UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

DISERTACIONES DEL SEMINARIO DE MATEMÁTICAS FUNDAMENTALES

12 L. GRASSELLI AND M. MULAZZANI

GENERALIZED LINS-MANDEL SPACES AND BRANCHED COVERINGS OF S³

GENERALIZED LINS-MANDEL SPACES AND BRANCHED COVERINGS OF S³

LUIGI GRASSELLI AND MICHELE MULAZZANI

It is well known that PL-manifolds are representable by edge-coloured graphs. This combinatorial approach turns out to be a useful tool for generating and investigating wide classes of manifolds represented by "highly-symmetric" graphs (see, for example, [6], [11], [14] and [46]). In particular, Lins-Mandel spaces ([29]) have been intensively studied in the last ten years. In this paper, after a short survey on the related research areas, we describe recent results (mainly obtained in the Ph.D. thesis [40] of one of the authors) about the topological structure of Lins-Mandel spaces in terms of branched coverings of S³. We also illustrate generalizations of these spaces and their relations with other representation theories.

1. Branched coverings of S³

With the term *manifold* we always mean a compact, connected, orientable PL-manifold without boundary.

Let \tilde{M}, M be triangulated n-manifolds and let N be an (n-2)-subcomplex of M; a non-degenerate map $f: \tilde{M} \to M$ is a d-fold covering map, branched over N, if:

- $f' = f_{|\tilde{M}-f^{-1}(N)|}$ is an ordinary covering of M-N of degree d;
- $N = \{x \in M \mid \#f^{-1}(x) < d\}$ (branching set).

 \tilde{M} is said to be a branched covering of M.

$$\tilde{M} - f^{-1}(N) \xrightarrow{i} \tilde{M}$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$M - N \xrightarrow{i} M$$

¹⁹⁹¹ Mathematics Subject Classification. 57M25, 57M12, 57M15.

Key words and phrases. Branched covering spaces, two-bridge knots or links, edge-coloured graphs, gems.

A remarkable result by R.H.Fox ([18]) states that a branched covering is uniquely determined by the ordinary covering induced by restriction. This proves the existence of a one-to-one correspondence between the d-fold coverings of M branched over N and the equivalence classes of monodromies (i.e. transitive representations) $\omega : \pi_1(M-N) \to \Sigma_d$, where Σ_d denotes the symmetric group on d elements. Moreover, the Fox theorem gives the possibility of extending the concepts of regular or cyclic coverings to branched coverings. General references on the subject are [2], [18], [35] and [42].

The notion of branched covering can be extended to more general spaces (see [18] and [32]), including quasi-manifolds¹.

Branched coverings of spheres are of great interest, in particular as a method for representing manifolds. A classical result in this direction goes back to J.W.Alexander:

Proposition. [1] Every n-manifold is a covering of \mathbb{S}^n branched over the (n-2)-skeleton of a standard n-simplex. \square

Refinements of the Alexander theorem can be investigated in two different directions:

- i) minimalize the number of sheets;
- ii) find universal branching sets.

In dimension three, these approaches respectively lead to the possibility of representing all 3-manifolds by means of coloured knots and transitive permutation pairs.

In the first direction define a coloured knot as a pair (L,ω) , where L is a knot and $\omega: \pi_1(\mathbb{S}^3 - L) \to \Sigma_3$ is a simple monodromy. In fact, (L,ω) can be drawn by colouring the arcs of a suitable diagram of L by 0,1,2, so that the arc α is coloured c iff $\omega(\alpha)$ fixes c.

Representation theorem 1. [24], [33] Every 3-manifold is a simple 3-fold covering of \mathbb{S}^3 , branched over a knot. Thus, every 3-manifold is representable by coloured knots. \square

In the second direction, consider the handcuff-graph G embedded in \mathbb{S}^3 as in Figure 1.

FIGURE 1

Since $\pi_1(\mathbb{S}^3 - G)$ is a free group with two generators, the monodromy of any covering

¹ A quasi-manifold is a pseudo-manifold in which the star of every simplex is strongly connected ([19]).

 \tilde{M} of \mathbb{S}^3 , branched over G, is given by a transitive permutation pair (σ, τ) of Σ_b , b being the degree of the covering. We will denote \tilde{M} by $N_b(\sigma, \tau)$.

Representation theorem 2. [34] Every 3-manifold is a covering of \mathbb{S}^3 , branched over the graph G. Therefore, every 3-manifold is representable by transitive permutation pairs. \square REMARK. It seems to be interesting to relate these two representation theories. In particular, the possibility of obtaining a coloured knot representing a 3-manifold M, starting from a pair (σ, τ) representing M, would give a combinatorial proof of Hilden-Montesinos theorem. In the opposite direction, the problem has been solved ([22]) by producing an algorithm for finding a transitive permutation pair (σ, τ) representing M, starting from of a coloured knot (L, ω) representing M. As a consequence, if L admits a "coloured diagram" with n crossings, then M is a 3n-fold covering of \mathbb{S}^3 , branched over G.

