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On the fixed-point set of an automorphism
of a closed nonorientable surface

Milagros Izquierdo
Department of Mathematics, Milardalen University
S-721 23 Vasterds, Sweden
mio@mdh.se

Abstract

Macbeath gave a formula for the number of fixed points for each non-
identity automorphism of a compact Riemann surface in terms of the uni-
versal covering transformation group of the cyclic group generated by the
automorphism. This formula generalizes to determine the fixed point set
of each non-identity automorphism acting on a closed non-orientable sur-
face with one exception; namely, when this element has order 2. In this
case the fixed point set may have simple closed curves (called ovals) as
well as fixed points. Izquierdo and Singerman explained how Macbeath’s
results generalize to automorphisms of a nonorientable surface with orden
distinct from 2 and also determined the fixed point set of an automorphism
of order 2. In this paper we will discuss certain extensions of these results.

1 Preliminaries on NEC groups and their quotient
orbifolds

A non-euclidean crystallographic group (NEC) group is a discrete group I of the
group G of isometries of the hyperbolic plane H with compact quotient space
H/T. If the group I is a subgroup of the group G* of orientation-preserving
isometries of H, then it is called a Fuchsian group. Otherwise I'* =T'(G* is
a subgroup of index 2 in I' called its canonical Fuchsian.

An NEC group is determined by its signature
s(I') = (h; &5 [ma, ooy me)s {(115 0oey P15y )y oony (L, ooey Py ) )- 1y

The quotient space H/T" is an orbifold with underlying surface of genus h with
r cone points, each of order m;, and k mirror lines, each with s; > 0 corner
points each of order n;;. The signs + or — correspond to orientable or non-
orientable orbifolds respectively. T is called the group (or fundamental group)

of the orbifold H/T’



Associated to the signature (1) there is a presentation for I' with generators
L1y ey Try €1, -ovy €y Cigy 1<i<k1<5< Si,

a1, by, ...,an, by if H/T is orientable or ay,...,ap, if H/T is non-orientable.
and relators

m;

= 2 2 ‘s A\ g . ~1
zihe=1,.,m Cij—11 Cij» (Ctj~lct]) =1,k =1,..,s, Ci0€; "Cis; iy

mlzg...wrel...ekalblal_lbfl...a,:lb,jl, if H/T is orientable or

T123...Tr€1...€a5...a2, if H/T is non-orientable. (2)

In these presentations, the only elements of finite order are the elliptic elements
and the reflections. The elliptic elements are conjugate of powers of the x;
or c;j—1¢;j and the reflections are conjugate of the ¢;;. The e; generators are
orientation preserving. They are called the connecting generators. Each period
cycle corresponds to a conjugacy class of reflections in T'.

Let T be an NEC group with presentation (2). Then there is a fundamental
region P for I"' which is a polygon in H whose perimeter, described counter-
clockwise, is one of the following according to the orientability of H/T':

[ I 4 J 1 ! [ 0y
€1€1...€p€, ... 61'710 e Vsy (51 ese 6];'7]:0 SN 7ksk6ka1ﬂ1a1ﬂ1 PN ahﬁhahﬂh (3)

’ 1 ! !
€1€) -« €Ep€p e 51")‘10 N .'713161 .o 5k'yko .o .7k3k6ka1af .o aha;‘, (4)

The elliptic element z; in T' pairs the sides ¢; and e; of P, the generating
reflection ¢;; has axis containing §;;, the element e; pairs the sides ¢; and e'i,
and the elements a; and b; pair the sides a; and a;- (o in the non-orientable

case) and f§; and ﬁ; . The quotient space P/ < pairings > is an orbifold which
is isomorphic to the orbifold H/T.

