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GENERALIZED LINS-MANDEL SPACES
AND BRANCHED COVERINGS OF §?

Luicl GRASSELLI AND MICHELE MULAZZANI

It is well known that PL-manifolds are representable by edge-coloured graphs. This
combinatorial approach turns out to be a useful tool for generating and investigating wide
classes of manifolds represented by “highly-symmetric” graphs (see, for example, [6], [11],
[14] and [46]). In particular, Lins-Mandel spaces ({29]) have been intensively studied in the
last ten years. In this paper, after a short survey on the related research areas, we describe
recent results (mainly obtained in the Ph.D. thesis [40] of one of the authors) about the
topological structure of Lins-Mandel spaces in terms of branched coverings of §3. We
also illustrate generalizations of these spaces and their relations with other representation

theories.

1. BRANCHED COVERINGS OF §°

With the term manifold we always mean a compact, connected, orientable PL-manifold
without boundary.

Let M, M be triangulated n-manifolds and let N be an (n — 2)-subcomplex of M; a
non-degenerate map f : M — M is a d-fold covering map, branched over N, if:

- fl= fsM—f-l(N) is an ordinary covering of M — N of degree d;

- N={z e M|#f ' (z) < d} (branching set).

M is said to be a branched covering of M.

M- f7H(N) —— i

al |7
M-N — .M
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A remarkable result by R.H.Fox ([18]) states that a branched covering is uniquely de-
termined by the ordinary covering induced by restriction. This proves the existence of a
one-to-one correspondence between the d-fold coverings of M branched over N and the
equivalence classes of monodromies (i.e. transitive representations) w : m;(M — N) — I,
where 34 denotes the symmetric group on d elements. Moreover, the Fox theorem gives the
possibility of extending the concepts of regular or cyclic coverings to branched coverings.
General references on the subject are [2], [18], [35] and [42].

The notion of branched covering can be extended to more general spaces (see [18] and
[32]), including quasi-manifolds®.

Branched coverings of spheres are of gieat interest, in particular as a method for repre-

senting manifolds. A classical result in this direction goes back to J.W.Alexander:

Proposition. [1] Every n-manifold is a covering of 8" branched over the (n — 2)-skeleton

of a standard n-simplex., [

Refinements of the Alexander theorem can be investigated in two different directions:

i) minimalize the number of sheets;

i) find universal branching sets.

In dimension three, these z;mpproa.ches respectively lead to the possibility of representing
all 3-manifolds by means of coloured knots and transitive permutation pairs.

In the first direction define a coloured knot as a pair (L,w), where L is a knot and
w : m1 (S — L) — T is a simple monodromy. In fact, (L,w) can be drawn by colouring the

arcs of a suitable diagram of L by 0,1, 2, so that the arc « is coloured c iff w(a) fixes c.

Representation theorem 1. [24], [33] Every 3-manifold is a simple 3-fold covering of

S3, branched over a knot. Thus, every 3-manifold is representable by coloured knots. (1

In the second direction, consider the handcuff-graph G embedded in S? as in Figure 1.

Since m1(S® — G) is a free group with two generators, the monodromy of any covering

T A quasi-manifold is a pseudo-manifold in which the star of every simplex is strongly connected ([19]).
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M of S3, branched over G, is given by a transitive permutation pair (o,7) of 4, b being

the degree of the covering. We will denote M by Ny(o,7).

Representation theorem 2. [34] Every 3-manifold is a covering of S*, branched over the

graph G. Therefore, every 3-manifold is representable by transitive permutation pairs. [J

REMARK. 1t seems to be interesting to relate these two representation theories. In par-
ticular, the possibility of obtaining a coloured knot representing a 3-manifold M , starting
from a pair (o, 7) representing M, would give a combinatorial proof of Hilden-Montesinos
theorem. In the opposite direction, the problem has been solved ([22]) by producing an al-
gorithm for finding a transitive permutation pair (o, 7) representing M, starting from of a
coloured knot (L,w) representing M. As‘a. consequénce, if L admits a “coloured diagram”

with n crossings, then M is a 3n-fold covering of S3, branched over G.

