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GENERALIZED LINS-MANDEL SPACES

AND BRANCHED COVERINGS OF §3

LUIGI GRASSELLI AND MICHELE MULAZZANI

It is well known that PL-manifolds are representable by edge-coloured graphs. This

combinatorial approach turns out to be a useful tool for generating and investigating wide

classes of manifolds represented by "highl.y-symmetric" graphs (see, for example, [6], [11],

[14J and [46]). In particular, Lins-Mandel spaces ([29]) have been intensively studied in the

last ten years. In this papel', after a short survey on the related research areas, we describe

recent results (mainly obtained in the Ph.D. thesis [40] of one oí the authors) about the

topological structure of Lins-Mandel spaces in terms of branched coverings oí §3. We

also illustrate generalizations of these spaces and their relations with other representation

I heories.

1. BRANCHED COVERINGS OF §3

With the term manifold we always mean a compact, connected, orientable PL-manifold

1,',ithout boundary.

Let AI, M be triangulated n-manifolds and let N be an (n - 2)-subcomplex of M; a

'éon-degenerate map f: M-f M is a d-foldcovering map, branched over N, if:

- f' = f'M-I-1(N) is an ordinary covering of M - N of degree d;

- N = {x E M I #f-l(x) < d} (branching set).

M is said to be a branched covering of M.

M - f-l(N) i M--->

1'1 11

M-N i M--->
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A remarkable result by R.H.. Fox ([18]) states that a branehedeovering is uniquely de­

termined by the ordinary eovering indueed by restriction. This proves theex:istenee of a

ane-to-one eorrespondence between the d-fold coverings oí M branched over N and the

equivalence classes of monodromies (i.e. transitive representations) w : 7("1 (M - N) --t Ed,

where Ed denotes the symmetric group on d elements. Moreover, the .Fox theorem gives the

possibility of extending the coneepts of regular 01' cyelic coverings to branched coverings.

General references on the subject are [2], [18], [35] and [42].

The notion of branched covering can be extended to more general spaees (see (18] and

[32]), ineluding quasi~manifolds1.

Branched coverings of spheres are of gteat interest, in particular as a method for repre­

senting manifolds. A elassical result in this direction goes back to J.W.Alexander:

Proposition. [1] Every n-manifold i~ a covering of §" branched over the (n - 2)-skeleton

of a standard n-simplex. O

Refinements of the Alexander theorem can be investigated in two different direetions:

i) minimalize the number of sheets;

ii) find universal branching sets.

In dimension three, these approaches respectively lead to the possibility of representing

aH 3-manifolds by means of eoloured knots and transitive permutation pairs.

In thefirst direction define a colo'Ured knot as a paír (L,w), where L is a knot and

w : 7("1 (§3 - L) --t E3 is a simple monodromy. In fact, (L, w) can be drawn by eolouring the

ares of a suitable diagram of L by 0,1,2, so that the are a is eoloured e iff w(a) fixes c.

Representation theorem 1. [24], [33] Every 3-manifold is a simple 3-fold covering of

§3, branched over a knot. Thus, every 3-manifold is representable by coloured knots. O

In the seeond direction, eonsider the handeuff-graph G embedded in §3 as in Figure 1.

¡FIGURE 11

Sinee 7("1 (§3 - G) is a free group with two generators, the monodromy of any eovering

1 A quasi-manifold i!> a p!>eudo-manifold in which the star of every simplex is strongly connected ([19]).
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M of §3, branched over G, is given by a transitive permutation pair (a, r) of :Eh, b being

the degree of the covering. We will denote M by, Nb(a, r).

Representation theorem 2. [34] Every .3~manifoldis a covering of§3, branched over the

graph G. Therefore, every 3-manifold is representable by transitive permutation pairs. O

REMARK. It seems to be interesting to relate these two representation theories. In par­

ticular, the possibility of obtaining a coloured knot representing a 3-manifold M, starting

from a pair (a, r) representing M, would give a combinatoria! proof of Hilclen-Montesinos

theorem. In the opposite direction, the problem has been solved ([22]) by producing an al­

gorithm for finding a transitive permutation pair (a, r) representing M,starting !rom of a .

coloured knot (L,w) representing M. As a consequénce, if L admits a "coloured diagram"

with n crossings, then M is a 3n-fold covering of §3, branched over G.