2. Edge-coloured graphs and gems

An (n+1)-coloured graph is a pair (Γ, γ) , where:

- Γ is a finite connected regular multigraph of degree n+1;
- $\gamma: E(\Gamma) \to \Delta_n = \{0, 1, \dots, n\}$ is a proper edge-coloration (i.e. adjacent edges have different colours).

Every (n+1)-coloured graph represents a pseudosimplicial complex ([26]) $K(\Gamma)$ defined by:

- taking an *n*-simplex $\sigma(x)$ for each vertex $x \in V(\Gamma)$ and labelling its vertices by the elements of Δ_n ;
- identifying, for every pair $x, y \in V(\Gamma)$ of c-adjacent vertices, the (n-1)-faces of $\sigma(x)$ and $\sigma(y)$ opposite to the vertices labelled by c.

The underlying space $|K(\Gamma)|$ is a quasi-manifold which is orientable iff Γ is bipartite ([17]). In dimension three, quasi-manifolds are also called *singular manifolds* ([34]).

If $B \subset \Delta_n$, $\#B = h \leq n$, there is a bijection between the components of the partial graph $\Gamma_B = (V(\Gamma), \gamma^{-1}(B))$ (called *h-residues*) and the (n-h)-simplices of $K(\Gamma)$ whose vertices are labelled by $\Delta_n - B$.

An n-gem is an (n + 1)-coloured graph representing an n-manifold; every manifold M is representable by gems ([17], [41]).

Edge-coloured graph techniques provide a combinatorial way for representing manifolds; for general references see [3], [17], [29] and [47].

REMARK. An algorithm for obtaining, from a bipartite crystallization² Ω , a transitive permutation pair (σ, τ) such that $|K(\Omega)| \cong N(\sigma, \tau)$, is contained in [12] and [44]. The algorithm has been extended to the general case of bipartite 4-coloured graphs in [23].

A colour-preserving morphism (cp-morphism) between (n+1)-coloured graphs

$$f:(\Gamma,\gamma)\to(\Gamma',\gamma')$$

naturally induces a map

$$K(f): |K(\Gamma)| \to |K(\Gamma')|$$

between the associated underlying spaces.

A cp-morphism $f:(\Gamma,\gamma)\to(\Gamma',\gamma')$ is said to be an *m*-covering $(1\leq m\leq n)$ if the restriction of f to the *m*-residues is one-to-one ([45]). In particular:

- if m = n, then K(f) is an ordinary covering,
- if m=1, then K(f) is a branched covering; moreover, if $|K(\Gamma')|$ is a manifold, the branching set is given by the (n-2)-simplices of $K(\Gamma')$ represented by the 2-residues (bicoloured cycles) of (Γ', γ') not ordinarily covered by f (i.e. the 2-residues whose counterimages via f have at least one component non-isomorphic to it).

3. LINS-MANDEL GRAPHS AND SPACES

The family of Lins-Mandel 4-coloured graphs

$$\mathfrak{G} = \{ G(b, l, t, c) \mid b, l \in \mathbb{Z}^+, t \in \mathbb{Z}_{2l}, c \in \mathbb{Z}_b \}$$

is defined in [29] by the following rules: the set of vertices of G(b, l, t, c) is

$$V = \mathbb{Z}_b \times \mathbb{Z}_{2l}$$

and the coloured edges are obtained by these four fixed-point-free involutions on V:

²A crystallization is a gem with exactly (n+1) n-residues ([17]).

$$\iota_0(i,j) = (i,j-(-1)^j),$$
 $\iota_1(i,j) = (i,j+(-1)^j),$
 $\iota_2(i,j) = (i+\eta(j),1-j),$
 $\iota_3(i,j) = (i+c\eta(j-t),1-j+2t);$

where $\eta: \mathbb{Z}_{2l} \to \{-1,1\}$ is defined by $\eta(j) = \left\{ \begin{array}{ll} +1 & \text{if } 1 \leq j \leq l \\ -1 & \text{otherwise} \end{array} \right.$

For each $k \in \Delta_3$, we join the vertices $v, w \in V$ by a k-coloured edge iff $\iota_k(v) = w$.

Roughly speaking, the graph G(b, l, t, c) is obtained by taking b copies C_i $(i \in \mathbb{Z}_b)$ of the $\{0, 1\}$ -cycle of length 2l (so that $V(C_i) = \{(i, j) \mid j \in \mathbb{Z}_{2l}\}$) joined with:

- C_{i-1} and C_{i+1} by the 2-coloured edges,
- C_{i-c} and C_{i+c} by the 3-coloured edges.