2. EDGE-COLOURED GRAPHS AND GEMS

An (n + 1)-coloured graph is a pair (T',7), where:

- T'is a finite connected regular multigraph of degree n + 1;

- v: E(T) — A, ={0,1,...,n} is a proper edge-coloration (i.e. adjacent edses have
different colours).

Every (n + 1)-coloured graph represents a pseudosimplicial complex ([26]) K(I") defined
by:

- taking an n-simplex o(z) for each vertex z € V(I') and labelling its vertices by the
elements of Ay;

- identifying, for every pair z,y € V(I") of c-adjacent vertices, the (n — 1)-faces of o(z)
and o{y) opposite to the vertices labelled by c.

The underlying space |K(I')| is a quasi-manifold which is orientable iff I" is bipa,rtit.e
([17]). In dimension three, quasi-manifolds are also called singular manifolds ([34]).

If é C A,, #B = h < n, there is a bijection between the components of the partial
graph T'p = (V(I),y~}(B)) (ﬁa.lled h-residues) and the (n — h)-simplices of K(T") whose
vertices are labelled by A, — B.

An n-gem is an (n + 1)-coloured graph representing an n-manifold; every manifold M

is representable by gems ([17], [41]).
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Edge-coloured graph techniques provide a combinatorial way for representing manifolds;

for general references see (3], [17], [29] and [47].

REMARK. An algorithm for obtaining, from a bipartite crysta,llizé.tionz_ 2, a transitive
permutation pair (o,7) such that |K(Q)| & N(o,7), is contained in [12] and [44]. The
algorithm has been extended to the general case of bipartite 4-coloured graphs in [23].

A colour-preserving morphism (cp-morphism) between (n + 1)-coloured graphs
f:(@7) = T,7)
naturally induces a map
K(f): |K(T)| — |K(T)]

between the associated underl}:ing spaces.
A cp-morphism f : (T,y) = (I',7") is said to be an m-covering (1 < m < n) if the

restriction of f to the m-residues is one-to-one ([45]). In particular:

- if m = n, then K(f) is an ordinary covering,

- if m = 1, then K(f) is a branched covering; moreover, if |K(T"')| is a manifold, the
branching set is given by the (n — 2)-simplices of K(I") represented by the 2-residues
(bicoloured cycles) of (I',4") not ordinarily covered by f (i.e. the 2-residues whose

counterimages via f have at least one component non-isomorphic to it).

3. LINS-MANDEL GRAPHS AND SPACES

The family of Lins-Mandel 4-coloured graphs
& = {G(b,l,t,c) | b,l € Z¥, t € Zoy, ¢ € Ly}
is defined in [29] by the following rules: the set of vertices of G(b,1,t,c) is
V = Zy X Loy

and the coloured edges are obtained by these four fixed-point-free involutions on V:

2 A crystallization is a gem with exactly (n + 1) n-residues ([17]).
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Lo(?:,j) = (zv] - ("1)j)1
u(5,7) = (6,3 + (=1)),
1'2*(7:1.7.) = (7' +77(.7)1 1 _j)a

a(j)=0GE+en(j—1t),1-j + 2t);
+1 if1<5<1

—1 otherwise

where n: ZZI — {—1, 1} is deﬁned by 'l’](]) = {

For each k € A3, we join the vertices v,weV by a k-coloured edge iff ¢x(v) = w.

Roughly speaking, the graph G(b,l,1,¢) is obtained by taking b copies C; (¢ € Zp) of
the {0,1}-cycle of length 21 (so that V(C;) = {(¢,7) | § € Z21}) joined with:

- Ci—1 and C;41 by the 2-coloured edges,

- C;-. and C;4. by the 3-coloured edges.

