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1. The main objects. An orde_red (unordered) (n;k)-configuration of
degree m is defined to be an ordered (respectively unordered) collection of
m linear k-dimensional subspaces of IRP“I. We associate with .each
configuration its upper and lower ranks, ie. the dimensions of the
projective hull and intersection respectively of all the subspaces of the
configuration. The combinatortil characteristic of a configuration is, by
definition, the list of upper and lower ranks of all its subconfigurations.
Two configurations are said to be rigidly isotopic if they can be joined by
isotopy consisting of configurations with the same combinatorial
characteristics. It is obvious that the property of being rigidly isotopic
is equivalence relation. The equivalence class of a configuration with
respect to this relation is called its rigid isotopy type.

The space PCn't‘k (SPCn'T'k) of ordered (unordered) (n;k)-configurations
of degree m is naturally isomorphic to the m-th (symmetric) power of the

Grassmanian G ket A confliguration is said to be non-singular if all its
w

Lkt
subspaces are in general position. The set CxPCn""k (GSPCﬂ""k) of non-singular
ordered (unordered) configurations is an open subsel of PC(:'"k (SPCn""k) in
Zariski topology. The set of all non-singular ordered (unordered)
configurations of the same rigid isotopy type forms a connecled component

of GPCnmk (GSPCn‘"k) in strong topology. These connected components are

called cameras of PC™ (SPC™).
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2. Adjacency graph. A configuration is said to be l-singular if all
configurations rigidly isotopic to it form a codimension 1 subset in the
configuration space. The set of all I-singular configurations of the same
rigid isotopy type is called‘a wall. Two 1-singular configurations are said
to be p-equivalent if they belong to walls which separate the same cameras.

The mutual position of the cameras in the configuration space can be
described by means of the adjacency graph (see [2]), whose vertices and
edges are in one-to-one corre%pondence with the éameras and walls
respectively, and two verlices represenling some cameras are connecled by
an edge if and only if these cameras are adjacent 10 the wall corresponding
to this edge. It may happen that the end points of an edge coincides with
each other, as in the following cases:

a) if the configuration space has a boundary and the wall is contained
in it;

b) if the wall is a one-sided subset of the configuration space;

c) if the wall is a two-sided subset, but has the same camera adjacent
at each side. b

Each of these cases corresponds to a loop in the adjacency graph. In
cases b) and c) the wall is called inner.

3. Degeneration_and_perturbation. Lel X be PC", or SPC",. A€ X,
st [0,1] —s X be a path such that A = s(0) and the restriclion 5| 1o is
a rigid isol()py of A. If configuraiions A and A’ = s(1) have dislinct
combinatorial characteristics, then s is called a degeneration of
configuration A, and path s is called a perturbation of A’.

Let A= '[Al, ,Am) be a non-singular configuration of k-dimensional
subspaces of RP™!. We say that the subspaces Ai and Aj of A can be moy‘ed
up fto intersection in a point, if there exists a degeneration of A such

that:



1) its restrictions to the subconfigurations (AL, VAL A

. ,Am} and {Al, - Aj_1 , Ajﬂ, v s Am) which are obtained by
removing the elements A, Aj from A respectively are rigid isotopies,

2) in the result of this degeneration the subspaces corresponding to
the subspaces Ai and Aj intersect in a point.

4. Linking numbers. In the next two sections I describe the
constructions of O.Ya.Viro (see [9], [10]).

Let B=(B], Bz’ B3| be ordered non-singular configuration of three
k-dimensional subspaces of oriented space RP™'!. Consider the canonical