The hyperbolic area of the orbifold H/T is:
T 1 1 ks 1
W(P) = W) =2m(eh—2+k+ 3 (1-—)+33 > (1= =), (5)
i=1 mi i=1j=1 Nij

where ¢ = 2 if there is a + sign and ¢ = 1 if there is a — sign. If I'™* is a
subgroup of I of finite index then the Riemann-Hurwitz formula holds:

.y = M)
IP:r =2 (6)
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Let I'* be the canonical Fuchsian of an NEC group I'. Then the orbifold H /Tt
is a 2-sheeted covering of H/T', called its compler double. The genus ht =
eh+k—1 of H/T'* is the algebraic genus of H/T'. An NEC group K without
elliptic elements is called a surface group. Its signature is (g; ;[ ;{( )*}). A
Klein surface whose complex double has genus greater than one can be expressed
as H/K where K is an NEC surface group. An orientable Klein surface without
boundary can be thought as a Riemann surface.

If G is a finite group, then G is a group of automorphisms of a Klein surface Y =
H/K if and only if there exists an NEC group I' and a smooth homomorphism

0:T -G (M

having K as the kernel. The transformation group (I', ) is called the universal
covering transformation group of (G,Y).

2 The universal covering transformation group

From now on, given a compact non-orientable Klein surface Y of genus p > 3,
the universal covering space of Y is the hyperbolic plane H and the group of
covering transformations is a surface subgroup K generated by glide-reflections.
Given a group G of automorphisms of Y, let I" denote its lifting to H and let
@ : T — G be the monodromy, as given in (7), for the covering p: Y — Y/G =
H/T.

We shall consider cyclic groups G of automorphisms of Y and find the condi-
tions that they impose over the universal covering transformation groups I'.

We begin by considering a cyclic group G =< t|t" =1 > of automorphisms of
Y of odd order N. T is the fundamental group of the quotient orbifold Y/G,
then, as 0 is smooth, i.e. it preserves the orders of the elements in I', we must
have o(8(g)) = 1(2) for every element g of finite order in I". Also we cannot
have period cycles in s(I') . Thus I has signature (1) of the form

s(} = (g; = [m1, ..., mali{ }) ' (8)
with.mi, 1 <7< n adivisor of N.
Then T' has presentation

< ZyyeenyTnydyyondg | 2] =1,4i=1, ...,n,xl...znd%...dg > 9)



It means that the fixed-point set of the automorphism ¢ consists of a finite
number of points in Y. (see [3], [6])

Theorem 2.1 Let Y be a non-orientable surface of topological genus p > 3.
Let G2 Cy =<t|tN =1>,with N odd, be a group of automorphisms of Y.
The fized-point set of an automorphism t* of order d in G consists of a finite
number of fized points. This number is given by Macbeath’s formula (see [6])

NY & (10)

d[m_.,- J

Proof The universal covering transformation group I' associated to (G,Y) is
given in 8 and 9. Now, we are in the hypothesis of Macbeath’s result [6].

This is because Macbeath’s proof (applying to orientable quotient spaces) only
uses the facts that each proper period corresponds to a unique conjugacy class
of elliptic elements of I', and each elliptic element has a unique fixed point in
H.

Now, let G =< t|t*N =1 > be a cyclic group of automorphisms of Y of order
2N, and let T' be the fundamental group of the quotient orbifold Y/G. As @
is smooth, we must have 0(c) =t for every reflection c in I'. Also we cannot
have two distinct reflections in I whose product has finite order. So it follows
that, in the canonical signature of NEC groups as given in (1), I has empty
period cycles.

Thus I has signature of the form

s(T) = (g5 % [ma, e mali {( )FD) (11)

with k empty period cycles. Then I' has one of the two presentations depending
on whether there is a + or a — in the signature;

for the (+) case

xl,...,mn,el,...,ek,cl,...,ck,al,bl,...,ag,bg I
my 3 2 -1 - s
z;'=li=1,.,nc =cje; cjej=17j= L.k,
avl...:lr:,,el...ekalbla,l"lbfl...agbga,gh_lbg_1 (12)
for the (—) case
Ty oy Tny €1y eney €y ClyennyChyll, .y dy |
m; . 2 - — s . 2 2
"t =1i=1,.,n,¢f = cje; cjej =1,j=1,...k z1..Tne1...€kd7...dg (13)
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One important fact to note about these presentations is that the connecting
generator e; commutes with the generating reflection ¢;j, and in fact the cen-
tralizer of ¢; in I' is just the group gp < ¢j, €j >= Cy x Cpo. (See [9] )