Each G(b,1,t,c) € & is connected and bipartite; hence, it represents a (connected,
orientable) singular 3-manifold S(b,1,t,¢). These spaces have been introduced as a com-
binatorial generalization of the lens spaces; in fact, G(2,1,t,1) is the “normal” graph rep-
resenting the lens spacé L(l,t) ([15]). They have been intensively studied by M.R.Casali,

. A.Cavicchioli, A.Donati, L.Grasselli, D.L.Johnson-R.M.Thomas and, of course, S.Lins-
A.Mandel (see [5}], [6], [7], [8], [9], [10], [13], {21], {28] and [29]). We summarize the main
results of these works:

1) if (I,t) = 1 and one of the following conditions holds:
— [ i1s even and ¢ = *1,
— lis odd and ¢ = (—1)%,

then S(b,1,t,c) is a 2-fold covering of §3, branched over a link;

2) S(b,1,1—-1,1) = 5(b,1,1,-1) is the 2-fold covering of S, branched over the torus link of
type {b,1}, i.e. the Brieskorn manifold M(b,1,2); if b and [ are odd and coprime, these

spaces are Seifert fibered homology spheres of Heegaard genus 2.
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By making use of the symmetry of the Lins-Mandel graphs, it is easy to prove the
existence of homeomorphisms between the associated spaces; as a consequence, we can
restrict the range of some parameters, without loss of generality, as stated below.

(A) S(b,1,t,c) = S(b, ki, kt,c) =
(B) S(b,1,t,¢) =2 S(b,1,t —1I,~c) =
(C) S(b,1,t,¢) = §(b,1,1 —t,—c) =>

Thus, from now on, we restrict our attention to the subfamily
& ={G(bLt,c)e®|(,t)=1, 1<t<I, todd}.

The cases (i) ¢ =0 and (ii) I = 1, ¢ = =1 are “trivial”, because the graphs admit planar
regular embeddiﬁgs ([20]), and therefore S(b,1,t,0) = S = §(b,1,1, 1) (see [16]).

Since a singular 3-manifold is a 3-manifold iff its Euler characteristic vanishes ([43]),
a (rather complicated) calculation gives a complete characterization of the Lins-Mandel

graphs representing manifolds:

Proposition. [37] A Lins-Mandel graph G(b,l,t,c) € & represents a 3-manifold iff either

lisevenore=20,-1. O

The main result concerning the topological properties of the Lins-Mandel spaces is the

following;:

Theorem. [38] Let G(b,1,t,c) € & and S(b;l,t,c) be the associated Lins-Mandel space.
(a) S(b,1,t,c) is a b-fold branched cyclic covering of S*.
(b) Suppose c # 0 (recall that the case ¢ = 0 is trivial). If S(b,1,t,c) is a manifold, then
the branching set is the 2-bridge link b(l,t); otherwise, the branching set is a -graph
(Figure 3.a), non-trivially embedded when | # 1.

Sketch of proof. (a) The map fy : G(b,1,t,¢) — G(1,1,¢,0), defined by fu(s,7) = (0,7),
is the l-covering induced by the action of the cyclic group Z;, generated by the cp-
isomorphism (i,7) — (i + 1,7), on G(b,l,%,¢). Therefore, the associated map K(f3) :
S(b,1,t,¢) — S(1,1,,0) = S? is a branched cyclic covering map.

(b) When S(b,1,t,¢) is a manifold, it is easy to check that the set of the 2-residues of

G(1,1,t,0) not ordinarily covered by f; does not depend on b and ¢; moreover it contains
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exactly four cycles. Incidence arguments on the lattice of the residues of G(1,1,¢,0) show
that the l-éubcomplex R, whose edges are represented by these four cycles, is homeomor-
phic to S* (resp. to S![[S?)iff { is odd (resp. is even). Since G(1,1,#,0) and R only depend
on ! and t, R is the branching set of the 2-fold covering K(f2) : S(2,1,¢,1) = L(I,t) — S3.
The unicity of the representation of the lens spaces as 2-fold coverings of §® ([27]) proves
that the branching set is the two-bridge link b(l,t) (see [4]).- For “non-manifolds”, the
branching set is represented by five 2-residues and is homeomorphic to a §-graph; again,
the embedding only depends on ! and ¢ (the description of the embedding can be found in
[39)). O

As a consequence of this theorem and of the Smith conjecture ([36]), we can completely

characterize the spheres among Lins-Mandel spaces:

Corollary. [38] A Lins-Mandel manifold S(b,1,t,c) is homeomorphic to S* iff eitherc =0
orl=1. 0O

REMARK. The monodromy w : m (S3 — b({, t)) — 3, associated to the covering, is
defined by
w(m)(@) =1 +1,

w(m)(t) =i—¢

where m; and m; are meridians associated to the two bridges of b(l,t) (see Figure 4).
Note that, if / is odd, b(l,t) is a knot and therefore m; and mgy are associated to the same

component of the branching set; this explains why [ odd implies ¢ = —1.

