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Abstract

Macbeath gave a formula for the number of fixed points for each non~

identity automorphism of a compact Riemann surface in terms of the uni
versal covering transformation group of the cyclic group generated by the
automorphism. This formula generalizes to determine the fixed point set
of each non-identity automorphism acting on a closed non-orientable sur
face with one exception; namely, when this elementhas order 2. In this
case the fixed point set may have simple closed curves (called ovals) as
well as fixed points. Izquierdo and Singerman explained how Macbeath's
results generalize to automorphisms of a nonorientable surface with orden
distinct from 2 and also determined the fixed point set of an automorphism
of order 2. In this paper we will discuss certain extensions of these results.

1 Preliminaries on NEC groups and their quotient
orbifolds

A non-euclidean crystallographicgroup (NEO) group is a discrete group r of the
group 9 of isometries of the hyperbolic plane 'H with compact quotient space
'H/r, If the group risa subgroup of the group g+ of orientation-preserving
isometries of 'H, then it is called a Fuchsian group. Otherwise r+ = r ng+ is
a subgroup of index 2 in r called its canonical Puchsian.

An NEO group is determined by its signature

s(r) = (h¡ ±¡ [mI, "" mr]¡ {(nll, "" nlS1)' "" (nkI, "" nksk )}), (1)

The quotient space 'HIt is an orbifold with underlying surface of genus h with
r cone points, each of order mi, and k mirror lines, each with Si ~ O comer
points each oforder ~j' The signs + or - correspond to orientable or non
orientable orbifolds respectively. t is called the group (or fundamental group)
of the orbifold 'H/t
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Associated to the signature (1) there is a presentation for r with generators

al, b¡, ... , ah, bh if 1í/r is orientable or al, ... , ah, if 1í/r is non-orientable.

and relators

b -lb-l -lb-l'f 'lJ/r . . t blXIX2"·Xr e l···ekal lal 1 ...a h h' 1 n lS onen a e or

XIX2'''Xrel •..eka¡ ...a~, if 1í/r is non-orientable. (2)

In these presentations, the only elements of finite order are the elliptic elements
and the refiections. The elliptic elements are conjugate of powers of the Xi

or Cij-lCij and the refiections are conjugate of the Cij. The ei generators are
orientation preserving. They are called the connecting generators. Each period
cycle corresponds to a conjugacy class of refiections in r.

Let r be an NEO group with presentation (2). Then there is a fundamental
region P for r which is a polygon in 1í whose perimeter, described counter
c1ockwise, is one of the following according to the orientability of 1í/r:

I I , I " tI

€l€l ... €r€r'" 0l"Y1O'" 1'ls101... Ok1'kO' •• 1'kskokal{31al{31 ... ahf3hahf3h (3)

, I J:. f:.' l: A' * .* ( )€l€l ... €r€r ••• Ul1'1O ... 1'ls1 ul ... uk1'kO .•• 1'kskukalal ... ahah 4

The elliptic element Xi in r pairs the sides€i and €: of P, the generating
refiection Cij has axis containing Oij, the element ei pairs the sides €i and €:,
and the elements aj and bj pair the sides aj and a~ (a; in the non-orientable
case) and f3j and f3;. The quotient space P / < pairings > is an orbifold which
is isomorphic to the orbifold 1í/r.

The hyperbolic area of the orbifold 1í/r is:

r 1 1 k Si 1
¡.t(P) == ¡.t(r) == 21l"(€h - 2 + k + E (1- m) + 2EE (1- ~)), (5)

i=ll i=l j=l 3

where € == 2 if there is a + sign and € == 1 if there is a - signo Ifr* is a
subgroup of r of finite index then the Riernann-Hurwitz formula holds:

Ir 'r*1 == JLCr *)
. JL(r) .
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Let r+ be the canonical Fuchsian of an NEC group r. Then the orbifold Hlr+
is a 2-sheeted covering of 1íIr 1 called its complex double. The genus h+=
Eh + k - 1 of 1í/r+ is the algebmic genus of 1í/r. An NEC group K without
elliptic elements is called a surface group. Its signature is (g; ±; [ J; {( )k} ). A
Klein surface whose complex double has genus greater than one can be expressed
as 1í1K where K is an NEC surface group. An orientable Klein surface without
boundary can be thought as a Riemann surface.