2. EDGE-COLOURED GRAPHS AND GEMS

An (n + l)-coloured graph is a pair (r, 'Y), where:

- r is a finite connected regular multigraph of degree n + 1;

- 'Y: E(r) -t D.n = {O, 1, ... ,n} is a proper edge-coloration (i.e. adjacent ed,;es have

different colours).

Every (n + l)-coloured graph represents a pseudosimplicia! complex ([26]) K(r) defined

by:

- taking an n-simplex o'(x) for each vertex .x E V(r) and labelling its vertices by the

elements of D.n;

- identifying, for every pair x, y E V(r) of c-adjacent vertices, the (n -l)-faces of o'(x)

and O'(y) opposite to the vertices labelled by c.

The underlying space IK(r)1 is a quasi-manifold which is orientable iff r is bipartite

([17]). In dimension three, quasi-manifolds are also ca!led singular manifolds ([34]).

If B e ~n, #B = h ~ n, there is a bijection between the compone~tsof the partial

graph r8 = (V(r),'Y-1(B)) (calLed h-residues) and the (n - h)-simplices of K(r) whose

vertices are labelled by D.n ~ B.

An n-gem is an (n + l)-coloured graph representing an n-manifold; every manifold M

is representable by gems ([17], [41]).
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Edge-coloured graph techniques provide a combinatorial way for representing manifolds;

for general references see [3], [17], [29] and [47].

REMARK. An algorithm for obtaining, from a bipartite crystallization2 n, a tram;itive

permutation pair (u, T) such that IK(n)1 ~ N(u, T), is contained in [12] and [44]. The

algorithm has been extended to the general case of bipartite 4-coloured graphs in [23].

A éolour-preserving morphism (cp-morphism) between (n + 1)-coloured graphs

naturally induces a map

K(f) : IK(f)1 -tIK(f')1

between the associated underlying spaces...
A cp-morphism f : (f,/,) -t (f',/,') is said to be an m-covering (15m 5 n) if the

restriction oí f to the m-residues is one-to-one ([45]). In particular:

- if m== n, then K(f) is an ordinary covering,

- if m == 1, then K(f) is a branched covering; moreover, if IK(f'}1 is a manifold, the

branching set is given by the (n - 2)-simplices of K(f') represented by the 2~residues

(bicoloured cycles) of (f', /,') not ordinarily covered by f (Le. the 2-residues whose

counterimages via f have at least one component non-isomorphic to it).

3. LINS-MANDEL GRAPHS AND SPACES

The family of Lins-Mandel4-coloured graphs

(!) == {G(b,l,t,c) I b,l E Z+, t E Z21, e E Zb}

is defined in [29] by the fol1owing rules: theset of vertices of G(b, l, t, e) is

and the coloured edges are obtained by these four fixed-point-freeinvolutions on V:

2 A crystallization is a gem with exactly (n + 1) n-residues ([17]).
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to(i,j) = (i,j - (-l)i),

t{(i,j) = (i + r¡(j), 1- j),

t3(i,j) = (i +cr¡(j - t), 1 - j +2t)j

{
+1 if 1 < . < 1

where r¡ : Z21 ~ {-1,1} is defined by r¡(j) = - J. -
-1 otherw1se

For each k E ¿la, we join the vertices v, w E V bya k-coloured edge iff tk(V) = w.

Roughly speaking, the graph G(b, 1, t, e) is obtained by taking b copies C¡ (i E Zb) of

the {O, l}-cycle oí length 21 (so that V(C;) = {(i,j)i j E Z21}) joined with:

- C;-1 and CH1 by the 2-coloured edges,

- C;-e and CHe by the 3-coloured edges.

