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GENERALIZED LINS-MANDEL SPACES

AND BRANCHED COVERINGS OF §3

LUIGI GRASSELLI AND MICHELE MULAZZANI

It is well known that PL-manifolds are representable by edge-coloured graphs. This

combinatorial approach turns out to be a useful tool for generating and investigating wide

classes of manifolds represented by "highl.y-symmetric" graphs (see, for example, [6], [11],

[14J and [46]). In particular, Lins-Mandel spaces ([29]) have been intensively studied in the

last ten years. In this papel', after a short survey on the related research areas, we describe

recent results (mainly obtained in the Ph.D. thesis [40] of one oí the authors) about the

topological structure of Lins-Mandel spaces in terms of branched coverings oí §3. We

also illustrate generalizations of these spaces and their relations with other representation

I heories.

1. BRANCHED COVERINGS OF §3

With the term manifold we always mean a compact, connected, orientable PL-manifold

1,',ithout boundary.

Let AI, M be triangulated n-manifolds and let N be an (n - 2)-subcomplex of M; a

'éon-degenerate map f: M-f M is a d-foldcovering map, branched over N, if:

- f' = f'M-I-1(N) is an ordinary covering of M - N of degree d;

- N = {x E M I #f-l(x) < d} (branching set).

M is said to be a branched covering of M.

M - f-l(N) i M--->

1'1 11

M-N i M--->

1991 Mathematics Subject Classijication. 57M25, 57M12, 57M15.
Key words and phrases. B1'anched cove1'ing spaees, two-b1'idge knots 01' links, edge-coloured graphs,

gC'lns.

Typeset by AMS-TgX



2 LUIGI GRASSELLI AND MICHELE MULAZZANI

A remarkable result by R.H.. Fox ([18]) states that a branehedeovering is uniquely de

termined by the ordinary eovering indueed by restriction. This proves theex:istenee of a

ane-to-one eorrespondence between the d-fold coverings oí M branched over N and the

equivalence classes of monodromies (i.e. transitive representations) w : 7("1 (M - N) --t Ed,

where Ed denotes the symmetric group on d elements. Moreover, the .Fox theorem gives the

possibility of extending the coneepts of regular 01' cyelic coverings to branched coverings.

General references on the subject are [2], [18], [35] and [42].

The notion of branched covering can be extended to more general spaees (see (18] and

[32]), ineluding quasi~manifolds1.

Branched coverings of spheres are of gteat interest, in particular as a method for repre

senting manifolds. A elassical result in this direction goes back to J.W.Alexander:

Proposition. [1] Every n-manifold i~ a covering of §" branched over the (n - 2)-skeleton

of a standard n-simplex. O

Refinements of the Alexander theorem can be investigated in two different direetions:

i) minimalize the number of sheets;

ii) find universal branching sets.

In dimension three, these approaches respectively lead to the possibility of representing

aH 3-manifolds by means of eoloured knots and transitive permutation pairs.

In thefirst direction define a colo'Ured knot as a paír (L,w), where L is a knot and

w : 7("1 (§3 - L) --t E3 is a simple monodromy. In fact, (L, w) can be drawn by eolouring the

ares of a suitable diagram of L by 0,1,2, so that the are a is eoloured e iff w(a) fixes c.

Representation theorem 1. [24], [33] Every 3-manifold is a simple 3-fold covering of

§3, branched over a knot. Thus, every 3-manifold is representable by coloured knots. O

In the seeond direction, eonsider the handeuff-graph G embedded in §3 as in Figure 1.

¡FIGURE 11

Sinee 7("1 (§3 - G) is a free group with two generators, the monodromy of any eovering

1 A quasi-manifold i!> a p!>eudo-manifold in which the star of every simplex is strongly connected ([19]).
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M of §3, branched over G, is given by a transitive permutation pair (a, r) of :Eh, b being

the degree of the covering. We will denote M by, Nb(a, r).

Representation theorem 2. [34] Every .3~manifoldis a covering of§3, branched over the

graph G. Therefore, every 3-manifold is representable by transitive permutation pairs. O

REMARK. It seems to be interesting to relate these two representation theories. In par

ticular, the possibility of obtaining a coloured knot representing a 3-manifold M, starting

from a pair (a, r) representing M, would give a combinatoria! proof of Hilclen-Montesinos

theorem. In the opposite direction, the problem has been solved ([22]) by producing an al

gorithm for finding a transitive permutation pair (a, r) representing M,starting !rom of a .

coloured knot (L,w) representing M. As a consequénce, if L admits a "coloured diagram"

with n crossings, then M is a 3n-fold covering of §3, branched over G.

