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ABsTRACT. The aim of this note is to gather some of recent results presented in my
talk September 22, 2004 in Departamento de Mathematicas de la U.N.E.D in Madrid. 1
would like to thank Professor Pedro Jemenez Guerra for his invitation to give this talk
and a stimulating discussion after the talk. The talk entitled as above covered some of
recent results jointly obtained with my colleagues B. Cascales (Murcia}, J. C. Ferrando
(Elche), M. Lopez-Pellicer (Valencia), S. Saxon (Gainesville) and A. Tood (New York).
The main idea of my talk was to present some technics and ideas from descriptive
set topology related to K-analytic spaces, analytic spaces and quasi-Suslin spaces, to
study concrete problems from functional analysis like characterizations of distinguished
Fréchet spaces, dual metric spaces and tightness conditions for function spaces Cc{X).
Our approach provides also a new description of distinguished Fréchet spaces in terms
of tightness and dominating ordinals. Several results of Bierstedt-Bonet] Kaplansky,
Talagrand, Morris-Wulbert are essentially extended. 5

Recall that a locally convex space (les) is called a dual metric space if it has a
fundamental sequence of bounded sets and every strongly bounded sequence in the
dual is equicontinuous. Clearly every Grothendieck (DF)-space is dual metric and
every dual metric space belongs to class &.

In [4] Cascales and Orihuela introduced the class & of those Ics £ for which thereis a
family { A, : « € NN} of subsets of its topological dual E’ (called its ®-representation)
such that:

(a) EB' = U{Aa : a € NV},
(b) Ay C Ap when a £ 3
(c) in each A,, sequences are equicontinuous,

where the set of natural numbers N is endowed with the discrete topology and NN
with its product topology.

Cascales .and Orihuela obtained the following two important results:
(1) Every lcs E in class & is angelic, both in the original and the weak topologies.

(2) Pvery compact set in E is metrizable.
1



Last result {2) answers a question of Floret {13].

Note that condition (¢) implies that every set A, is bounded in the strong topol-
ogy B(E',E) of E'. Moreover every A, is countably o(E’, E)-relatively compact.
Also each A, is bounding, i.e. every continuous real-valued map on the weak dual
(E’,o(E', E)) is bounded on A,. This facts have some nice applications. For instance,
if the weak dual (E',c(E’, E)) is realcompact, i.e. (E',a(F’, E))} is homeomorphic to
a closed subspace of R for some I, then every bounding set in (E',o(E’, E)) must
be relatively compact. Therefore every set A, is relatively compact; consequently
the weak dual (E’,o(E’, E)) is covered by an ordered family of compact sets. Never-
theless, this property does not ensure that (E’,o(E’, E)) is a K-analytic space. Our
Theorem 3 below describes relations between tightness of the weak topology of a Ics
E in class ® and several properties of the weak dual of E like Lindel6f or K-analytic
properties.

EXAMPLES OF SPACES IN CLASS &

All (LM )-spaces (hence also all (LF)-spaces), dual metric spaces (hence (DF)-
spaces), the spaces of distributions D’(Q2) and real analytic functions: A(Q) for open
Q C RN, etc., belong to class &, see [3], [8].

The class & is stable by taking subspaces, separated quotients, completions, count-
able direct sums and countable products, [4]. The following results show the impor-
tance of quasibarrelled spaces in class . Note that "almost all” important spaces
in class ® are quasibarrelled, although Grothendieck (DF)-spaces need not to be
quasibarrelled.

Theorem 1 [B]. Let E be a quasibarrelled les. The following assertions are equiva-
lent:

(1) E€®.

(2) The strong dual {(E', B(E', E)) is a quasi-(LB)-space.

(3) E admits a ®-basis, i.e. a basis of neighbourhoods of zero {Us : « € NV} in E
such that U, C Ug for all B < a in NN.

(4) For every o = (ny) € NN there exists a family of absolutely convex closed
subsets

F :={Dny nyy...nic : kyn1,M2,...,np € N}

of X such that
[a‘) Dn1,n2,-..,'nk c Dm;,mg,...,mk; ifn; <m; fori=1,2,... k.