¡FIGURE 21

Each G(b, 1, t, e) E ~ is connected and bipartite; hence, it represents a (connected,

orientable) singular 3-manifold S(b, 1, t, e). These spaces have been introduced asa com­

binatorial generalization of the lens spaces; in fact, G(2, 1, t, 1) is the "normal" graph rep­

resenting the lens space L(l, t) ([15]). They have been intensive1y studied by M.R.Casali,

. A.Cavicchioli, A.Donati, L.Grasselli, D.L.Johnson-R.M.Thomas and, of course, S.Lins-

A.Mandel (see [5J, [6], [7J, [8], [9], [10J, [13], [21], [28] and [29]). We summarize the main

results of these works:

1) if (l, t) = 1 and one of the following conditions holds:

- 1is even and e = ±1,

-1 is odd and e = (-1)\

then S(b, 1, t, e) is a 2-fold covering of §3, branched over a link;

2) S(b, 1, 1-1, 1) 2:: S(b, 1, 1, -1) is the 2-fold covering of §a, branched over the torus link of

type {b, 1}, i.e. the Brieskorn manifold M(b, 1,2); if b and 1are odd and coprime, these

spaces are Seifert fiberedhomology spheres of Heegaard genus 2.
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By making use of the symmetry of the Lins-Mandel graphs, it is easy to prove the

existence of homeomorphisms between the associated SpaceSj as a consequence, we can

restrict the range of someparameters, without loss of generality, as stated below.

(A) S(b, 1, t, c) ~ S(b, kl, kt, c) =>1 (1, t) = 11
(B) S(b, 1, t, c) ~ S(b, 1, t -1, -c)=> 11 :::; t :::; 11

(C) S(b,l,t,c)~S(b,l,l-t,-c) => Itoddl

Thus, from now on, we restrict our attention to the subfamily

~ = {G(b, 1, t, c) E (!) I (1, t) = 1, 1:::; t :::; 1, t odd}.

The cases (i) c= Oand (ii) 1= 1, c = .:....1 are "trivial", because the graphs admit planar

regular embeddings ([20]), and therefore S(b, 1, t, O) ~ S3 ~ S(b, 1, 1, -1) (see [16]).

Since a singular 3-manifold is a3-manifold iff its Euler characteristic vallishes ([43]),

a (rather complicated) calculation givés a complete characterization of the Líos-Mandel

graphs representing manifolds:

Proposition. [37] A Lins-Mandel grapb G(b, 1, t, c) E ~ represents a 3-manifold iff eitber

1is even or c = O, -1. O

The main result concerning the topological properties of the Lins-Mandel SPaces is the

following:

Theorem. [38] Let G(b,l,t,c) E ~ and S(b;l,t,c) be tbe associated Lins-Mande1 space.

(a) S(b, 1, t, c) is a b-fold branc1led cyc1ic covering of§3.

(b) Suppose c =f O (recall that tbe case c === Ois trivial). If S(b, 1, t, c) is a manifold, tben

tbe brancbing set is tbe 2-bridge link b(l, t); otberwise, tbe brancbing set is a 8-grapb

(Figure 3.a), non-trivially embedded wben 1=f 1.

Sketch 01 proof. (a) The map lb : G(b, 1, t, c) -t G(l, 1, t, O), defined by Ib(i,j) = (O,j),

is the 1-covering induced by the action of the cyclic group Zb, generated by the cp­

isomorphi$m (i,j) I--t (i + 1,j), on G(b,l,t,c). Therefore, the associated map J{(Jb)

S(b, 1, t, e) -t S(l, 1, t, O) .~ §3 is a branched cyclic covering map.

(b) When S(b, 1, t, c) is a manifold, it is easy to check that the set of the2-residues of

G(l, 1, t, O) not ordinarily covered by lb does not depend on b and Cj moreover it contains
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exactly four cycles. Incidence argUIuents on the lattice of the residues of G(l, 1, t, O) show

that the l-subcomplex R, whose edges are represented by these four cycles, is homeomor­

phic to §I (resp. to §I I1 §I) iff 1is odd (resp. is even). Since G(l, 1, t,O) and R only depend

on 1 and t, R is the branching set of the 2-fold covering K(h) : S(2, 1, t, 1) ~ L(l, t) -+ §3.