3 The fixed-point set of a power of an automorphim
t of even order

Let Y be a non-orientable surface of topological genus p > 3 and let t be an
automorphism of order 2N. If 1 € 4 < 2N and i # N then the fixed-point
set of the automorphism # consists of a finite number of fixed points, since the
possible generating reflections in the subgroup A = #71(< t! >) are mapped
by 8 to tV (see [3]). Again, the number of fixed points of the automorphism ¢!
is given by Macbeath’s formula. (see [6] ). This number is given in the following

Theorem 3.1 Let Y be a non-orientable surface of topological genus p > 3.
Let G2 Cn =<t|t?N =1 > be a group of automorphisms of Y. The fized-
point set of an automorphism ',i # N of order d in G consists of a finite
number of fized points. This number is given by Macbeath’s formula (see [6])

oN T ;%‘ (14)

dm;

fized points, where m; runs over the periods in s(I‘), " being the universal
covering transformation group of (G,Y).

Notice that the number of isolated fixed points of t* is independent of the
smooth epimorphism 6 above. However the epimorphism 6 does play a part in
the number of ovals of tV.

Theorem 3.2 [4] Let Y be a non-orientable surface of topological genus p > 3.
Let G2 Cony =<t |t = 1> be a group of automorphisms of Y, and let 0
and I" be as described in equations 7 and 11. If 6(e;) = t¥ than the number of
ovals of the involution tV is

k
> (V) (15)
j=1



and the number of isolated fized points of tV is

2N}:—1—

m; even mj

Proof. Let A = 071(< ¢tV >) so that A contains the group K = Ker with
index 2. Now, A must have signature of the form

s(A) = (£ ROK{( )PD (16)
with r periods equal to 2 and s empty period cycles.

The group monomorphisms
{la} — Co — Con (17)

K—A—T (18)
yield us the following (orbifold-)coverings

Y — Y/Gi=H/A — Y/G=H/T (19)

The group G; =< t" > is a group of automorphisms of ¥ with 2 automor-
phisms.

By results in [2] (see also [3]), r is the number of isolated fixed points of ¥ and
is given by Macbeath’s formula
2N > L

mj; even m;

It also follows from [2] that the number of ovals of ¢V is just the number s
of period cycles in A, which corresponds to the number of conjugacy classes
of reflections in A. As a reflection ¢; in A belongs also to I' and the group
I" has k conjugacy classes of reflections, we just have to determine into how
many A-conjugacy classes the I'-conjugacy class of c; splits. We shall use the
epimorphism # to calculate this number.

There is a transitive action of I' on the A-conjugacy classes of ¢; in A by
letting v € I’ map the reflection gcjg~! to gycjy g™, with g € A. (Because
A «T). Clearly, if A € A then A has a trivial action on these A-conjugacy
classes. So we have an action of I'/A & Con/Ca 2 Cn on these classes. As

6



the centralizer of c; in I is just < ¢j,e; >, the stabilizer of the A-conjugacy

classes of c; in A are the cosets A, Aej,...,Aef-jnl, where 6; = exppe;, the
least positive power of e; that belongs to A. Now, let €j = expgej. Then
either ¢; = ; or €; = 26;.

The additive group Zyn contains a subgroup isomorphic to Zy and a € Zy
has order Ullvﬁ in Zy so that a has the same order in Zyy if and only if

(2N,a) = 2(N,a). If (2N,a) = (N, a) then the order of a in Zoy is twice the
order of a in Zy and we then find that
€5 = 5j if (2N, ’Uj) = 2(N, ’Uj)
and
gj=26 if  (2N,v5) = (N,vj),
where 0(e;) =t .