2. EDGE-COLOURED GRAPHS AND GEMS

An (n + l)-coloured graph is a pair (r, 'Y), where:

- r is a finite connected regular multigraph of degree n + 1;

- 'Y: E(r) -t D.n = {O, 1, ... ,n} is a proper edge-coloration (i.e. adjacent ed,;es have

different colours).

Every (n + l)-coloured graph represents a pseudosimplicia! complex ([26]) K(r) defined

by:

- taking an n-simplex o'(x) for each vertex .x E V(r) and labelling its vertices by the

elements of D.n;

- identifying, for every pair x, y E V(r) of c-adjacent vertices, the (n -l)-faces of o'(x)

and O'(y) opposite to the vertices labelled by c.

The underlying space IK(r)1 is a quasi-manifold which is orientable iff r is bipartite

([17]). In dimension three, quasi-manifolds are also ca!led singular manifolds ([34]).

If B e ~n, #B = h ~ n, there is a bijection between the compone~tsof the partial

graph r8 = (V(r),'Y-1(B)) (calLed h-residues) and the (n - h)-simplices of K(r) whose

vertices are labelled by D.n ~ B.

An n-gem is an (n + l)-coloured graph representing an n-manifold; every manifold M

is representable by gems ([17], [41]).



4 LUIGI GRASSELLI AND MICHELE MULAZZANI

Edge-coloured graph techniques provide a combinatorial way for representing manifolds;

for general references see [3], [17], [29] and [47].

REMARK. An algorithm for obtaining, from a bipartite crystallization2 n, a tram;itive

permutation pair (u, T) such that IK(n)1 ~ N(u, T), is contained in [12] and [44]. The

algorithm has been extended to the general case of bipartite 4-coloured graphs in [23].

A éolour-preserving morphism (cp-morphism) between (n + 1)-coloured graphs

naturally induces a map

K(f) : IK(f)1 -tIK(f')1

between the associated underlying spaces...
A cp-morphism f : (f,/,) -t (f',/,') is said to be an m-covering (15m 5 n) if the

restriction oí f to the m-residues is one-to-one ([45]). In particular:

- if m== n, then K(f) is an ordinary covering,

- if m == 1, then K(f) is a branched covering; moreover, if IK(f'}1 is a manifold, the

branching set is given by the (n - 2)-simplices of K(f') represented by the 2~residues

(bicoloured cycles) of (f', /,') not ordinarily covered by f (Le. the 2-residues whose

counterimages via f have at least one component non-isomorphic to it).

3. LINS-MANDEL GRAPHS AND SPACES

The family of Lins-Mandel4-coloured graphs

(!) == {G(b,l,t,c) I b,l E Z+, t E Z21, e E Zb}

is defined in [29] by the fol1owing rules: theset of vertices of G(b, l, t, e) is

and the coloured edges are obtained by these four fixed-point-freeinvolutions on V:

2 A crystallization is a gem with exactly (n + 1) n-residues ([17]).
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to(i,j) = (i,j - (-l)i),

t{(i,j) = (i + r¡(j), 1- j),

t3(i,j) = (i +cr¡(j - t), 1 - j +2t)j

{
+1 if 1 < . < 1

where r¡ : Z21 ~ {-1,1} is defined by r¡(j) = - J. -
-1 otherw1se

For each k E ¿la, we join the vertices v, w E V bya k-coloured edge iff tk(V) = w.

Roughly speaking, the graph G(b, 1, t, e) is obtained by taking b copies C¡ (i E Zb) of

the {O, l}-cycle oí length 21 (so that V(C;) = {(i,j)i j E Z21}) joined with:

- C;-1 and CH1 by the 2-coloured edges,

- C;-e and CHe by the 3-coloured edges.