FIGURE 2

Each $G(b, l, t, c) \in \mathfrak{G}$ is connected and bipartite; hence, it represents a (connected, orientable) singular 3-manifold S(b, l, t, c). These spaces have been introduced as a combinatorial generalization of the lens spaces; in fact, G(2, l, t, 1) is the "normal" graph representing the lens space L(l, t) ([15]). They have been intensively studied by M.R.Casali, A.Cavicchioli, A.Donati, L.Grasselli, D.L.Johnson-R.M.Thomas and, of course, S.Lins-A.Mandel (see [5], [6], [7], [8], [9], [10], [13], [21], [28] and [29]). We summarize the main results of these works:

- 1) if (l,t) = 1 and one of the following conditions holds:
 - l is even and $c = \pm 1$,
 - l is odd and $c = (-1)^t$,

then S(b, l, t, c) is a 2-fold covering of \mathbb{S}^3 , branched over a link;

2) $S(b, l, l-1, 1) \cong S(b, l, 1, -1)$ is the 2-fold covering of \mathbb{S}^3 , branched over the torus link of type $\{b, l\}$, i.e. the Brieskorn manifold M(b, l, 2); if b and l are odd and coprime, these spaces are Seifert fibered homology spheres of Heegaard genus 2.

By making use of the symmetry of the Lins-Mandel graphs, it is easy to prove the existence of homeomorphisms between the associated spaces; as a consequence, we can restrict the range of some parameters, without loss of generality, as stated below.

(A)
$$S(b, l, t, c) \cong S(b, kl, kt, c) \Longrightarrow \boxed{(l, t) = 1}$$

(B) $S(b, l, t, c) \cong S(b, l, t - l, -c) \Longrightarrow \boxed{1 \le t \le l}$

(B)
$$S(b, l, t, c) \cong S(b, l, t - l, -c) \implies \boxed{1 \le t \le l}$$

(C)
$$S(b, l, t, c) \cong S(b, l, l - t, -c) \Longrightarrow \boxed{t \text{ odd}}$$

Thus, from now on, we restrict our attention to the subfamily

$$\widehat{\mathfrak{G}} = \{ G(b, l, t, c) \in \mathfrak{G} \mid (l, t) = 1, \ 1 \le t \le l, \ t \text{ odd} \}.$$

The cases (i) c = 0 and (ii) l = 1, c = -1 are "trivial", because the graphs admit planar regular embeddings ([20]), and therefore $S(b, l, t, 0) \cong \mathbb{S}^3 \cong S(b, 1, 1, -1)$ (see [16]).

Since a singular 3-manifold is a 3-manifold iff its Euler characteristic vanishes ([43]), a (rather complicated) calculation gives a complete characterization of the Lins-Mandel graphs representing manifolds:

Proposition. [37] A Lins-Mandel graph $G(b, l, t, c) \in \widehat{\mathfrak{G}}$ represents a 3-manifold iff either l is even or c = 0, -1. \square

The main result concerning the topological properties of the Lins-Mandel spaces is the

Theorem. [38] Let $G(b, l, t, c) \in \widehat{\mathfrak{G}}$ and S(b, l, t, c) be the associated Lins-Mandel space.

- (a) S(b, l, t, c) is a b-fold branched cyclic covering of \mathbb{S}^3 .
- (b) Suppose $c \neq 0$ (recall that the case c = 0 is trivial). If S(b, l, t, c) is a manifold, then the branching set is the 2-bridge link b(l,t); otherwise, the branching set is a θ -graph (Figure 3.a), non-trivially embedded when $l \neq 1$.

Sketch of proof. (a) The map $f_b: G(b,l,t,c) \to G(1,l,t,0)$, defined by $f_b(i,j) = (0,j)$, is the 1-covering induced by the action of the cyclic group \mathbb{Z}_b , generated by the cpisomorphism $(i,j) \mapsto (i+1,j)$, on G(b,l,t,c). Therefore, the associated map $K(f_b)$: $S(b,l,t,c) \to S(1,l,t,0) \cong \mathbb{S}^3$ is a branched cyclic covering map.