The unicity of the representation of the lens spaces as 2-fold coverings of §3 ([27]) proves

that the branching set is the two-bridge link b(l, t) (see [4]). For "non-manifolds", the

branching set is represented by five 2"residues and is homeomorphic to a O-graphj again,

the embedding only depends on 1and t (the description of the embedding can be found in

[39]). O

IFIGURE 31

As a consequence of this theorem and of theSmith conjecture ([36]), we can completely

characterize the spheres among Lins-Mande! spaces:

Corollary. [38] A Lins-Mandel manifold S(b, 1, t, c) is homeomorphic to §3 iff eitherc = O

orl=1. O

REMARK. The monodromy w 11"1 (§3 - b(l,t)) -+ Eh, associated to the covering, is

defined by

w(mI)(i) = i + 1,

w(m2)(i) = i - Cj

where mI and m2 are meridians associated to the two bridges of b(l, t) (see Figure 4).

Note that, if 1is odd, b(l, t) is a knot and therefore mI and m2 are associated to the same

component of the branching setj this explains why 1odd implies c =-1.

IFIGURE 41

Let now M(L,w) denote the b-fold cyclic covering of §3, branched over an oriented link

L, and defined by the monodromy w : 1I"I(§3 - L) -+ Eb. The fol1owing notions are given

in [30]:
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(a) M(L,w) is strietly-eyclie ifw(mi) = w(mj), for every meridian pair mi,mj;

(h) M(L,w) is almost-stricly-eyclíe if w(mi) = w(mj)±l, for every meridian pair mi, mjj

(e) M(L,w) is meridian-cyclic if ord(w(mi)) = b, for every meridian mi;

(d) M(L,w) is singly-cyclic if there exists a meridian mi sueh that ord(w(mi)) = b.

It is straightforward that:

(a) => (h) => (e) => (d) => eyclie;

moreover, the five notions are equivalent when L is a knot.

As a direet eonsequenee of the ahove theorem and remark, we ohtain:

Corollary. [38] Tbe Lins-Mande1manifóld S( b, 1, t; e) is a brancbed singly-cyc1ic covering

af §3. In particular:

- if c = -1, tbe covering is strictly-cyc1ic;

- if e = ±1, tbe covering is almost-strictly-cyc1ic¡

- if (b, c) = 1, tbe covering is meridian-cyc1ic. O

REMARKS. (1) The manifolds S(b, 1, t, c) with (b, c) = 1 are preeisely the Lins-Mandel

manifolds whose corresponding gems G(b, 1, t, c) are crystallizations ([5]).

(2) The Minkus manifolds Mn(k,h), investigated in [31], are particular cases of Lins­

Mandel manifolds. Aetually, we have Mn(k, h) ~ Sen, k, h, -1).

To end this section, we present necessary~d sufficient eonditions for the isomorphism

hetween Lins-Mandel gems. As a consequence, we get sufficient conditions for the homeo­

morphism hetween Lins-Mandel manifolds (different from the sphere and lens spaces).

Proposition. Let G=.G(b,l,t,e), G' = G(b',l',t',e' ) E i5 begems, witb 1,1" > 2. Tben

G is isomorpbieto G' iff eitber

b' = b, l' = 1, t' = ±t±l, e' = C
S

or

. b' = b, l' = l, t' = ±t±l+ 1, e' = _es;

wbere
s = {+1 if(b,c) =1= 1.

±1 if(b,e)=l
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Henee, if one ofthe aboye eonditions holds, the manifolds S(b, 1, t, e) and S(b' , 1' , t', e') are

homeomorphic. O

4. GENERALIZED LINS-MANDEL SPACES

The Lins-Mande1 family only eontains singly-eyclie coverings. This makes natural the

attempt ofextending it, in orderto obtain the whole class of cyclic coverings of§3, branched

over two-bridge links.

We define a new class of 4-coloured graphs depending on five parameters:

- - I + I I
~ = {G(b,l,t,e,e) I b,l E Z , tE Z2/, C,e E Zb, gcd(b,e,e) == 1}.

Each G(b, 1, t, e, e') is defined by the fol1owing four fixed~point-free involutions on the set

V == Zb x Z2/:

lO = LO,

it represents a (connected, orientable) singular 3-manifold S(b, 1, t, e, e').