¡FIGURE 21

Each G(b, 1, t, e) E ~ is connected and bipartite; hence, it represents a (connected,

orientable) singular 3-manifold S(b, 1, t, e). These spaces have been introduced asa com

binatorial generalization of the lens spaces; in fact, G(2, 1, t, 1) is the "normal" graph rep

resenting the lens space L(l, t) ([15]). They have been intensive1y studied by M.R.Casali,

. A.Cavicchioli, A.Donati, L.Grasselli, D.L.Johnson-R.M.Thomas and, of course, S.Lins-

A.Mandel (see [5J, [6], [7J, [8], [9], [10J, [13], [21], [28] and [29]). We summarize the main

results of these works:

1) if (l, t) = 1 and one of the following conditions holds:

- 1is even and e = ±1,

-1 is odd and e = (-1)\

then S(b, 1, t, e) is a 2-fold covering of §3, branched over a link;

2) S(b, 1, 1-1, 1) 2:: S(b, 1, 1, -1) is the 2-fold covering of §a, branched over the torus link of

type {b, 1}, i.e. the Brieskorn manifold M(b, 1,2); if b and 1are odd and coprime, these

spaces are Seifert fiberedhomology spheres of Heegaard genus 2.
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By making use of the symmetry of the Lins-Mandel graphs, it is easy to prove the

existence of homeomorphisms between the associated SpaceSj as a consequence, we can

restrict the range of someparameters, without loss of generality, as stated below.

(A) S(b, 1, t, c) ~ S(b, kl, kt, c) =>1 (1, t) = 11
(B) S(b, 1, t, c) ~ S(b, 1, t -1, -c)=> 11 :::; t :::; 11

(C) S(b,l,t,c)~S(b,l,l-t,-c) => Itoddl

Thus, from now on, we restrict our attention to the subfamily

~ = {G(b, 1, t, c) E (!) I (1, t) = 1, 1:::; t :::; 1, t odd}.

The cases (i) c= Oand (ii) 1= 1, c = .:....1 are "trivial", because the graphs admit planar

regular embeddings ([20]), and therefore S(b, 1, t, O) ~ S3 ~ S(b, 1, 1, -1) (see [16]).

Since a singular 3-manifold is a3-manifold iff its Euler characteristic vallishes ([43]),

a (rather complicated) calculation givés a complete characterization of the Líos-Mandel

graphs representing manifolds:

Proposition. [37] A Lins-Mandel grapb G(b, 1, t, c) E ~ represents a 3-manifold iff eitber

1is even or c = O, -1. O

The main result concerning the topological properties of the Lins-Mandel SPaces is the

following:

Theorem. [38] Let G(b,l,t,c) E ~ and S(b;l,t,c) be tbe associated Lins-Mande1 space.

(a) S(b, 1, t, c) is a b-fold branc1led cyc1ic covering of§3.

(b) Suppose c =f O (recall that tbe case c === Ois trivial). If S(b, 1, t, c) is a manifold, tben

tbe brancbing set is tbe 2-bridge link b(l, t); otberwise, tbe brancbing set is a 8-grapb

(Figure 3.a), non-trivially embedded wben 1=f 1.

Sketch 01 proof. (a) The map lb : G(b, 1, t, c) -t G(l, 1, t, O), defined by Ib(i,j) = (O,j),

is the 1-covering induced by the action of the cyclic group Zb, generated by the cp

isomorphi$m (i,j) I--t (i + 1,j), on G(b,l,t,c). Therefore, the associated map J{(Jb)

S(b, 1, t, e) -t S(l, 1, t, O) .~ §3 is a branched cyclic covering map.

(b) When S(b, 1, t, c) is a manifold, it is easy to check that the set of the2-residues of

G(l, 1, t, O) not ordinarily covered by lb does not depend on b and Cj moreover it contains
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exactly four cycles. Incidence argUIuents on the lattice of the residues of G(l, 1, t, O) show

that the l-subcomplex R, whose edges are represented by these four cycles, is homeomor

phic to §I (resp. to §I I1 §I) iff 1is odd (resp. is even). Since G(l, 1, t,O) and R only depend

on 1 and t, R is the branching set of the 2-fold covering K(h) : S(2, 1, t, 1) ~ L(l, t) -+ §3.