(b) When S(b, l, t, c) is a manifold, it is easy to check that the set of the 2-residues of G(1, l, t, 0) not ordinarily covered by f_b does not depend on b and c; moreover it contains exactly four cycles. Incidence arguments on the lattice of the residues of G(1,l,t,0) show that the 1-subcomplex R, whose edges are represented by these four cycles, is homeomorphic to \mathbb{S}^1 (resp. to $\mathbb{S}^1 \coprod \mathbb{S}^1$) iff l is odd (resp. is even). Since G(1,l,t,0) and R only depend on l and t, R is the branching set of the 2-fold covering $K(f_2): S(2,l,t,1) \cong L(l,t) \to \mathbb{S}^3$. The unicity of the representation of the lens spaces as 2-fold coverings of \mathbb{S}^3 ([27]) proves that the branching set is the two-bridge link b(l,t) (see [4]). For "non-manifolds", the branching set is represented by five 2-residues and is homeomorphic to a θ -graph; again, the embedding only depends on l and t (the description of the embedding can be found in [39]). \square

FIGURE 3

As a consequence of this theorem and of the Smith conjecture ([36]), we can completely characterize the spheres among Lins-Mandel spaces:

Corollary. [38] A Lins-Mandel manifold S(b, l, t, c) is homeomorphic to \mathbb{S}^3 iff either c = 0 or l = 1. \square

REMARK. The monodromy $\omega : \pi_1(\mathbb{S}^3 - \mathbf{b}(l,t)) \to \Sigma_b$, associated to the covering, is defined by

$$\omega(m_1)(i)=i+1,$$

$$\omega(m_2)(i) = i - c;$$

where m_1 and m_2 are meridians associated to the two bridges of b(l,t) (see Figure 4). Note that, if l is odd, b(l,t) is a knot and therefore m_1 and m_2 are associated to the same component of the branching set; this explains why l odd implies c = -1.

FIGURE 4

Let now $M(L,\omega)$ denote the *b*-fold cyclic covering of \mathbb{S}^3 , branched over an oriented link L, and defined by the monodromy $\omega : \pi_1(\mathbb{S}^3 - L) \to \Sigma_b$. The following notions are given in [30]:

- (a) $M(L,\omega)$ is strictly-cyclic if $\omega(m_i) = \omega(m_j)$, for every meridian pair m_i, m_j ;
- (b) $M(L,\omega)$ is almost-strictly-cyclic if $\omega(m_i) = \omega(m_j)^{\pm 1}$, for every meridian pair m_i, m_j ;
- (c) $M(L,\omega)$ is meridian-cyclic if $\operatorname{ord}(\omega(m_i)) = b$, for every meridian m_i ;
- (d) $M(L,\omega)$ is singly-cyclic if there exists a meridian m_i such that $\operatorname{ord}(\omega(m_i)) = b$. It is straightforward that:

(a)
$$\Rightarrow$$
 (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow cyclic;

moreover, the five notions are equivalent when L is a knot.

As a direct consequence of the above theorem and remark, we obtain:

Corollary. [38] The Lins-Mandel manifold S(b, l, t, c) is a branched singly-cyclic covering of \mathbb{S}^3 . In particular:

- if c = -1, the covering is strictly-cyclic;
- if $c = \pm 1$, the covering is almost-strictly-cyclic;
- if (b,c)=1, the covering is meridian-cyclic. \Box

REMARKS. (1) The manifolds S(b, l, t, c) with (b, c) = 1 are precisely the Lins-Mandel manifolds whose corresponding gems G(b, l, t, c) are crystallizations ([5]).

(2) The Minkus manifolds $M_n(k,h)$, investigated in [31], are particular cases of Lins-Mandel manifolds. Actually, we have $M_n(k,h) \cong S(n,k,h,-1)$.

To end this section, we present necessary and sufficient conditions for the isomorphism between Lins-Mandel gems. As a consequence, we get sufficient conditions for the homeomorphism between Lins-Mandel manifolds (different from the sphere and lens spaces).

Proposition. Let G = G(b, l, t, c), $G' = G(b', l', t', c') \in \mathfrak{G}$ be gems, with l, l' > 2. Then G is isomorphic to G' iff either

$$b' = b$$
, $l' = l$, $t' = \pm t^{\pm 1}$, $c' = c^s$

or

$$b' = b$$
, $l' = l$, $t' = \pm t^{\pm 1} + l$, $c' = -c^s$;

where

$$s = \left\{ \begin{array}{ll} +1 & \text{if } (b,c) \neq 1 \\ \pm 1 & \text{if } (b,c) = 1 \end{array} \right.$$

Hence, if one of the above conditions holds, the manifolds S(b, l, t, c) and S(b', l', t', c') are homeomorphic. \Box

4. GENERALIZED LINS-MANDEL SPACES

The Lins-Mandel family only contains singly-cyclic coverings. This makes natural the attempt of extending it, in order to obtain the whole class of cyclic coverings of \mathbb{S}^3 , branched over two-bridge links.

We define a new class of 4-coloured graphs depending on five parameters:

$$\tilde{\mathfrak{G}} = \{\tilde{G}(b,l,t,c,c') \mid b,l \in \mathbb{Z}^+, \ t \in \mathbb{Z}_{2l}, \ c,c' \in \mathbb{Z}_b, \ \gcd(b,c,c') = 1\}.$$

Each $\tilde{G}(b, l, t, c, c')$ is defined by the following four fixed-point-free involutions on the set $V = \mathbb{Z}_b \times \mathbb{Z}_{2l}$:

$$ilde{\iota}_0=\iota_0,$$
 $ilde{\iota}_1=\iota_1,$ $ilde{\iota}_2(i,j)=ig(i+c'\eta(j),1-jig),$ $ilde{\iota}_3=\iota_3;$

it represents a (connected, orientable) singular 3-manifold $\tilde{S}(b, l, t, c, c')$.