2k+2

projection pr: R™*3A(0}) — R el

P**' The orientation of RP

induces the
orientation of vector space R¥*2 Let ﬁi = pr’l(Bi) v (0], i=1,2,3. 1t is
clear that 1—31, Ez' §3 are vector (k+1)-dimensional subspaces of R™*2 Let
ﬁ: E;, E; be the same subspaces equiped with some orientations. To every
ordered pair (ﬁ;, ﬁ;), where ij = 1,2,3, i#j, we assign a integer denoted
by lk(E:,ﬁ;) which is equal to +1 if the orientation of R¥**? coincides
with the orientation induced by E:@E: and equal to -1 in the opposite
case. The product 1k(§;,E;)lk(ﬁ;,ﬁ:)lk(ﬁ:,ﬁ;)Adenoted by IKB,.B.B) is
called the linking number of the triple of disjoint k-dimensional subspaces
Bx’ Bz’ B3 in the oriented space rRP* I ois easy to see thal
[k(Bl’Bz’Bs) does not depend on the choice of 1]1e' orientations of ﬁi, 1=
1,2,3, is preserved under rigid isotopies of B, and changed under reversal
of the orientation of RP™"'. It can be observed also that if k is odd,
then lk(Bl,Bz,BJ) does not depend on the choice of orders of subspaces of B
and is preserved under isotopies of B (in this case Ik(E:,E;) coincides
with the doubled linking number of cycles B: and B; in the oriented
manifold RP™*),

Ordered non:singular (2k+1;k)-configurations C = lCl. Cz, v Cm]

and C' = (C. C, ..., Cl:l) are said to be homology equivalent if for a



fixed orientation of RP™"' IKC,C,C) = IKC,C/C) for any ijk =
1,2,...m, i<j<k. Two ordered l-singular (2k+1;k)-configurations will be
called homology equivalent if afiter perturbations of them two pairs of
homology equivalent ordered non-singular configurations are obtained. And
two unordered 1-singular (ﬁon-singular) (2k+1;k)-configurations will be
called homology equivalent if they can be ordered by the such way that the
ordered configurations corresponding to them are homology equivalent.

_____________________________ p > A ] be an ordered
configuration of k-dimensional subspaces of RP", and let B = (Bl, .Bml
be an ordered configuration of /-dimensional subspaces of RP®. We suppose
that RP" and RP® are imbedded into RP™**' as disjoint linear subspaces. If
n and s are odd, we suppose, in addition, that RP", RP’, and RP™"*"' are
oriented, and linking number of the images of RP" and RP® in RP™*"' equals
+1. Let C, be the projective hull of the images of A and B, in RP™, i=
{yen.,m It is clear that C = [Cl, ,Cm] is an ordered
(nts+1;k+{+1)-configuration of degree m. The configuration C is called the
join of A and B. A configuralior; is called aﬁ isotopy join if it is rigidly
isotopic to the join of some two configurations.

In the same manner, one can determine the join sum of two unordered
configurations, but in this case it depends on the choice of orders of the
elements of the configurations summarized.

A non-singular ordered {unordered) (3;1)-configuration which consists
of generatrices of a quadric in RP® will be called an ordered (unordered)
trivial configuration of lines of RP’. A trivial configuration of lines of
oriented space RP® with positive linking numbers of triples of the lines
will be called the Hopf configuration. The join of a configuration- of
k-dimensional ‘subspaces of RP" and the trivial configuration (the Hopf

configuration, if n is odd) 1is called the suspension of this



(n;k)-configuration.

It is easy, to see that any two lines of a trivial configuration can be
ransposed by a rigid autoisolopy of the configuration which keeps other
lines of the configuration f(ixed. It follows that one can find a rigid
autoisotopy of this configuration which permutes its lines in an arbitrary
way. Hence, the join of an unordered configuration of k-dimensional
subspaces of RP" and the trivial configuration (the Hopf configuration, if
n is odd) does. not depend on the orders of elements of these configurations
up to rigid isotopy.

5.1. Lemma. The construction of the suspension preserves the linking
numbers and rigidly isotopic configurations are taken to rigidly isotopic
configurations.

6. Configurations of at most 6 lines of RP’. Let L' and L* be two
oriented disjoint lines in. RP® with positive linking number. Let A:, s
A“ll be some different points of L', and AT, vy Az be some different
points of L? such that the order of the points determined by the lower
indices agrees to the orientations of L' and LZ. We suppose that 1 € m.
Consider a map { from {1, ... m) onto {1, ..., r} and connect points A:
and Ari;) by lines, i = 1, ..., m. If r =.m we obtain a non-singular join
(3;1)-configuration of degree m which is denoted. by je if r = m-1, we

obtain 1-singular join (3;1)-configuration of degree m which is denoted by

- m

sjc(f). Since { can be represented by the table [ r:”' fom)

] we use the
symbol (f(1), ... , {(m)) to denote f.