If G is a finite group, then G is a group of automorphisms of a Klein surface Y =
1í1K if and only if there exists an NEC group r and a smooth homomorphism

(}:r~G (7)

having K as the kernel. The transformation group (r, 1í) is called the universal
covering tmnsformation group of (G, Y) .

2 The universal covering transformation group

Prom now on, given a compact non-orientable Klein surface Y of genus p 2:: 3,
the universal covering space of Y is the hyperbolic plane 1í and the group of
covering transformations is a surface subgroup K generated by glide-reflections.
Given a group G of automorphisms of Y, let r denote its lifting to 1í and let
(} :r ~ G be the monodromy, as given in (7), for the covering p : Y ¿ YIG =
1í/r.

We shall consider cyclic groups G of autornorphisms of Y and find the condi
tions that they impose over the universal covering transformation groups r.

We begin by considering a cyclic group G =< tjtN = 1 > of automorphisms of
y of odd order N. r is the fundamental group of the quotient orbifold YIG ,
then, as (} is smooth, Le. it preserves the orders of the elements in r, we must
have o((}(g)) == 1(2) for everyelement 9 offinite order in r. Also we cannot
have period cycles in ser) . Thus r has signature (1) of the form

s(r) = (g; -;[ml, ... , mn ]; { })

with mi, 1:::; i :::; n a divisor of N.

Then r has presentation

(8)

< Xl, .. " xn,dI, ... , dg Ixri == 1, i= 1, oo., n, xI",xnd~...d~ > (9)
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It means that the fixed-point set of the automorphism t consists of a finite
number of points in Y. (see [3], (6))

Theorem 2.1 Let Y be a non-orientable surface of topological genus p ~ 3.
Let G ~ eN =< t 1tN = 1 > ,with N odd, be a group of automorphisms of Y.
The fixed-point set of an automorphism ti of order d in G consists of a finite
number of fixed points. This number is given by Macbeath's formula (see (6J)

N ¿ J..- (10)
m·

dlmj J

Proof The universal covering transformation group r associated to (G, Y) is
given in 8 and 9. Now, we are in the hypothesis of Macbeath's result [6].

This is because Macbeath's proof (applying to orientable quotient spaces) only
uses the facts that each proper period corresponds to a unique conjugacy class
of elliptic elements of r, and each elliptic element has a unique fixed point in
Ji.

Now, let G =< t1t2N = 1> be a cyclic group of automorphisms of Y of order
2N, and let r be the fundamental group of the quotient orbifold y/a. As o
is smooth, we must have O(c) ::::: t N for every reflection e in r. AIso we cannot
have two distinct reflectiollS in r whose product has finite order. So it follows
that, in the canonicalsignature of NEC groups as given in (1), r has empty
period cycles.

Thus r has signature of the form

(11)

with k empty period cycles. Then r has one of the two presentations depending
on whether there is a + or a - in the signature;

for the (+) case

(12)

for the (-) case

(13)

4



One important fact to note about these presentations is that the connecting
generator ej commutes with the generating reflection Cj, and in fact the cen
tralizer of Cj in r is just the group gp < ej, ej >= C2 x Coo . (See [9] )

3 The fixed-point set of a power of an automorphim
t of even order

Let Y be a non-orientable surface of topological genus p .;::: 3 and let t be an
automorphism of order 2N. If 1 :::; i < 2N and i :j=. N then the fixed-point
set of the automorphism ti consists of a finite number offixed points, since the
possible generating reflections in the subgroup A = 0-1« ti » are mapped
by B to t N (see [3]). Again, the number of fixed points of the automorphism ti
is given by Macbeath's formula (see (6] ). This number is given in the following

Theorem 3.1 Let Y be a non-orientable surfaee of topological genus p ;::: 3.
Let G·~ CN =< t I t2N = 1 > be a group of automorphisms of Y. The fixed
point set of an automorphism ti, i :j=. N of order d in G consists of a finite
number of fixed points. This number is g.iven by Macbeath's formula (see [6])

1
2N"" L m ·

dlmj J

(14)

fixed points, where mj runs over the periods in s(r), r being the universal
covering transformation group of (G, Y).