(b) For every o = (ny) € NN we have Dy, C Dyyny €+ C Dy, and the
sequence is bornivorous.
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(¢) If Wy := Uy, Dny na,....ne» where a € NN, then the family {W, : o € NN} is @
basis of neighbourhoods of zero in E.

In a series of papers [7], [8], [10], [11] we studied some tightness conditions for
spaces in G and those spaces in class G which have countable tightness when endowed
with their weak topology. The following two results extend a classical Kaplansky
result and provide many applications.

THEOREM 2 [7]. (1) Every quasibarrelled space in class & has countable tight-
ness. Hence all (LM)-spaces, dual metric spaces (hence (DF)-spaces), the spaces of
distributions D' () and real analytic functions A() for open @ C RN have countable
tightness.

(2) If a lcs E in class & has countable tightness, then the space E endowed with its
weak topology o(E, E') has also countable tightness.

Recall that a topological space X has countable tightness if for every set Ain X
and every x € A (closure in X)) there exists a countable subset B of A whose closure
contains .

THEOREM 3 [7]. For alcs E in class ® the following conditions are equivalent:
(a) (E,o(E, E")) has countable tightness.
(b) (E',o(E', E)) is K-analytic.
(c) (E',a(FE', E)) is realcompact. §
(d) (E',o(E',E)) is Lindelof.
(e) (E',a(E',E))" is Lindelof for every n € N.
On the other hand the following very interesting applicable result (Arkhangelski-

Pytkeev-McCoy [1], [16]) provides a nice link between tightness of C,,(X) and Lindelof
property of X.

(+) Tightness of Cp(X) is countable iff every finite product of X s Lindelof.
Note that Theorem 3 does not apply for spaces Cp(X) of continuous functions

on X with the pointwice topology. This follows from the following two results of
Cascales-Kakol-Saxon (8] and of Kakol-Lopez-Pellicer-Todd [15] combined with (+):
(1) The space Cp(X) belongs to class & iff X is countable.

(2) If X is an uncountable K-analytic space, then the weak dual of Cp(X) is not a
K-analytic space.

The following fact due to Cascales-Orihuela {5] supplements Theorem 3: A bar-
relled space F belongs to class ® iff its weak dual is K-analytic. This combined with
Theorem 1 yields the following interesting consequence.

COROLLARY 1. A barrelled space E has a &-basis iff its weak dual is K-analytic.

Recall that a Hausdorff topological space X is a quasi-Suslin space (resp. K-
analytic), if there exists a map T : NN — 2% (resp. a map 7 : NN — 2% such that



4

T(e) is compact for each a € NN) such that

(a) U{T(a) : « € NN} = X.

(b) If ay, is a sequence in NN which converges to o in NN and z, € T{(ay) for all
n € N, then the sequence (z,), has an adherent point in X belonging to T'();

Rogers [20] proved that K-analytic spaces and K-Suslin spaces (in sense of [23])
coincide in the category of completely regular Hausdorff spaces. It is easy to see
that a regular Hausdorff space X is K-analytic iff it is quasi-Suslin and Lindeldf.
For every K-analytic space X there exists an ordered family {T(a) : o € NV} of
compact subsets of X covering X, see Talagrand {21] but, as Talagrand has shown
[22], there are topological spaces not K-analytic, but covered by an ordered family
{T(a) : « € NN} of compact sets.

We note another interesting result which provides also a nice application of (+).

Every separable lcs € & has countable tightness in o(E, E').

Proof. If D is a countable dense subset of E, then o(E’, D) is metrizable, hence
angelic. Therefore (E',o(E’, E)) is angelic, too. Since E belongs to class &, every
set A, from its ®-representation is countably o(E’, F)-relatively compact. Since
(E',o(E', E)) is angelic, so each set A, is relatively compact. But this applies to
deduce that (E',o(E’, E)) is K-analytic. One of the interesting properties of K-
analytic spaces shows that countable products of K-analytic spaces are K-analytic, so
cach such product is Lindcldf. Hence every finite product ((F’,o(E’, E)))™ must be
Lindeldf for any n € N. Now (+) applies to show that C,(E’,o(E’, E)) has countable
tightness. Since (E,o(E, E)) is a subspace of Cp,(E’, o(E’, E))}, the conclusion holds.