FIGURE 5

We easily obtain the following results:

- 1) $\tilde{S}(b,l,t,c,1) \cong S(b,l,t,c)$;
- 2) $\tilde{S}(b, l, t, 0, c') \cong \tilde{S}(b, l, t, c, 0) \cong \tilde{S}(b, 1, 1, -c', c') \cong \mathbb{S}^3$;
- 3) $\tilde{S}(b,l,t,c,c') \cong \tilde{S}(b,l,t,c',c)$;
- 4) If (b,c) = 1 or (b,c') = 1, then there exists $c'' \in \mathbb{Z}_b$ such that $\tilde{S}(b,l,t,c,c') \cong S(b,l,t,c'')$; thus, the generalization is effective for the cases $(b,c) \neq 1 \neq (b,c')$;
- 5) As in Section 3, we can assume, without loss of generality, $(l,t)=1,\ 1\leq t\leq l$ and t odd.

The characterization of the manifolds among Lins-Mandel generalized spaces is similar to the previous one:

Proposition. [38] The graph $\tilde{G}(b, l, t, c, c')$ represents a 3-manifold iff either l is even or at least one of the following conditions holds: (i) c = 0, (ii) c' = 0, (iii) c = -c'. \square

Theorem. [38] The 3-manifold $\tilde{S}(b, l, t, c, c')$, with $c \neq 0 \neq c'$, is the b-fold cyclic covering of \mathbb{S}^3 , branched over $\mathbf{b}(l, t)$. The associated monodromy is defined by:

$$\omega(m_1)(i)=i+c',$$

$$\omega(m_2)(i) = i - c.$$

Therefore, the class of generalized Lins-Mandel manifolds $\tilde{S}(b,l,t,c,c')$, with $c \neq 0 \neq c'$, is precisely the class of all cyclic coverings of \mathbb{S}^3 branched over the two-bridge links (with the exception of the trivial link with two components). \square

Corollary. [38] The 3-manifold $\tilde{S}(b,l,t,c,c')$ is a sphere iff either c=0 or c'=0 or l=1. \square

5. FURTHER GENERALIZATIONS

The attempt of obtaining a class of gems representing all coverings of \mathbb{S}^3 , branched over two-bridge links, leads to the following extension.

Take $b, l \in \mathbb{Z}^+$, $t \in \mathbb{Z}_{2l}$, with (l, t) = 1. Let (σ, τ) be a transitive permutation pair of Σ_b . Define the following four fixed-point-free involutions on $V = \mathbb{Z}_b \times \mathbb{Z}_{2l}$:

$$egin{aligned} ar\iota_0 &= \iota_0, \ &ar\iota_1 &= \iota_1, \ &ar\iota_2(i,j) &= ig(\sigma^{\eta(j)}(i), 1-jig), \ &ar\iota_3(i,j) &= ig(au^{-\eta(j-t)}(i), 1-j+2tig). \end{aligned}$$

Denote by $\bar{G}(b,l,t,\sigma,\tau)$ the resulting 4-coloured graph and by $\bar{S}(b,l,t,\sigma,\tau)$ the associated space.

FIGURE 6

Lemma. [39] a) If v is the cyclic permutation $(0\ 1\ 2\ \cdots\ b-1)$, then $\tilde{S}(b,l,t,v^{c'},v^{-c})\cong \tilde{S}(b,l,t,c,c')$;

- b) If $\sigma = 1$ or $\tau = 1$, then $\bar{S}(b, l, t, \sigma, \tau) \cong \mathbb{S}^3$;
- c) $\bar{S}(b,l,t,\sigma^{-1},\tau^{-1}) \cong \bar{S}(b,l,t,\sigma,\tau) \cong \bar{S}(b,l,t,\tau,\sigma)$. \square

Let φ be the permutation $\varphi = \sigma^{\eta(t)} \tau^{\eta(2t)} \sigma^{\eta(3t)} \tau^{\eta(4t)} \cdots \sigma^{\eta((2l-1)t)} \tau^{\eta(2lt)}$.