Notice that the number of isolated fixed points of ti is independent of the
smooth epimorphism B ábove. However the epimorphism B does playa part in
the number of ovals of t N .

Theorem 3.2 [4] Let Y be.a non-orientable surfaee oftopologicalgenus p;::: 3.
Let G ~ C2N =< t I t 2N == 1 > be a group of automorphisms of Y, and let B
and r be as described in equations 1 and 11. 1f B(ej) = tUj than the number of
ovals of the involution tNis

k

E (N,Vj)
j=l
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and the number of isolated fixed points of tN is

2N "" 2L.- m.
mj even J

Proof. Let A == 0-1« t N » so that A contains the group K == K erO with
index 2. Now, A must have signature of the form

s(A) == (g; ±;[2(r)]; {( r})

with r periods equal to 2 and s empty period cycles.

The group monomorphisms

K--tA--tr

yield us the following (orbifold-)coverings

y --t Y/Ol == 1-l/A --t Y/O == 1-l/r

(16)

(17)

(18)

(19)

The group 0 1 ==< tN > is a group of automorphisms of Y with 2automor

phisms.

By results in [2] (see also [3]), r is the number of isolated fixed points of t N and
is given by Macbeath's formula

2N L 1
mj even mj

It also follows from [2] that the number of ovals of t N is just the number s
of period cycles in A, which corresponds to the number of conjugacy classes
oí refiections in A. As a refiection Cj in A belongs also to r and the group
r has k conjugacy classes of refiections, we just have to determine into how
many A-conjugacy classes the r -conjugacy class of Cj splits. We shall use the
epimorphism O to calculate this number.

There is a transitive action of r on the A-conjugacy classes of Cj in A by
letting 'Y E r map the refiection gCjg~l to g'Ycj'Y-lg-l, with 9 E A. (Because
A <1 r). Clearly, if >. E A then >. has a trivial action on these A-conjugacy
classes. So we have an action of r /A ~ C2N / C2 ~ CN on these classes. As
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the centralizer of Cj in r is just < Cj, ej >, the stabilizer of the A-conjugacy

classes of Cj in A are the cosets A, Aej, ... , Ae;;i-1, where {jj = eXPAej, the
least positive power of ej that belongs to A. Now, let éj ::::: eXPKej. Then
either éj = (jj or éj = 2{jj.

The additive group Z2N contains a subgroup isomorphic to ZN and a E ZN

has order US"a) in Z N so that a has the same order in Z2N if and only if
(2N, a) = 2(N, a). If (2N, a) = (N, a) then the order of a in Z2N is twice the
order of a in ZN and we then find that

and

éj = {jj if

if

(20)

By the aboye argument on the action of r /A on the A-conjugacy c1asses of Cj
we see that the number of such classes is N/{jj, which is

if ej = (jj

N N N(2N,vj) (2N,vj)
(N,vj),::::: = = =(jj éj 2N 2

or if éj = 2{jj

N 2N 2N(2N,vj)
(2N, Vj) (N,vj)= = = ={jj éj 2N

Thus in both cases the generating refiection Cj of r induces (N, Vj) conjugacy
c1asses of refiections in A. Thus the number of ovals of t N in Y is