IFIGU,RE 51

We easily obtain the following results:

1) S(b, 1, t, e, 1) ~ S(b, 1, t, e);

2) S(b,l,t,O,e/ ) ~ S(b,l,t,e,O) ~ S(b, 1,1, -e', e') ~ §3 j

3) S(b, 1, t, e, e') ~ S(b, 1, t, e', e);

4) If (b,e) = 1 or (b,d) = 1, then there exists e" E Zb such that S(b,l,t,e,e' ) ~

S(b, 1, t, e"); thus, the generalization is effective for t~e eases (b, e) -:f. 1 -:f. (b, e');

5) As in Section 3, We can assume, without loss of genera1ity, (1, t) == 1, 1 :s t :s 1 and.,t

odd.

The characterization of the manifolds among Lins-Mande1 generalized spaces is similar

to the previous one:
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Proposition. [38J The graph G(b, 1, t, e, e') represents a 3~maniEold iff either 1 is even or

at least one ofthe following eonditions holds: (i) e = O, (ii) e' = O, (iii) e = -e'. O

Theorem. [38] The 3-manifold S(b, 1, t, e, e'), with e =f:. O=f:. e', is the b-Eold eyc1ie eovering

oE§,3, branehed over b(l, t). The assoeiated monodromy is denned by:

w(ml)(i) = i +e',

w(mz)(i) = i - e.

ThereEore, the c1ass oE generalized Lins-Mande1 manifolds S(b, 1, t, e, e'), with e =f:. O =f:. e',

is precisely the c1ass of all eyc1ie coverings OE§,3 branched over the two-bridge links (with

the exeeption of the trivial link with two eomponents). O

Corollary. [38] The 3-manifold S(b,l,t,e,e' ) is a sphere iff either e = O or e' = O or

1= 1. O

5. FURTHER OENERALIZATIONS

The attempt of obtaining a class of gems representing aH coverings of §,3, branched over

two-bridge links, leads to the fol1owing extension.

Take b,l E Z+, t E Zz/, with (l,t) = 1. Let (0-,7) be a transitive permutation pair of

L:b. Define the fol1owing four fixed-point-free involutions on V = Zb x Zz/:

1:1 = tI,

I:z(i,j) = (alj(j)(i), 1 - j),

1:3(i,j) = (r-lj(j-t)(i), 1 - j +2t).

Denote by G(b, 1, t, a, r) the resulting 4-coloured graph and by S(b, 1, t, a, r) the associ­

ated space.

¡FIGURE 61
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Lemma. [39J a) If vis the eyc1ic permutation (O 1 2 ... b-1), then S(b, 1, t, vC' ,v-C) ~

S(b, 1, t, e, e');

b) Ifa = 1 orr =1, then S(b,l,t,a,r) ~~P;

e) S(b,1,t,a-1 ,r-1) ~ S(b,l,t,a,r) ~ S(b,l,t,r,a). O

Theorem. [39J S(b, 1, t, (j, r) is the b-fold eovering of§3 branched over a l-subeomplex R

with the following deseription:

1) if 1is odd and

a) a, r, r.p =f:. 1, then R is a O-graph (Figure 3.a), non-trivia11y embedded when 1 =f:. 1;

b) a, r =f:. 1 and r.p = 1, then R is the two-bridge knot b(l, t);

e) a = 1 or r =1, then R is the trivial knot;

2) if 1 is even and

a) a, r, r.p =f:. 1, then R is a handcuff-graph (Figure 3.b), non-trivia11y embedded;

b) a, r =ft 1 and r.p = 1, then R is the two-bridge link b(l, t);

e) a = 1 or r = 1, then R is the trivial knot.

In any case, the fundamental group 71"1 (§3 - R) admits a presentation with two generators

X, y and, in the cases l.a and 2.a, it is the free group < X, Y; 0 >. The monodromy

associated to the eovering is defined by

w(X) = a,

w(Y) = r. O

REMARKS. (a) If1= 2 and t = 1, the branchingset R is precisely the universal graph G of

Montesinos (Figure 1). Moreover, w is the monodromy of the branched covering Nb(a, r);

so we have the homeomorphism S(b, 2, 1, a, r).~ Nb(a, r). Since each (singular) 3-manifold

is homeomorphic to a lmitable Nb(a, r), the subclass of graphs {G(b, 2,1, a, r)} is a,(very

symmetric) "universal" class of 4-coloured graphs representing all singular 3-manifolds.