By the above argument on the action of I'/A on the A-conjugacy classes of c;
we see that the number of such classes is N/8;, which is

if Ej = 5]"
N _ N _ N(2N, ’Uj) _ (2N, ’Uj) _ .
or if £; = 26;
N 2N 2N(2N,v;) . _ .
3; = —gj— = N (2N, UJ) = (N, ;)

Thus in both cases the generating reflection ¢; of I" induces (N, v;) conjugacy
classes of reflections in A. Thus the number of ovals of t" in Y is

k
> () (20)
j=1

Theorem 3.3 [4] The ovals of tN in Y induced by the jth period cycle in T
are twisted if (2N,v;) = (N, v;) and untwisted if (2N,v;) = 2(N,v;).



Proof. As we have found in Theorem 3.2, The jth empty period cycle in
[ induces (N,v;) empty period cycles in A. The generating reflections of
these period cycles are just conjugates of ¢; in I' and, as the corresponding
connecting generator e; is just the orientation-preserving element generating
the centralizer of ¢; in I', we see that the connecting generator of each of the
period cycles in A induced by the jth period cycle in I" is just conjugate to ej." ,
6; = exppe; as in the proof of Theorem 3.2. Now, let §' : A - Co =gp < & >,
where € =tV be the restriction of the epimorphism 6 : I' — Cax. Then

if 5 =6;

0lef) = 6(F) = 0() = 1
if g = 26;

) = O = b)) = &

¢ the generator of Cy. Generally, if c is the generating reflection of an empty
period cycle of A and e is the corresponding connecting generator then figures
1 and 2 show that #'(e) = 1 corresponds to an untwisted oval while #'(e) = £
corresponds to a twisted oval.

Figure 1: fley=1soec K



Figure 2: 6'(e)=&soce€ K

However, as in the proof of Theorem 3.2 ¢; = 6; if and only if (2N,v;) =
2(N,v;) and hence we have untwisted ovals while £; = 26; if and only if
(2N, v;) = (N,v;) and we have twisted ovals.

4 Bounds and examples

In [7] (also see [2]) Scherrer showed that that if an involution of a non-orientable
surface of genus p has | F'| fixed points and | V | ovals then

|Fl42|VI<p+2.

In our examples we will show that for any integer N we can find a non-orientable
surface of genus p admitting a Cyx action with generator t such that ¢V attains
the Scherrer bound.

Example 1. [4] Bujalance [1] found the maximum order for an automorphism
t of a non-orientable surface Y of genus p > 3; it is 2p for odd p and 2(p—1) for
even p. The universal covering transformation group I' has signature s(I') =
(0;[2,p);{C )}) for odd p, and signature s(I') = (0;[2,2(p — 1)};{( )}) for
even p. There is, essentially, only one way of defining the epimorphism 6 in
each case:



if p is odd, we define § : ' — Cy, by 6(z1) = tP, 0(x0) = £2, 0(c) = t*, and
b(e) = tP72,

if p is even, we define 8 : I' — Cy(,_1y by 0(z1) = P71, O(z2) = ¢!, 0(c) = tP~ 1,
and f(e) = P2, ’

Using Macbeath’s formula (14) we see that the involution P has p fixed points
for surfaces of both odd and even genera. Now, if p is odd then the involution
t? also has, by Theorems 3.2 and 3.3, one twisted oval if p is odd as (p,p—2) =
(2p,p—2) = 1. If p is even then the involution #*~! has, by Theorems 3.2 and
3.3, one untwisted oval as (p—1,p—2) =1 and (2(p—1),p—2) = 2(p,p—2) = 2.
We note that the involution t* obeys the Scherrer bound. Note that the orders
of the cyclic groups in Bujulance’s examples are = 2 mod 4. Our second
example shows that the Scherrer bound can be obtained for the involution in a
Cym action.

Example 2. Let Y be a non-orientable surface of genus p = 4mk > 3, and let
t be an automorphism of Y of order 4m. Let I" have signature

(0; +; [4m, 4m]; ( )F)

and define a smooth epimorphism 8 : I' — C; by mapping the two generators
of order 4m to t and ¢! and the connecting generators to the identity. By
Theorems 3.2 and 3.3 all the ovals of t*™ are untwisted. We then find that for
the involution ™, | F |= 2, and | V |= 2mk,and p+ 2 = 4mk + 2, so that
we find infinitely many surfaces where the Scherrer bound is attained for the
involution in Cyy, .
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