k

L(N,Vj)
j=l

Theorem 3.3 [4] The ovals of tN in Y induced by the j th penod cycle in r
are twisted if (2N,vj) = (N,vj) and untwisted if (2N,vj)::::: 2(N,vj)'
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Proof. As we have found in Theorern 3.2, The j th ernpty period cycle in
r induces (N, Vj) ernpty period cycles in A. The generating refiections of
these period cycles are just conjugates of Cj in r and, as the corresponding
connecting generator ej is just the orientation-preserving elernent generating
the centralizer of Cj in r, we see that the connecting generator of each of the

period cycles in A induced by the j th periodcycle in r is just conjugate to e~j ,
Dj = eXPAej as in the proof of Theorem 3.2. Now, let (J' : A -+ C2 == gp < ~ >,
where ~ = tN , be the restriction of the epirnorphisrn (J : r -+ C2N. Then

if E:j = Dj

1

(J'(e~j) = (J1(el) (J(el) = ~,
~ the generator of C2 • Generally, if C is the generating reHection of an ernpty
period cycle of A and e is the corresponding connecting generator then figures
1 and 2 show that 8'(e) = 1 corresponds to an untwisted oval while (J'(e) = ~

corresponds to a twisted oval.

F

Figure 1:

c(F)

(J'(e) = 1 so e E K
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F

Figure 2:

c(F)

e'(e) = Eso ce E K

However, as in the proof of Theorem 3.2 éj= Ój if and only if (2N, Vj) =
2(N, Vj) and hence we have untwisted ovals while éj == 2ój if and only if
(2N, Vj) = (N, Vj) and we have twisted ovals.

4 Bounds and examples

In [7] (also see [2]) Scherrer showed that that if an involution of a non-orientable
surface of genus p has IFI fixed points andl V I ovals then

IF I +2 IV 1::; p + 2.

In our examples we will show that for any integer N we can find a non-orientable
surface of genus p admitting a C2N action with generator t such that tN attains
the Scherrer bound.

Example 1. [4] Bujalance [1] found the maximum order for anautomorphism
t of a non-orientable surface Y of genus p ~ 3; it is 2p for odd p and 2(p-1) for
even p. The universal covering transformation group r has signature ser) =
(O; [2, p]; {( n) for odd p, and signature ser) = (O; [2, 2(p - 1)]; {( )}) for
even p. There is, essentially, only one way of defining the epimorphism e in
each case:
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if p is odd, we define () : r -+ C2p by ()(XI) = t P , ()(X2) = t2 , ()(c) = tP , and
()(e) = t p - 2 ,

if pis even, we define () : r -+ C2(p-I) by ()(x¡) = tp - I , ()(X2) = tI, ()(c) = t p - I ,
and ()(e) =t p- 2 • .

Using Macbeath's formula (14) we see that the involution tP has p fixed points
for surfaces of both odd and even genera. Now, if p is odd then the involution
tP also has, by Theorems 3.2 and 3.3, one twisted oval if pis odd as (p,p-2) =
(2p, p ~ 2) = L If p is even then the involution tp - I has, by Theorems 3.2 and
3.3, one untwisted oval as (p-1,p-2) = 1 and (2(p-1),p-2) = 2(p,p-2) = 2.
We note that the involution tP obeys the Scherrer bound. Note that the orders
of the cyclic groups in Bujulance's examples are == 2 mod 4. Our second
example shows that the Scherrer bound can be obtained for the involution in a
C4m action.

Example 2. Let Y be a non-orientable surface of genus p = 4mk ;:::: 3, and let
t be an automorphism of Y of order 4m. Let r have signature

(O; +; [4m,4m]; ( )k)

and define a smooth epimorphism () : r -+ C4 by mapping the two generators
of order 4m to t and r I and the connecting generators to the identity. By
Theorems 3.2 and 3.3 aH the ovals of t 2m are untwisted. We then find that for
the involution t 2m , IF 1= 2, and 1V 1= 2mk,and p + 2 = 4mk + 2, so that
we find infinitely many surfaces where the Scherrer bound is attained for the
involution in C4m'
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