(b) The class ®l,t = {G(b,l,t,a,r) I a,r =f:. 1, r.p = 1, bE Z+} precisely represents aH

coverings of §3, branched over the two-bridge link b(l, t). Thus, every space of ®l,t is a
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manifold. Moreover, since a non-toroidal two-bridge link is universal ([25]), every subclass

{<5"t I t .¡. ±1 (mod in is a "universal" class of gems representing all 3-maniftilds.

REFERENCES

1. J.W.Alexander, Note on Riemann spaces, Bull. Amer. Math. Soco 26 (1920), 370-373.

2. I.Bernstein and A.L.Edmons, On the construction of branched coverings of low.dimensional mamfolds,

Trans. Amer. Math. Soco 241 (1979), 87-124.

3. J.Bracho and L.Montejano, The combinatorics of colo1'ed triangulations of manifolds, Geom. Dedicata

22 (1987), 308-328.

4. G.Burde and H.Zieschang, Knots, de Gruyter, Berlin-New York, 1985.

5. M.R.Casali and L.Grasselli, Cha1'acterizing c-ry.dallizations among Lins-Mandel 4-coloured grapM,

Rend. Circolo Mat. Palermo, Serie II 18 (1988), 221-228.

6. M.R.Casali and L.Grasselli, 2-Symmetric c-rystal1izations and 2-fold b1'anched coverings of S3, Discrete

Math. 81 (1991), 9-22.

7. A.Cavicchioli, Lins-Mandel c-rystallizations, Discrete Math. 51 (1985), 17-37.

8. A.Cavicchioli, A countable dass of non-homeomorphic homology sphe1'es with Heegaa1'd genus two,

Geom. Dedicata 20 (1986), 345-348.

9. A.Cavicchioli, Lins-Mandel 3-manifolds and thei1' g1'OUps: a simple p1'oof of the homology sphe1'e

conjectu1'e, Rend. Circolo Mat. Palermo, Serie II 18 (1988), 229-237.

10. A.Cavicchioli, On some p1'Openies of the g1'OUpS G(n,l), Ann. Mat. Pura Appl. 151 (1988), 303....,316.

11. A.F.Costa, Locally regular coloured graphs, Journal of Geometry 42 (1992), 57-74.

12. A.F.Costa and P.De! Val-Melus, Crystallizations'-and permutations 1'epresenting 3-manifolds, Boll. Un.

Mat. Ital. 7, 1-B (1987),477-490.

13. A.Donati, Lins-Mandel manifolds as branched coverings ofS3, Discrete Math. 62 (1986), 21-27.

14. A.Donati, A dass of 4-pseudo-manifolds simila1' to the lens spaces, Aequationes Math. 33 (1987),

194-207.

15. A.Donati and L.Grasselli, Gruppo dei colon e cristal1izazioni "normali" degli spazi lenticolari, Boli.

Un. Mat. ItaI.6,1-A (1982), 359-366.

16. M.Ferri and C.Gagliardi, The only genus zero n-manifold is §n, Proc. Amer. Math. Soco 85 (1982),

638-642.

17. M.Ferri, C.Gagliardi and L.Grasselli, A graph-theoreticalrepresentation of PL-manifolds-A SU1'Vey on

crystallizations, Aequationes Math. 31 (1986), 121-141.

18. R.H.Fox, Covering spaces with singularities, Algebraic Geometry and Topolog,y, a simposium in honour

of S.Lefschetz, Princeton Math. Series, vol. 12, 1957, pp. 243-257.



GENERALIZED LINS-MANDEL SPACES AND BRANCHED COVERINGS OF S3 13

19. C.Gagliardi, A combinatorial chaT(Lcterization of3-manifold crystallizations, Boll. Un. Mat. Ital. 16-A

(1979), 441.-449.

20. C.Gagliardi, Eztending the concept of genus to dimension n, Proc. Amer. Math. Soco 81 (81), 473-481.

21. L.Grasselli, The groups G(n, l) as fundamental groups of Seifert fibered homology spheres, Proc.

"Groups 1993 - Galway/St.Andrews", vol. 1, Cambridge Univ. Press., pp. 244-248.

22. L.Grasselli, Coloured knots and permutationsrepresenting 3-manifolds, to appear (1994).

·23. L.Grasselli, Standard presentations for 3-manifold groups, to appear (1994).