6-CLOSED AND BORNIVOROUS REPRESENTATIONS

A ®-representation {A, : o € NN} of a lcs E is closed if every set Ay is o(E’, E)-
closed. It is called bornivorous if every bounded set in the strong topology B(E’, E)
of E’ is contained in some A,.

It turns out that this subclass of spaces in class & is still very large as examples
below show.

EXAMPLE. The following lcs admit a closed and bornivorous &-representation:
(A) Every dual metric space; consequently every (DF)-space and every (LB)-space.
(B) Every quasibarrelled space in class ®; hence every (LM)-space.

(C) D'(Q), A(Q): For open sets 2 C RN, the space of test functions D(f) is a
complete Montel (LF)-space, so its strong dual, the space of distributions D'(f2), is a
quasi-complete ultrabornological (hence quasibarrelled) and non-metrizable lcs. The
same holds for A(Q). The spaces D'(Q2) and A(Q) belong to class &, so both spaces
admit a bornivorous ®-representation and have ®-bases.
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The following theorem extends Valdivia's Theorem 24 of [23] for lcs with bornivo-
rous ®-representation.

THEOREM 4 [11]. Let E be a lcs with a bornivorous ®-representation (for example
a dual metric space).

(I) The following are equivalent:

E has countable tightness.

E is quasibarrelled.

(II) The following are equivalent:
(E,a(E, E")} has countable tightness.
(F,p(E, E')) has countable tightness.
(E,u(E, E") is quasibarrelled.

Theorem 4 can be applied to get an interesting new characterization of distin-
guished metrizable complete les (= Fréchet spaces). Recall that a Fréchet space E
is distinguished if its strong dual (E', 8(E’, F)) is bornological, or equivalently, bar-
relled. If (E', B(E', E)) is metrizable, then clearly E is distinguished. But then E is
a Banach space. Therefore the following natural question arises:

Could purely topological weakenings of metrizability, such as the countable tightness
succeed here 7 i

Note that the Fréchet-Urysohn property is also to strong: Indéed, if E = RN,
then its strong dual is ¢, i.e. the Np-dimensional vector space endowed with the
finest locally convex topology, which is not Fréchet-Urysohn but bornological, so F is
distinguished. Recall that a topological space X is Fréchet-Urysohn if for every set
A in X and every point z from the closure of A there exists a sequence of elements
of the set A which converges to z, see Nikyos [16] for details. Theorem 4 applies to
get the following

COROLLARY 2. A Fréchet space F is distinguished iff its strong dual has count-
able tightness.

This interesting observation will be extended later. In order to get another re-
sults related to distinguished spaces in terms of tightness we need the following few
concepts.

For o, 3 € NN with o = (a)x and B = (b )x, we write o <* 3 to mean that ay, < by
for almost all (i.e., all but finitely many) k € N,

Thus a £ (3 implies @ <* B, but not conversely. It is easily seen that every
countable set in (NV, <*) has an upper bound, and this is not true for (NV, <).

The bounding cardinal b and the dominating cardinal © are defined as the least
cardinality for unbounded, respectively, cofinal subsets of the quasi-ordered space
(NN, <*). The cofinality of an infinite cardinal € is the smallest cardinality for cofinal
subsets of ¥, where S C ¢ is cofinal if, for each ordinal o < &, i.e. for each o € &, there



6
exists 5 € S such that o < §. It is clear that in any ZFC-consistent system, one has

N <b<o<e

The Continuum Hypothesis requires all four of these cardinals to coincide. Yet it
is ZFC-consistent to assume that any of the three inequalities is strict.