Theorem. [39] $\bar{S}(b, l, t, \sigma, \tau)$ is the b-fold covering of \mathbb{S}^3 branched over a 1-subcomplex R with the following description:

- 1) if l is odd and
 - a) $\sigma, \tau, \varphi \neq 1$, then R is a θ -graph (Figure 3.a), non-trivially embedded when $l \neq 1$;
 - b) $\sigma, \tau \neq 1$ and $\varphi = 1$, then R is the two-bridge knot $\mathbf{b}(l,t)$;
 - c) $\sigma = 1$ or $\tau = 1$, then R is the trivial knot;
- 2) if l is even and
 - a) $\sigma, \tau, \varphi \neq 1$, then R is a handcuff-graph (Figure 3.b), non-trivially embedded;
 - b) $\sigma, \tau \neq 1$ and $\varphi = 1$, then R is the two-bridge link $\mathbf{b}(l,t)$;
 - c) $\sigma = 1$ or $\tau = 1$, then R is the trivial knot.

In any case, the fundamental group $\pi_1(\mathbb{S}^3-R)$ admits a presentation with two generators X, Y and, in the cases 1.a and 2.a, it is the free group $\langle X, Y; \emptyset \rangle$. The monodromy associated to the covering is defined by

$$\omega(X) = \sigma,$$
 $\omega(Y) = \tau.$

REMARKS. (a) If l=2 and t=1, the branching set R is precisely the universal graph G of Montesinos (Figure 1). Moreover, ω is the monodromy of the branched covering $N_b(\sigma,\tau)$; so we have the homeomorphism $\bar{S}(b,2,1,\sigma,\tau) \cong N_b(\sigma,\tau)$. Since each (singular) 3-manifold is homeomorphic to a suitable $N_b(\sigma,\tau)$, the subclass of graphs $\{\bar{G}(b,2,1,\sigma,\tau)\}$ is a (very symmetric) "universal" class of 4-coloured graphs representing all singular 3-manifolds.

(b) The class $\bar{\mathfrak{G}}_{l,t} = \{\bar{G}(b,l,t,\sigma,\tau) \mid \sigma,\tau \neq 1, \varphi = 1, b \in \mathbb{Z}^+\}$ precisely represents all coverings of \mathbb{S}^3 , branched over the two-bridge link $\mathbf{b}(l,t)$. Thus, every space of $\bar{\mathfrak{G}}_{l,t}$ is a

manifold. Moreover, since a non-toroidal two-bridge link is universal ([25]), every subclass $\{\bar{\mathfrak{G}}_{l,t} \mid t \neq \pm 1 \pmod{l}\}$ is a "universal" class of gems representing all 3-manifolds.

REFERENCES

- 1. J.W.Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370-373.
- I.Bernstein and A.L.Edmons, On the construction of branched coverings of low-dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979), 87-124.
- J.Bracho and L.Montejano, The combinatorics of colored triangulations of manifolds, Geom. Dedicata 22 (1987), 308-328.
- 4. G.Burde and H.Zieschang, Knots, de Gruyter, Berlin-New York, 1985.
- M.R.Casali and L.Grasselli, Characterizing crystallizations among Lins-Mandel 4-coloured graphs, Rend. Circolo Mat. Palermo, Serie II 18 (1988), 221-228.
- M.R.Casali and L.Grasselli, 2-Symmetric crystallizations and 2-fold branched coverings of S³, Discrete Math. 87 (1991), 9-22.
- 7. A.Cavicchioli, Lins-Mandel crystallizations, Discrete Math. 57 (1985), 17-37.
- A.Cavicchioli, A countable class of non-homeomorphic homology spheres with Heegaard genus two, Geom. Dedicata 20 (1986), 345-348.
- A.Cavicchioli, Lins-Mandel 3-manifolds and their groups: a simple proof of the homology sphere conjecture, Rend. Circolo Mat. Palermo, Serie II 18 (1988), 229-237.
- 10. A.Cavicchioli, On some properties of the groups G(n,l), Ann. Mat. Pura Appl. 151 (1988), 303-316.
- 11. A.F.Costa, Locally regular coloured graphs, Journal of Geometry 42 (1992), 57-74.
- 12. A.F.Costa and P.Del Val-Melus, Crystallizations and permutations representing 3-manifolds, Boll. Un. Mat. Ital. 7, 1-B (1987), 477-490.
- 13. A.Donati, Lins-Mandel manifolds as branched coverings of S³, Discrete Math. 62 (1986), 21-27.
- 14. A.Donati, A class of 4-pseudo-manifolds similar to the lens spaces, Aequationes Math. 33 (1987), 194-207.
- A.Donati and L.Grasselli, Gruppo dei colori e cristallizazioni "normali" degli spazi lenticolari, Boll.
 Un. Mat. Ital. 6,1-A (1982), 359-366.
- M.Ferri and C.Gagliardi, The only genus zero n-manifold is Sⁿ, Proc. Amer. Math. Soc. 85 (1982), 638-642.
- 17. M.Ferri, C.Gagliardi and L.Grasselli, A graph-theoretical representation of PL-manifolds-A survey on crystallizations, Aequationes Math. 31 (1986), 121-141.
- 18. R.H.Fox, Covering spaces with singularities, Algebraic Geometry and Topology, a simposium in honour of S.Lefschetz, Princeton Math. Series, vol. 12, 1957, pp. 243-257.