Let now M(L,w) denote the b-fold cyclic covering of S, branched over an oriented link
L, and defined by the monodromy w : m(S® — L) — ;. The following notions are given

in (30]:
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(a) M(L,w) is strictly-cyclic if w(m;) = w(m;j), for every meridian pair m;, m;;
(b) M(L,w) is almost-stricly-cyclic if w(m;) = w(m;)*?, for every meridian pair m;, mj;
(¢) M(L,w) is meridian-cyclic if ord(w(m;)) = b, for every meridian m;;
(d) M(L,w) is singly-cyclic if there exists a meridian m; such that ord(w(m;)) =b.
It is straightforward that:

(a) = (b) = (c) = (d) = cyclic;

moreover, the five notions are equivalent when L is a knot.

As a direct consequence of the above theorem and remark, we obtain:

Corollary. [38] The Lins-Mandel manifold S(b,1,t,c) is a branched singly-cyclic covering
of S%. In particular:

- if ¢ = ~1, the covering is strictly-cyclic;

- if e = %1, the covefing is almost-strictly-cyclic;

- if (b,¢) =1, the covering is meridian-cyclic. O
REMARKS. (1) The manifolds S(b,1,t,c) with (b,c) = 1 are precisely the Lins-Mandel
manifolds whose corresponding gems G(b, 1,1, ¢) are crystallizations ([5]).

(2) The Minkus manifolds M, (k, k), investigated in [31], are particular cases of Lins-
Mandel manifolds. Actually, we have M, (k,h) & S(n,k, h,—1).

To end this section, we present necessary and sufficient conditions for the isomorphism
between Lins-Mandel gems. As a consequence, we get sufficient conditions for the homeo-
morphism between Lins-Mandel manifolds (different from the sphere and lens spaces).
Proposition. Let G'= G(b,1,t,¢c), G' = GV, ', t',c') € ® be gems, with [,1'' > 2. Then
G is isomorphic to G' iff either

V=b I'=1t==+t%, =¢c*
or
B=bl's1, t' =2t 41, d =—c%
where

L[4 if(be)#1
3‘{&1 b)) =1
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Hence, if one of the above conditions holds, the manifolds S(b,1,t,c) and S(¥',U',t',c') are

homeomorphic. [

4. GENERALIZED LINS-MANDEL SPACES

The Lins-Mandel family only contains singly-cyclic coverings. This makes natural the
attempt of extending it, in order to obtain the whole class of cyclic coverings of S, branched
over tWo-bridge links.

We define a new class of 4-coloured graphs depending on five parameters:
& = {G(b,L,t,c,c') | bl € ZF, t € Zyy, ¢,¢' € Ty, ged(b,c,c’) = 1}.

Each G(b,1,t,¢,c') is defined by the following four fixed-point-free involutions on the set
V= Zb X Zm:
ip = to,
Zl = _l'l:
i2(i,5) = (i + <'n() 1 - 5),
i3 = t3;

it represents a (connected, orientable) singular 3-manifold 5(b,1,t,c,c).

We easily obtain the following results:

1) 5(b,1,¢,¢,1) = 5(b,1,,¢);

2) 5(b,1,t,0,¢") = S(b,1,t,¢,0) = §(b,1,1,~c',c") = 8%

3) 5(b,1,t,¢,¢') = S(b, 1,1, ¢);

4) If (b,c) = 1 or (b,c') = 1, then there exists ¢" € Z3 such that S(b,1,t,c,c') =
S(b,1,t,c"); thus, the generalization is effective for the cases (b,c) # 1 # (b,¢');

5) As in Section 3, we can assume, without loss of generality, (I,t) =1,1 <t <!land¢
odd.