Now we are ready to present some new facts about famous Grothendieck-Kéthe
distinguished space.
EXAMPLE. Grothendieck-Kéthe non-distinguished Fréchet space is the vector space
E of all numerical double sequences x = (z;;) such that for each n € N one has

pelz) = Z lagl)wi,ﬂ < 00,
iJ

(M) — jfori <mnandall j,al™ =1 for i >n and all j. The semi-norms p,

where a;; ij
generate a locally convex topology under which E is a Fréchet space. The dual E’ of
E is identified with the space of double sequence u = (u;;) such that |u;;| < cagf) for

all 4, j € N and suitable ¢ > 0 and n € N.

THEOREM 5 [11}. The tightness of the strong dual E' of the Grothendieck-Kithe
Fréchel space E is 0, the dominating cardinal. Moreover the tightness of the space
(E',a(E',E")) is between cardinals b and 0.

This yields the following interesting

COROLLARY 3. The Grothendieck-Kithe space is, indeed, a non-distinguished
Fréchet space.

We provide another characterization of distinguished Fréchet spaces in terms of
tightness. Let E be a lcs and U(F) the basis of all closed absolutely convex neigh-
bourhoods of zero. Let B(F) be the family of all closed absolutely convex bounded
subsets of E.

A classical result of Grothendieck says that every (DF)-space for which every
bounded set is metrizable is quasibarrelled. Hence a metrizable lcs whose strong dual
has all bounded sets metrizable must be distinguished. Following S. Heinrich, we say
that E satisfies the density condition, if the following holds:

Given any function X : U(E) — Ry \ {0} and an arbitrary V € M(E), there exists
a finite subset Y of U(E) and B € B(E) such that

() MU)UCB+V.
Ued

In (3] Bierstedt and Bonet studied the Stefan Heinrich’s density condition for
metrizable Ics. They noticed that for a metrizable les £ with its decreasing basis
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(Up)n of absolutely convex closed neighbourhoods of zero the density condition is
salisfied ifl the following holds:

Given an increasing sequence (A,)n of strictly positive numbers, there exists a
bounded subset B of E such that, for each n € N, there exzists m € N, m > n, and
M > 0 with ﬂ;@:l AU; CMB+ U,

In the same paper [3] Bierstedt and Bonet proved:

THEOREM 6. For a metrizable lcs E the following assertions are equivalent:
(1) E salisfies the densily condilion.
(2) Bvery bounded set in the strong dual (E', B(E’', E)) is metrizable.
(3) The space £1(E) is distinguished.

Any condition given above implies that E is distinguished; the converse fails in
general. There exist reflexive Fréchet spaces E (every such space is clearly distin-
guished) but which do not satisfy the density condition. Nevertheless, it turns out
that for echelon Kothe spaces the density condition characterizes the distinguished
property. Indeed, Bierstedt and Bonet proved that:

For an echelon Kothe space \y = A(I, A) the following assertions are equivalent:

(1) X\ is distinguished.

(2) M1 salisfies the densily condilion, )
where I is an arbitrary index set and A := (an)nen Is a strictly posit?éve Ké6the matrix
on I.

Very recently we have shown that

THEOREM 7. A (DF)-space E = (E,7) is quasibarrelled iff every bounded set in
E has countable tightness.

Skech of the proof. Let (S,) be a fundamental sequence of absolutely convex closed
sets in E. If E is quasibarrelled, then by Theorem 2 the space F has countable
tightness and the conclusion follows. Now we prove the converse. Assume that every
bounded set in E has countable tightness. We need the following:

CLAIM 1. The weak dual (E',0(FE', E)) is realcompact.

In order to prove Claim 1 it is enough to show that every linear functional f on
(E,o(E, E')) whose restrictions to every separable T-closed subspace of E are contin-
uous itself is continuous. But to show that the map f is continuous, it is enough to
check that for every n € N the restriction f|S, is continuous. Indeed, since the space
E is assumed to be a (DF)-space, this will show that f is continuous. Fix n € N. We
need to show only that
CLAIM 2. For every set A C S, and every z € A (the closure in 7|S, one has
f(=z) € F(4).