- C.Gagliardi, A combinatorial characterization of 3-manifold crystallizations, Boll. Un. Mat. Ital. 16-A (1979), 441-449.
- 20. C.Gagliardi, Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (81), 473-481.
- L.Grasselli, The groups G(n,l) as fundamental groups of Seifert fibered homology spheres, Proc. "Groups 1993 - Galway/St.Andrews", vol. 1, Cambridge Univ. Press., pp. 244-248.
- 22. L.Grasselli, Coloured knots and permutations representing 3-manifolds, to appear (1994).
- 23. L.Grasselli, Standard presentations for 3-manifold groups, to appear (1994).
- H.M.Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S³, Bull. Amer. Math. Soc. 80 (1974), 1243-1244.
- 25. H.M.Hilden, M.T.Lozano and J.M.Montesinos, On knots that are universal, Topology 24 (1985), 499-504.
- 26. P.J.Hilton and S.Wylie, An introduction to algebraic topology Homology theory, Cambridge, 1960.
- 27. C.Hodgson and J.H.Rubinstein, Involutions and isotopies of lens spaces, Knot theory and manifolds
 Vancouver 1983, Lecture Notes in Math. Springer, vol. 1144, 1985, pp. 60-96.
- 28. D.J.Johnson and R.M.Thomas, The Cavicchioli groups are pairwise non-isomorphic, London Math. Soc. Lecture Note Series 121 (1986), 220-222.
- 29. S.Lins and A.Mandel, Graph-encoded 3-manifolds, Discrete Mathematics 57 (1985), 261-284.
- 30. J.Mayberry and K.Murasugi, Torsion groups of abelian coverings of links, Trans. Amer. Math. Soc. 271 (1982), 143-173.
- 31. J.Minkus, The branched cyclic coverings of 2-bridge knots and links, Memoirs Amer. Math. Soc. 35 Nr. 255 (1982), 1-68.
- 32. B.Mohar, Branched coverings, Discrete Comput. Geom. 3 (1988), 339-348.
- 33. J.M.Montesinos, A representation of closed, orientable 3-manifolds as 3-fold branched coverings of S³, Bull. Amer. Math. Soc. 80 (74), 845-846.
- 34. J.M.Montesinos, Representing 3-manifolds by a universal branching set, Math. Proc. Camb. Phil. Soc. 94 (1983), 108-123.
- J.M.Montesinos, Lectures on branched coverings, Atti del Convegno di Studio sulla Geometria delle varietà differenziabili, I. Cattaneo Gasperini ed., Pitagora Editrice, Bologna, 1985, pp. 127-167.
- 36. J.W.Morgan and H.Bass, The Smith conjecture, Acad. Press Inc., 1984.
- 37. M.Mulazzani, Lins-Mandel graphs representing 3-manifolds, to appear on Discrete Math. (1994).
- 38. M.Mulazzani, All Lins-Mandel spaces are branched cyclic coverings of S³, to appear (1994).
- 39. M.Mulazzani, A "universal" class of 4-coloured graphs, to appear (1994).
- 40. M.Mulazzani, Caratterizzazione topologica degli spazi di Lins e Mandel, Tesi di Dottorato, Università di Bologna, Bologna, 1994.
- 41. M.Pezzana, Sulla struttura topologica delle varietà compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), 269-277.

- 42. R.Piergallini, Manifolds as branched covers of spheres, Disertaciones del Seminario de Matemáticas Fundamentales de la U.N.E.D., Madrid, 1989.
- 43. H.Seifert and W.Threlfall, A textbook of topology, Academic Press (English reprint), 1980.
- 44. G. Vecchioli, Metodi di rappresentazione di trivarietà chiuse, Tesi di Laurea, Università di Perugia,
- 45. A. Vince, Combinatorial maps, J. Combin. Theory Ser. B 34 (1983), 1-21.
- 46. A.Vince, Regular combinatorial maps, J. Combin. Theor. Ser. B 35 (1983), 256-277.
- 47. A.Vince, n-graphs, Discrete Math. 72 (1988), 367-380.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA, PIAZZA DI PORTA SAN DONATO 5, 40127 BOLOGNA, ITALY

