuous maps on X endowed
with the compact-open topology. Making use of Theorem 4 one gets the following
interesting

THEOREM 9 [11]. The following assertions are equivalent for a dual metric space
Cc(X):

(1) The compact-open topology ofCc(X)is equivalent to the uniform Banach topol
ogy generated by the unit ball [X, 1] := {J E Cc(X) : f(X).::::; 1}.

(2) The compact-open topology of Cc(X) has countable tightness.

(3) The weak topology of Cc(X) has countable tightness.

Let Wl denote the first ordinal and let [O, Wl) be the set of all countable ordinals
with the order topology. By Cc(Wl) we denote the Morris-Wulber space Cc([O,Wl))'
It is well-known that Cc(w¡) is a (DF)-space.

EXAMPLE. The space Cc(w¡) does not have countable tightness for the compact
open topology (and the weak topology). lts weak dual is quasi-Suslin but is not K
analytic.

Q)-BASES AND DUAL METRIC SPACES

Recall that a les E admits a Q)-hasis if there exists a hasis of neighbourhoods of
zero {Uo: : a E N1\!} such that Uo: e U/3 for (3 ::::; a in N1\!. Prom Theorem 1 it follows
that a quasibarrelled space E has a Q)-hasis iff EE Q). The weak dual of a les having
a Q)-basis is quasi-Suslin.

The concept of ®-bases is used to present a general argument to construct concrete
spaees Cc(X) (different from what Talagrand presented) whose weak dual isnot K
analytie but is eovered by anordered family of compact sets. Likely, the first example
of this type is due to Valdivia, see [23], who has shown an example of a metrizable
and complete les E such that (E", a-(E", E')) is quasi-Suslin and not K-analytic. This
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applies to show that the strong dual (El, (3(EI ,E)) of E is a (DF)-space with a <5
basis {U",: a E NN} whose weak dual is quasi-Suslin and not K-analytic, but clearly
(E", a(E", El)) is covered by an ordered family of compact sets, polars of the sets
U",.

THEOREM 10. If a les E has a closed <5-representation, then (El, <1(E', E)) is
quasi-Suslin. In particular, the weak dual of a dual metrie spaee is quasi-Suslin.

The concept of <5-basis can nicely be applied to provide a very natural and relatively
simple proof (different from what Cascales and Orihuela presented in [5]) for a special
case of Cascales-Orihuela result:

THEOREM 11. In every quasibarrelled les in class <5 every preeompaet set is
metrizable.

Recall that all (LM)-spaces and spaces Dl(n), A(!1) are quasibarr<'llcd and belong
to class <5.

Skeeh of the proo! Since E is a quasibarrelled space in class <5, then (by Theorem 1)
for every a = (nk) E NN there is a bornivorous sequence (Dn"n2, ... ,nk)k of absolutely
convex closed subsets of E such that if W", := Uk Dn"n2, ... ,nk' where a E NN, then
the family {W", : a E NN} 1s a basis ofneighbourhoods of zero in E. Fix a precompact
subset P in E.
CLAIM 1. There exists nk E N and a finite s'ubset F of P sueh that

Indeed, otherwise there exists a sequence (Xk)k in N such that

for all k E N. Since for every k E N the lastset is closed, there exists a decreasing
sequence (Vk)k of closed absolutely convex neighbourhoods of zero such that Vk+l +
Vk+l e Vk, k E N, and that xk+l f/:. {Xl, X2,··· Xk} + 2Dn" n2, ...,nk + 2Vk. Set

V:= UDn" n2, ...,nj n Vj+l'
j

Since E is quasibarrelled and the sequence (Dn ,,'Tt2, ... ,n; n Vj+l)j is bornivorous and
(Vj)j is decreasing, one shows that

UDn"n2, ... ,n; n Vj+l e U2(Dn" n2, ... ,n; n Vj+l) e 2Dn"n2, ... ,nk + 2Vk+l
j j

for every k E No Therefore
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for all k E N. Since the closure W of absconv V is a closed absolutely convex and
bornivorous set in E, it is a neighbourhoof of zero (since E is quasibarrelled). But

W e 2Dn1 ,n2, ... ,n" + 2Vk+1 e 2Dn1 ,n2, ... ,n" + 2Vk+l + 2Vk+l e 2D"1,n2, ... ,n" + 2Vk·

HenCexk+l í {x},x2, ... xd+Wforallk E N. ThisimpliesthatPisnotprecompact,
a contradiction. Claim 1 has been proved.