6.1. Theorem. (O.Ya.Viro, see [9]). Any unordered non-singular
configuration of at most 5 lines of RP’ is an isotopy join. Two unordered
non-singular (3;1)-configurations of degree < 5 are rigidly isotopic if and

only if they are homology ef;ufvalem.

6.2. Theorem. Any unordered I-singular configuration of at most 5



lines of ®P® is an isotopy join. Two unordered |-singular
(3;1)-configurations of degree < 5 are rigidly isotopic if and only if they
are homology equivalent.

We shall denote the rigid isotopy type of configuration K by [K]. ‘The
next theorem follows from Theorems 6.1 and 6.2.

6.3. Theorem. a) The adjacency graph of SPC;l has one veriex and one
edge-loop, which corresponds to the one-sided inner wall.

b) The adjacency graph of SPC33| is shown on the diagram below.

. [sje (1,4,2)]
[3(4,2,3)) [ie(3.2.4)]

¢) The adjacency graph of SPC;l is the graph presented below. The

loop corresponds to one-sided inner wall.

[sic(1,2.4,3)]

Loje(441,2,9)] [sje(3:2,4,1)]

L4 .23.4)) Gehetm]  Gehsad)



d) The adjacency graph of SPC;I is the following.
(Je(4,23,,5)]

[sjc(i,i,_a‘B,h)]
(ic(4,3,4,5.2)]

. {sic(42.4,3,4)] [sic(4,3.4,2,0)]
Lie(2.25; Lic(4:3,5,2,1)] je(L5,2,3)]

Jie(2,5,4,3,4)3

. (53¢ ( 4,3,2,4 4]

[3e(5,4,3.2,1)]

Unlike the non-singular (3;1)-configurations of degree < 5 unordered
non-singular configurations of 6 lines of tRPj are not determined up 1o
rigid isotopy by the linking numbers.

6.4. Theorem. a) The unordered non-singular (3;1)-configuration M,
affine part of which is shown on diagram 1 in Appendix, and its mirror
image are homology equivalent, but not rigidly isotopic.

b) The unordered non-singular (3;1)-configuration L, alfine part of
which is shown on diagram 2 in Appendix, and unordered non-singular join
(3;1)-configuration jc(1,2,5,6,3,4) are homology equivalent, but not
rigidly isotopic.

c) The mirror images of L and je(1,2,5,6,3,4) are homology equivalent,
- but not rigidly isotopic.

We denote the mirror image of the configurations L and M by L" and M’



respectively.

Yu.V.Drobotukhina in [1] defined an analogous of Jones polynomial for
links in RP’. This polynomial was defined by means of the state model
analogous to Kauffman’s model [3] for the Jones polynomial of links in s’
This construction yields the bracketed Kauffman polynomial of links in RP’.
This polynomial is not an isotopy invariant of links in RP, since it is
not preserved under the Reidemeister motion Ql of links diagram.
Nevertheless, it is an rigid isolopy invariant of unordered non-singular
configurations of projective lines, since in the process of rigid isotopy
this Reidemeister motion does not occur. This polynomial will be catléd the
Kauffman polynomial of a non-singular configuration of lines of RP’.

6.5. Theorem. Any unordered non-singular (3;1)-configuration of degree
6 is either an isolopy join, or rigidly isotopic to one of the following
four pairwise non-isotopic configurations: L, M, L, M. Two unordered
non-singular configurations of 6 lines of RP® are rigidly isotopic if and
only if their Kauffman polynomials are e(;lual.

6.6. Theorem. Any unordered 1-singular (3;1)-conﬁguration of degree 6
is either an isotopy join, or rigidly isotopic to one of the following six
pairwise non-isotopic configurations: B, % M, &', W, A" Two unordered
I-singular coﬁﬁguralions of 6 lines of RP® are rigifily if and only if they
are homology equivalent and p-equivalent simultaneously.

The line of a non-singular join (3;1)-configuration jc(rl, ,Tm)
corresponding to the element Tp (where p € {1, ... ,m]) will be denoted by
symbol ('cp). The I-singular (3;1)-configurations B, %i, M are obtained from
the non-singular (3;1)-confligurations jc(1,3,5,2,6,4), L, M by moving up to
the intersection in a point the lines (1) and (5), L2 and L4, M2 and M4
r;:speclively. The 1-singular configurations ®’', %', and A" are ‘lhe mirror

images of #, i, and & respectively.