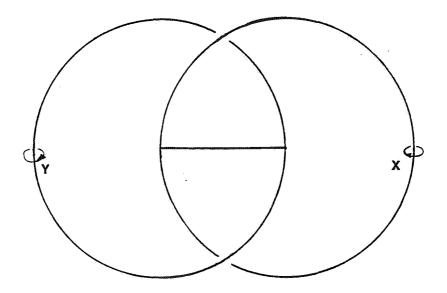


Figure 1. The Montesinos universal graph ${\cal G}$

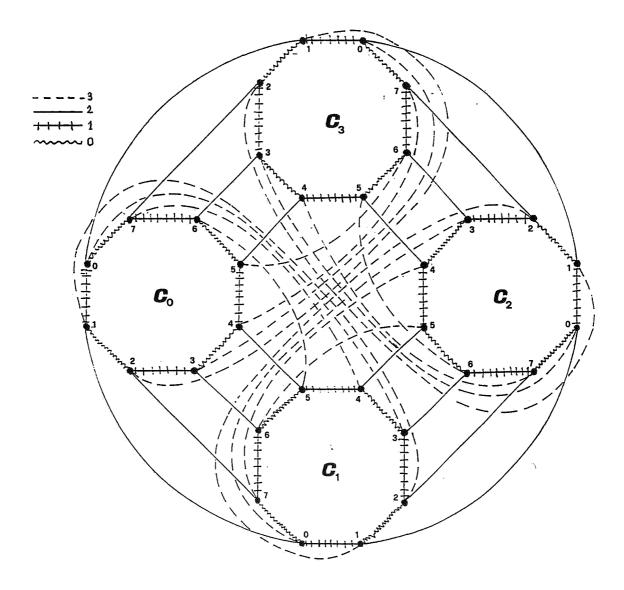


Figure 2. The Lins-Mandel gem G(4,4,1,3)



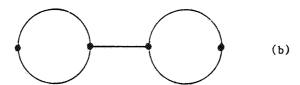


Figure 3. (a) A θ -graph (trivially embedded) — (b) A handcuff-graph (trivially embedded)

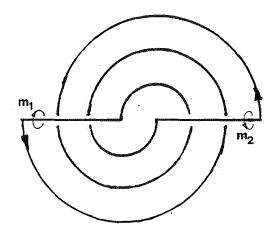


Figure 4. The two-bridge knot $\mathbf{b}(3,1)$

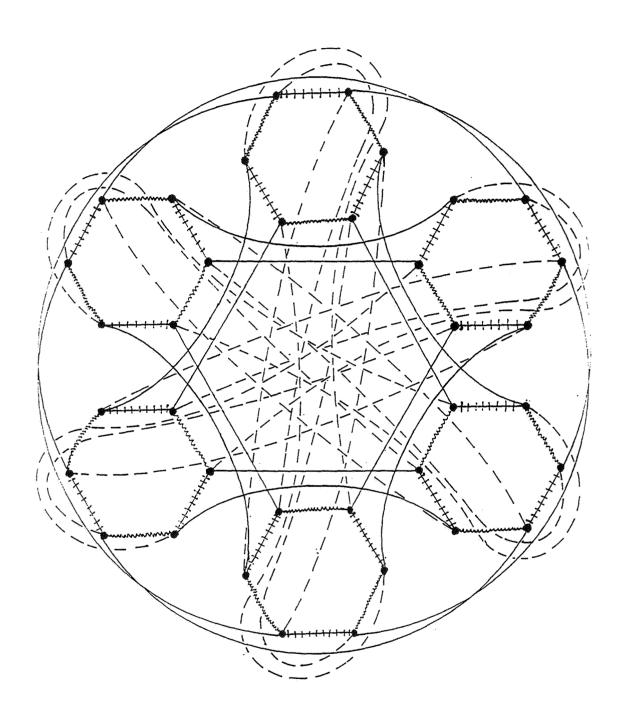


Figure 5. The graph $\tilde{G}(6,3,2,3,2)$

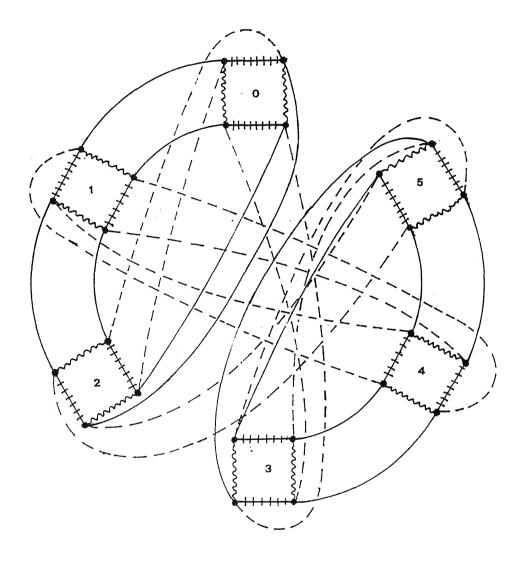


Figure 6. $\bar{G}(6,2,1,(0\ 1\ 2)(3\ 4\ 5).(0\ 2\ 5\ 3)(1\ 4))$ — represents $S^2\times S^1$ —