24. H.M.Hilden, Every closedorientable 3-manifold is a 3-fold branched covering space· ofS3, Bull. Amer.

Math. Soco 80 (1974), 1243-1244.

25. H.M.Hilden, M.T.Lozano and J.M.Montesinos, On knots that are universal, Topology 24 (1985), 499­

504.

26. P.J .Hilton and S.Wylie, An introduction to algebraic topology - Homology theory, Cambridge, 1960.

27. C.Hodgson and J.H.Rubinstein, Involutions and isotopies of lens spaces, Knot theory and manifolds

- Vancouver 1983, Lecture Notes in Math. - Springer, vol. 1144, 1985, pp. 60-96.

28. D.J.Johnson and R.M.Thomas, The Cavicchioli groups are paiT'IJIÍse non-ísomorphic, London Math.

Soco Leeture Note Series 121 (1986), 220-222.

29. S.Lins and A.Mandel, Graph-encoded 3-manifolds, Discrete Mathematies 57 (1985), 261-284.

30. J.Mayberry and K.Murasugi, Torsion groups of abelian coverings of línks, Trans. Amer. Math. Soco

271 (1982), 143-173.

31. J .Minkus, The branched cyclic coverings of 2-bridge knots and línks, Memoirs Amer. Math. Soco 35

Nr. 255 (1982), 1-68.

32. B.Mohar, Branched coverings, Discrete Computo Geom. 3 (1988), 339-348.

33. J .M.Montesinos, A representation of closed, orientable 3-manifolds as 3-fold branched coverings of

§3, Bull. Amer. Math. Soco 80 (74), 845-846.

34. J .M.Montesinos, Representing 3-manifolds by a universal branching set, Math. Proc. Cambo Phil. SOCo

94 (1983), 108-123.

35. J.M.Montesinos, Lectures on branched coverings, Atti del Convegno di Studio sulla Geometria delle

varieti). differenziabili, I. Cattaneo Gasperini ed., Pitagora Editrice, Bologna, 1985, pp. 127-167.

36. J.W.Morgan and H.Bass, The Smith conjecture, Acad. Press Ine., 1984.

37. M.Mulazzani, Lins-Mandel graphs representing 3-manifolds, to appear on Discrete Math. (1994).

38. M.Mulazzani, All Lins-Mandel spaces are branched cyclic coverings 0/S3, to appear (1994).

39. M.Mulazzani, A "universal" class of 4-coloured graphs, to appear (1994).

40. M.Mulazzani, Caratterizzazione topologíca degli spazí di Lins e Mandel, Tesi di Dottorato, ltniversita

di Bologna, Bologna, 1994.

41. M.Pezzana, Sulla struttura topologica delle varietci compatte, Atti Sem. Mat. Fis. Univ. Modena 23

(1974), 269~277.



14 LUIGI GRASSELLI AND MICHELE MULAZZANI

42. R.Piergallini, Manifolds as branched cOllers of spheres, Disertaciones del Seminario de Matemáticas

Fundamentales de la U.N.E.D., Madrid, 1989.

43. H.seifert and W.ThrelfalI, A textbook of topology, Academic Press (English reprint), 1980.

44. G.Vecthioli, Metodi di rappresentazione di trivarieta chi-use, Tesi di Laurea, Universita di Perugia,

1986.

45. A.Vince, Combinatorial maps, J. Combino Theory Ser. B 34 (1983), 1-21.

46. A.Vince, Regular combinatorial maps, J. Combino Theor. Ser. B 35 (1983), 256-277.

47. A.Vince, n-graphs, Discrete Math. 72 (1988), 367-380.

DIPARTIMENTO DI MA'rEMATICA, UNIVERSITA DI BOLOGNA, PIAZZA DI PORTA SAN DONATO 5, 40127
BOLOGNA, ITALY



Figure 1. The Montesinos universal graph G
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Figure 2. The Lins-:'landel gem G(4,4,1,3)
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Figure 3. (a) A O-graph (trivially embedded) - (b) A handcuff-graph (trivially embedded)



Figure 4. The two-bridge knot b(3,1)
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Figure 5. The graph G(6,3,2,3,2)
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