The characterization of the manifolds among Lins-Mandel generalized spaces is similar

to the previous one:
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Proposition. [38] The graph G(b,1,t,c,c') represents a 3-manifold iff either [ is even or
at least one of the following conditions holds: (i) c=0, (ii) ¢ =0, (iii)c=—¢. O

Theorem. [38] The 3-manifold S(b,1,t,c,c'), with ¢ # 0 # ¢, is the b-fold cyclic covering
of 82, branched over b(l,t). The associated monodromy is defined by:

w(mi)(E) =i+,

w(m2)(?) =i —c.

Therefore, the class of generalized Lins-Mandel manifolds S(b,1,t,¢c,c"), with ¢ # 0 # ¢,
is precisely the class of all cyclic coverings of S® branched over the two-bridge links (with

the exception of the trivial link with two components). O
Corollary. [38] The 3-manifold 5(b,1,t,c,c') is a sphere iff either ¢ = 0 or ¢’ = 0 or
I=1. O

5. FURTHER GENERALIZATIONS

The attempt of obtaining a class of gems representing all coverings of S%, branched over
two-bridge links, leads to the following extension.
Take b, € Z*, t € Zgy, with (I,t) = 1. Let (0,7) be a transitive permutation pair of

2. Define the following four fixed-point-free involutionson V = Zj x Za:
g = Lo,
i =i,
2(i,4) = (06,1 - ),
B3(i,7) = (r~"070(), 1 - j + 2t).

Denote by G(b,1,t,0,7) the resulting 4-coloured graph and by S(b,1,¢,0,7) the associ-

ated space.
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Lemma. [39] a) If v is the cyclic permutation (012 --- b—1), then §(b,1,¢,v° ,v™¢) &
5(b,1,t,¢,c");

b) Ifo =1 or 7 =1, then §(b,1,t,0,7) =83

c) S(b,,t, 071, 77 2 §(b,1,t,0,7) 2 5(b,1,t,7,0). O

.Let ¢ be the permutation ¢ = g7 712051030 (40 .. a"((z{—l)t) T2,

Theorem. [39] 5(b,1,t,0,7) is the b-fold covering of S® branched over a i—subcomplex R
with the following description:
1) if l is odd and
a) o,7,¢ # 1, then R is a 0-graph (Fiéu:e 3.a), non-trivially embedded when 1 # 1;
b) o,7 # 1 and ¢ =1, then R is the two-bridge knot b(l,t); |
c)o =1orr =1, then R is the trivial knot;
2) if | is even and
a) 0,7, # 1, then R is a handcuff-graph (Figure 3.b), non-trivially embedded;
b)o,7#1and p = 1, then R is the two-bridge link b(l,t);
c)o=1orT=1, then R is the trivial knot.
In any case, the fundamental group 7 (S*— R) admits a preseniation with two generators
X, Y and, in the cases 1.a and 2.a, it is the free group < X,Y ; § >. The monodromy

associated to the covering is defined by

w(X) =g,

w(Y)y=r. 0

REMARKS. (a)Ifl = 2andt = 1, the branching set R is precisely the universal graph G of
Montesinos (Figure 1). Moreover, w is the monodromy of the branched covering Ny(a,7);
so we have the homeomorphism 5(b,2,1,0,7) 2 Ng(a, 7). Since each (singular) 3-manifold
is homeomorphic to a suitable Nj(o,7), the subclass of graphs {G(b,2,1,0,7)} is a (very
syminetric) “universal” class of 4-coloured graphs representing all singular 3-manifolds.
(b) The class &;; = {G(b,1,t,0,7) | 0,7 # 1, = 1, b € Z*} precisely represents all
coverings of S, branched over the two-bridge link b(l,#). Thus, every space of éz,t is a
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manifold. Moreover, since a non-toroidal two-bridge link is universal ([25]), every subclass

{&1,¢ | t # £1 (mod 1)} is a “universal” class of gems representing all 3-manifolds.
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Figure 1. The Montesinos universal graph G



Figure 2. The Lins-Mandel gem G(4,4,1,3)



(a)

(b)

Figure 3. (a) A 6-graph (trivially embedded) — (b) A handcuff-graph (trivially embedded)
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Figure 4. The two-bridge knot b(3,1)



Figure 5. The graph G(6.3,2.3.2)



Figure 6. G(6,2,1,(0 1 2)(3 4 5).(0 2 5 3)(1 4))— represents 5 x S! —