Since A is bounded and z € A, then by assumption, there exists a countable subset
B of A such that z € B. Let F be a r-closed linear span of B in E. By assumption
on f, the restriction f|F is 7-continuous. Hence f|B is T-continuous. Consequently
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f is continuous on the 7|S,-closure of B (since S, is 7-closed). This implies that

f(z) € f(B) C f(A).

We proved that
f]Sn : (SnyT!S'n) - R

is continuous. But the space E is a (DF)-space, so we conclude that f is 7-continuous
and consequently the weak dual of F is realcompact. By Theorem 3 the space
(E,o(E, E')) has countable tightness. By Theorem 4 the Mackey space (F, u(E, E’))
is quasibarrelled. We add a direct proof to this fact:

For every sequence a := (ng) € NN set B, := (), nxSp. Since E is a (DF)-
space, every sequence in any B, is equicontinuous, so B, is relatively countably
compact in (F',0(E’, E)). Since (E',0(F’, E)) is realcompact, one gets that every
B, is relatively compact, hence u(E, E’)-equicontinuous. But every bounded set in
B(E',E) is contained in some B,. Hence every S(E’, E)-bounded set is u(E,E'})-
equicontinous and this proves that (E, u(E, E')) is quasibarrelled.

The last step of the proof is to show that 7 = u(FE, E’)): Indeed, assume on the
contrary that 7 is strictly weaker than u(E, E’).

CLAIM 3. There exists n € N such that the topology 7|Sy is strictly weaker than
w(E, E')|Sp.

Indeed, if for every n € N the equality 7|S, = p(E, E')|S» holds, then since E is a
(DF)-space one gets that 7 = u(E, E’), a contradiction.

Hence there exists n € N such that our claim holds. Then there exists in S, a set
A which is u(E, E')}Sp-closed but not 7|S5,-closed. Hence A is not r-closed. Select

z€A\A, €85,

(the closure in 7). Since z ¢ A (which by assumption is u(E, E')|S,-closed), there
exists a u(E, E')-continuous seminorm p on E such that

U, NS, NA=0,

where Uy = {y € E : p(z —y) < 1}. Hence p(z —y) > 1 for all y € A. Let (z,)
be any sequence in A. Fix n € N. There exists a sequence (f,) of continuous linear
functionals on E such that

(@ —xn) =1, |fu(2)] £ p(2)

for all z € E. This sequence is u(E, E')-equicontinuous, so B(E’, E)-bounded. Since
E is a (DF)-space, the sequence (f,,) is 7-equicontinuous. Therefore the polar U :=
{fn : n € N}° is a 7-neighbourhood of zero and (z + 271U) N {z,, : n € N} = 0. But
(zn) C A C Sp, so x does not belong to the 7-closure of the set {z, : n € N}. This
contradicts with the fact that every 7-bounded set has countable tightness. Therefore
T = u(E, E') is quasibarrelled.

Last Theorem applies to get the following interesting
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THEOREM 8. A Fréchet space E is distinguished iff every bounded set in the strong
dual has countable tightness.

This seems to be optimal the best characterization of distinguished spaces in terms
of property (2) from Theorem 6.

APPLICATION TO SPACES C.(X)

By C.(X) we denote the space of all realvalued continuous maps on X endowed
with the compact-open topology. Making use of Theorem 4 one gets the following
interesting

THEOREM 9 [11]. The following assertions are equivalent for a dual metric space
C(X):

(1) The compact-open topology of Ce(X) is equivalent to the uniform Banach topol-
ogy generated by the unit ball [X,1]:= {f € C.(X): f(X) < 1}.

(2) The compact-open topology of C.(X) has countable tightness.

(8) The weak topology of Cc(X) has countable tightness.

Let wy denote the first ordinal and let [0,w;) be the set of all countable ordinals
with the order topology. By C.(w1) we denote the Morris-Wulber space C,([0,w1)).
It is well-known that C.(w;) is a (DF)-space.