The next theorem is a consequence of Theorems 6.5 and 6.6.

6.7. Theorem. The adjacency graph of SP‘C;l is shown on diagram 3 in
Appendix. All loops of the graph correspond to one-sided inner walls.
two following hypothesis (The Bielefeld meeling on combinatorial theory,
1989):

1) to some exlent construction of the suspension realized an embedding
of the theory of the rigid isotopy types of (2k+1;k)-configurations inlo
the theory -of the rigid isotopy types of (2k+5:k+2)-configurations;

2) there exists an analogous of the Kauffman polynomial for
non-singular  (4n-1;2n-1)-configurations and it is preserved under the
suspension.

In 1990 I showed that the first Viro’s hypothesis was true. Namely 1
proved the following theorem.

7.1. Theorem. Any l-singular (non-singular) (2k+5:k+2)-configuration

of degree m is rigidly isotopic to the suspension of a l-singular
(non-singular) (2k+1;k)-configuration for m £ k+5 (k > 0), and, if m € k+2,
then rigid isotopy of the suspensions is equivalent to rigid isotopy of the
original (2k+1;k)-configurations.

In 1990 I also showed that the second Viro's-hypothesis is not true as
a whole. Namely the following theorem is true.

7.2. Theorem. Three pairs of unordered  non-singular
(3;1)-configurations of degree 6 from Theorem 6.4 have distinct Kauffman
polynomials, but the suspensions of these configurations are rigidly
isotopic. |

8. Configurations of at_most six_(2n:1)-dimensional subspaces_ of

rP™,



8.1. Theorem. For n>l two unordered 1-singular (non-singular)
(4n-1;2n-1)-configurations of degree < 6 are rigidly isotopic if and only
if they are homology equivalent.

8.2. Theorem. The adjacency graphs of SPC“_';"z“_l. and SPC:‘""l are

isomorphic to one another for any n>1 and 2<m<5. I n>1, the adjacency

coincides with Diagram 4 in Appendix. All the loops

6
grapl_l of SPC anel 2l

two (n;k) -configurations of degree m are stable equivalent if their s-fold
suspensions are rigidly isotopic for some s.

The following theorem was prove(i by me and S.Hashin independently.

9.1. Theorem, Two ordered (unordered) non-singular
(4n-1;2n-1)-configurations are stable equivalent if and only if they are
homology equivalent. .

9.2. Remark. The analogous result is true for the 1-singular
configurations.

10. Isotopy join_configurations of lines of RP”. The following theorem
was shown by my and S.Hashin together.

10.1. Theorem. Two ordered (unordered) non-singular isolopy join
(3;1)-configurations are rigidly isotopic if and only if they are homology
equivalent.

10.2. Remark. The analogous result is true for the I-singular

configurations.
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DiA. 1. Affine part of non-singular (3; 1)-configuration M.



Dia. 2. Affine part of non-singular (3;1)-configuration L.



[ie(4,2,3,4,56)]

\ [32(4,2,3,4,6,5)]

[ic(42,k,3,6,5)]

Ll
, ¢5)
[e(12.5,6,3,4)]

’ [RIER
Lic@ft3.6,5,4))

\ . — [ieCh,3,6,5,2,4))
[.(3
]

’ (4 65,3,2,1)] (ie(5.6,3,4.29]
| (3c(5,6,4,3,2,4)]

(ic(6,5.4,3,2,4)]

Dia. 3. Adjacency graph of SPC‘g.'l.



fou™ (aehaan,5,60)]

[Su“'k‘(3c(1.z.s,k.615))]

(Su“"(jc(a.z,s,s,e..x.))]

(ouw™ Ge(ne,3,680)]

[_Su“" (e(428 .s,s.u))]
S Gelian,e,3,50)]

[Su“.l (‘M)]

5w (et 8] JNB Ge(ua,e.53

(.S\J\\\4 ( 3‘(“!"«51 5,7..1))]

5u™ Ge(nn8,2,6))

ST (556,42, )]
Lou™ (le(uid e, 5,2,10)

[Su“"‘(f\c.('s.b,’a,k‘lli))]

Su™ (el 564,3:2,0)]

B Ge Lors i, 3.2
. b
Dia. b, Adjqntucy cauu?q\ o_( SPC,M_MZM_\ for w>1