Now we prove that the precompact set P is metrizable. Choose arbitrary y E P
and let U be an absolutely convex neighbourhood of zero in E. Then there exists a
sequence (nk)k in N such that

UDn1 ,n2, ... ,n" e (3/4)U.
k

Using Claim 1 one obtains a finite set F in P and a set Dn1 ,n2, ... ,n" such that pe
F + (1/3)Dn1 ,n2, ... ,nk' Fix x E F such that

y E x + (1/3)Dn1 ,n2, ... ,n".

The proofwill be completed if we show that x+Dn1 ,n2, ... ,n"intersects Pina relatively
neighbourhood of y contained in y + U. Define

e = U{x l + (1/3)Dn1 ,n2, ...,n" : Xl E F, Y í x' + (l/3)Dn1 ,n2, ... ,n,,}'

Observe that
P \ e e y + (2/3)Dn¡,n2, ... ,n" e x + Dn1 ,n2, ... ,nk'

Clearly P \ e is an open neighbourhood of y. On the other hand

x + Dn1 ,n2,... ,n" = (x + (1/3)Dn1 ,n2, ... ,nk) + (2/3)Dn1 ,n2, ... ,nk e y + U,

and the proof is completed.

The following results describes the cardinality of any C8-basis in nonmetrizable Ics.

THEüREM 12 [11J. The ehameter X(E) of a nonmetrízable les E havíng a C8-basís
must satísfy

b ~ X(E) ~ D.

Consider the Banach space RP(A) with the sup-norm topology T and with closed
unit ball D, where p isfixcd with 1 ~ p < 00 and A is an uncountable indexing seto
For each S e A define

Es := {u E RP(A) : u(x) = O,x ~ S},

and for each countable T e A and each n E N, and define [n, TJ := (n-1D)+E!I.\T' Let
E denotes RP (A) with the locally convex topology , having as a base of neighbourhoods
of zero all sets of the form [n, T]. Note that, for each countable T, the subspaces ET
and E!I.\T are topologically complementary in E, and ET inherits the same Banach
topology from E as it does from the Banachspace RP(A), and thc dual of E is the
same as that of RP(A).
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EXAMPLE. (E,~) is a sequentially complete non-quasibarrelled (DF)-space and
does not have countable tightness and whose weak dual is K-analytic.

Note that E E Q5 for cvery choice of uncountable A, but E admits a Q5-basis only
when A is severely restricted ullder an axiOlnaticassumption Illilder than CH.

EXAMPLE. 1. Jf we assume that~l= D= IAI, then E has a Q5-basis.

2. Jf we assume that ~1 < !J, then E does not admit a Q5-basis.

3. Jf IAI < !J orlAI > D, then E does not admit a Q5-basis.

We note the following result of [ll].

THEOREM 13 [11]. Jf~l <!J, then Cc(Wl) does not admit a Q5-basis.

Nevertheless for very concrete (DF)-spaces Cc(b) and Cc(D) we have the following

THEOREM 14 [11]. Both spaces Cc(!J)and Cc(D) have a Q5-basis. Jf the cardinal
,." has cofinality ~o, !J, or D, then Cc("") has a Q5-basis.

Combining previous results, we obtain

THEOREM 15 [11]. The Morris- Wulbert space Cc(wt} has a Q5-basis iff ~l = !J.

SPACES Cp(X) OVER METRIC SPACES X

Very recently Cascales and Namioka [9] proved that for a K-analytic space X the
following conditions are equivalent:

(1) Cp(X) is Fréchet-Urysohn.

(2) Cp(X) is a kn-space.
(3) X is O"-scattered.
(4) Every countable subset of Cp(X) has metrizable dosure.
In 1981 McCoy asked [16] if every first countable space X for which Cp(X) is

Fréchet-Urysohn must be countable. This motivated the following om recent result:

THEOREM 16 [12]. For a metric and complete space X the following assertions
are equivalent:

(1) Cp(X) is Fréchet-Urysohn.

(2) Cp(X) has bounded tightness.

(3) X is separable and every compact subset of X is scattered.

(4) X is separable and scattered.

(5) X is countable, i.e. the space Cp(X) is metrizable.
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(6) X is separable and every countable subset of Cp(X) has metrizable closure.

Gn the other hand, for spaces Cc(X) we note the following

THEOREM 16 [12]. Jf X is a locally compact unbounded metric space, then the
following assertions are equivalent:

{1) Cc(X) is a Fréchet space.

(2) Cc(X) has bounded tightness.

(3) Cc(X) has countable tightness.
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