EXAMPLE. The space C.(w1) does not have countable tightness for the compact-
open topology (and the weak topology). Its weak dual is quasi-Suslin but is not K-
analytic.

6-BASES AND DUAL METRIC SPACES

Recall that a lcs E admits a ®-basis if there exists a basis of neighbourhoods of
zero {Uy : @ € NN} such that U, C Ug for 8 < « in N¥. From Theorem 1 it follows
that a quasibarrelled space E has a ®-basis iff £ € &. The weak dual of a lcs having
a ®-basis is quasi-Suslin.

The concept of &-bases is used to present a general argument to construct concrete
spaces Cc(X) (different from what Talagrand presented) whose weak dual is not K-
analytic but is covered by an ordered family of compact sets. Likely, the first example
of this type is due to Valdivia, see [23], who has shown an example of a metrizable
and complete Ics E such that (E”,c(E”, E')) is quasi-Suslin and not K-analytic. This
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applies to show that the strong dual (E’, B(E', E)) of E is a (DF)-space with a &-
basis {U, : @ € NV} whose weak dual is quasi-Suslin and not K-analytic, but clearly
(E",o(E"”,E")) is covered by an ordered family of compact sets, polars of the sets
Ug.

THEOREM 10. If a les E has a closed &-representation, then (E',o(E’', E)) is
quast-Suslin. In particular, the weak dual of a dual metric space is quasi-Suslin.

The concept of B-basis can nicely be applied to provide a very natural and relatively
simple proof (different from what Cascales and Orihuela presented in [5}) for a special
case of Cascales-Orihuela result:

THEOREM 11. In every quasibarrelled lcs in class & every precompact set is
metrizable.

Recall that all (LM )-spaces and spaces D'(§2), A(Q2) are quasibarrclled and belong
to class ®.

Skech of the proof. Since E is a quasibarrelled space in class &, then (by Theorem 1)
for every a = (ni) € NN there is a bornivorous sequence (D, n,....n. )i Of absolutely
convex closed subsets of E such that if Wy := |, Dn, n,,...,n,, Where o € NN, then
the family {W, : a € NV} is a basis of neighbourhoods of zero in E. Fix a precompact
subset P in E.

CLAIM 1. There exists ny € N and a finite subset F of P such that’
PCF+2Dp, ny....0-
Indeed, otherwise there exists a sequence {zx) in N such that
Tr41 € {z1,22,. . Tk} +2Dn; nyyni

for all £ € N. Since for every k € N the last set is closed, there exists a decreasing
sequence (Vi) of closed absolutely convex neighbourhoods of zero such that Vi4 +
Vi+1 C Vi, k €N, and that z4 ) ¢ {21,22,... 2} +2Dp, ny,...np + 2V, Set

V= UDnl,nz,...,nj n ‘/j+1-
j

Since E is quasibarrelled and the sequence (Dp, n,,....n; N Vj41); is bornivorous and
(Vj); is decreasing, one shows that

U Drimssoims N Vi1 €U 2Dy img,..in; N Vig1) € 2Dy g iny + 2Vt
J J

for every k € N. Therefore

absconv'V C 2Dp, n,....ni + 2Vit1
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for all k¥ € N. Since the closure W of absconvV is a closed absolutely convex and
bornivorous set in E, it is a neighbourhoof of zero (since E is quasibarrelled). But

W C 2Dn1,n2,...,nk + 2Vk:+l C 21)111,7”,‘..,11,r + 2Vk+1 + 2Vk+l C 2Dn1,n2 Tk + 2Vk-

Hence zg4+1 ¢ {z1,22,... 2k }+W forall k € N. This implies that P is not precompact,
a contradiction. Claim 1 has been proved. :

Now we prove that the precompact set P is metrizable. Choose arbitrary y € P
and let U be an absolutely convex neighbourhood of zero in E. Then there exists a
sequence (ng)x in N such that

U Drinavme € (3/4)U.
k

Using Claim 1 one obtains a finite set F' in P and a set Dy, n,,... n, such that P C
F + (1/3)Dy, m,.,...n.- Fix z € F such that
Yy €x+ (1/3)D"1,n2,~~~,nk'
The proof will be completed if we show that £+ Dy, n,... . intersects P in a relatively
neighbourhood of y contained in y + U. Define
C =2+ (1/3)Dnymay.ns : 7' € Fy ¢ 2"+ (1/3) Dy ny,oomi -
Observe that
P\CcCy+ (2/3)Dn11n2,m,nk Cz+ Dnying,.na-
Clearly P\ C is an open neighbourhood of y. On the other hand
z+ Dnlanzquk = (:C + (1/3)Dn1,n2,~~-,nk) + (2/3)D’ﬂ1,n2,~~-,nk c Yy + U’
and the proof is completed.

The following results describes the cardinality of any ®-basis in nonmetrizable lcs.

THEOREM 12 [11]. The character x(E) of a nonmetrizable lcs E having a ©-basis
must satisfy
b<x(E) <D

Consider the Banach space £7(A) with the sup-norm topology 7 and with closed
unit ball D, where p is fixed with 1 < p < oo and A is an uncountable indexing set.
For each S C A define

Es:={u€P(A):u(z) =0,z ¢ S},

and for each countable T C A and each n € N, and define [n, T} := (n~'D)+Ep\7. Let
E denotes #7(A) with the locally convex topology £ having as a base of neighbourhoods
of zero all sets of the form [n,T]. Note that, for each countable T, the subspaces Er
and Ex\r are topologically complementary in F, and Er inherits the same Banach
topology from E as it does from the Banach space #P(A), and the dual of E is the
same as that of £P(A).
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EXAMPLE. (F,£) is a sequentially complete non-quasibarrelled (DF)-space and
does not have countable tightness and whose weak dual is K-analytic.

Note that E € & for every choice of uncountable A, but E admits a &-basis only
when A is severely restricted under an axiomatic assumption milder than CH.

EXAMPLE. 1. If we assume that Xy =0 = |A|, then E has a &-basis.
2. If we assume that Ry < b, then E does not admit a ®-basis.
3. If |[A] < b or |A| >0, then E does not admit o ®-basis.

We note the following result of [11].
THEOREM 13 [11]. If®; <'b, then C.(w;) does not admit a &-basis.
Nevertheless for very concrete (DF)-spaces Cc(b) and C.(0) we have the following

THEOREM 14 [11]. Both spaces C.(b) and C;(d) have a &-basis. If the cardinal
K has cofinality Wo, b, or 9, then C.(k) has a &-basis.

Combining previous results, we obtain

THEOREM 15 [11]. The Morris-Wulbert space C.(w;) has a ®-basis iff Ny = b.

SPACES C,(X) OVER METRIC SPACES X

Very recently Cascales and Namioka [9] proved that for a K-analytic space X the
following conditions are equivalent:

(1) Cp(X) is Fréchet-Urysohn.

(2) Cp(X) is a kr-space.

(3) X is o-scattered.

(4) Every countable subset of Cp,(X) has metrizable closure.

In 1981 McCoy asked [16] if every first countable space X for which Cp(X) is
Fréchet-Urysohn must be countable. This motivated the following our recent result:

THEOREM 16 [12]. For a meiric and complete space X the following assertions
are equivalent:

(1) Cp(X) is Fréchet-Urysohn.

(2) Cp(X) has bounded tightness.

(8) X is separable and every compact subset of X is scattered.
(4) X is separable and scattered.

(5) X is countable, i.e. the space Cp(X) is metrizable.
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(6) X is separable and every countable subset of Cp(X) has metrizable closure.

On the other hand,y for spaces C;(X) we note the following

THEOREM 16 [12]. If X is a locally compact unbounded metric space, then the
following assertions are equivalent:

11.

12.

13.
14.

15.

16.
17.

(1) Co(X) is a Fréchet space.
(2) C(X) has bounded tightness.
(8) Co(X) has countable tightness.
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