The unicity of the representation of the lens spaces as 2-fold coverings of §3 ([27]) proves

that the branching set is the two-bridge link b(l, t) (see [4]). For "non-manifolds", the

branching set is represented by five 2"residues and is homeomorphic to a O-graphj again,

the embedding only depends on 1and t (the description of the embedding can be found in

[39]). O

IFIGURE 31

As a consequence of this theorem and of theSmith conjecture ([36]), we can completely

characterize the spheres among Lins-Mande! spaces:

Corollary. [38] A Lins-Mandel manifold S(b, 1, t, c) is homeomorphic to §3 iff eitherc = O

orl=1. O

REMARK. The monodromy w 11"1 (§3 - b(l,t)) -+ Eh, associated to the covering, is

defined by

w(mI)(i) = i + 1,

w(m2)(i) = i - Cj

where mI and m2 are meridians associated to the two bridges of b(l, t) (see Figure 4).

Note that, if 1is odd, b(l, t) is a knot and therefore mI and m2 are associated to the same

component of the branching setj this explains why 1odd implies c =-1.

IFIGURE 41

Let now M(L,w) denote the b-fold cyclic covering of §3, branched over an oriented link

L, and defined by the monodromy w : 1I"I(§3 - L) -+ Eb. The fol1owing notions are given

in [30]:
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(a) M(L,w) is strietly-eyclie ifw(mi) = w(mj), for every meridian pair mi,mj;

(h) M(L,w) is almost-stricly-eyclíe if w(mi) = w(mj)±l, for every meridian pair mi, mjj

(e) M(L,w) is meridian-cyclic if ord(w(mi)) = b, for every meridian mi;

(d) M(L,w) is singly-cyclic if there exists a meridian mi sueh that ord(w(mi)) = b.

It is straightforward that:

(a) => (h) => (e) => (d) => eyclie;

moreover, the five notions are equivalent when L is a knot.

As a direet eonsequenee of the ahove theorem and remark, we ohtain:

Corollary. [38] Tbe Lins-Mande1manifóld S( b, 1, t; e) is a brancbed singly-cyc1ic covering

af §3. In particular:

- if c = -1, tbe covering is strictly-cyc1ic;

- if e = ±1, tbe covering is almost-strictly-cyc1ic¡

- if (b, c) = 1, tbe covering is meridian-cyc1ic. O

REMARKS. (1) The manifolds S(b, 1, t, c) with (b, c) = 1 are preeisely the Lins-Mandel

manifolds whose corresponding gems G(b, 1, t, c) are crystallizations ([5]).

(2) The Minkus manifolds Mn(k,h), investigated in [31], are particular cases of Lins

Mandel manifolds. Aetually, we have Mn(k, h) ~ Sen, k, h, -1).

To end this section, we present necessary~d sufficient eonditions for the isomorphism

hetween Lins-Mandel gems. As a consequence, we get sufficient conditions for the homeo

morphism hetween Lins-Mandel manifolds (different from the sphere and lens spaces).

Proposition. Let G=.G(b,l,t,e), G' = G(b',l',t',e' ) E i5 begems, witb 1,1" > 2. Tben

G is isomorpbieto G' iff eitber

b' = b, l' = 1, t' = ±t±l, e' = C
S

or

. b' = b, l' = l, t' = ±t±l+ 1, e' = _es;

wbere
s = {+1 if(b,c) =1= 1.

±1 if(b,e)=l
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Henee, if one ofthe aboye eonditions holds, the manifolds S(b, 1, t, e) and S(b' , 1' , t', e') are

homeomorphic. O

4. GENERALIZED LINS-MANDEL SPACES

The Lins-Mande1 family only eontains singly-eyclie coverings. This makes natural the

attempt ofextending it, in orderto obtain the whole class of cyclic coverings of§3, branched

over two-bridge links.

We define a new class of 4-coloured graphs depending on five parameters:

- - I + I I
~ = {G(b,l,t,e,e) I b,l E Z , tE Z2/, C,e E Zb, gcd(b,e,e) == 1}.

Each G(b, 1, t, e, e') is defined by the fol1owing four fixed~point-free involutions on the set

V == Zb x Z2/:

lO = LO,

it represents a (connected, orientable) singular 3-manifold S(b, 1, t, e, e').

IFIGU,RE 51

We easily obtain the following results:

1) S(b, 1, t, e, 1) ~ S(b, 1, t, e);

2) S(b,l,t,O,e/ ) ~ S(b,l,t,e,O) ~ S(b, 1,1, -e', e') ~ §3 j

3) S(b, 1, t, e, e') ~ S(b, 1, t, e', e);

4) If (b,e) = 1 or (b,d) = 1, then there exists e" E Zb such that S(b,l,t,e,e' ) ~

S(b, 1, t, e"); thus, the generalization is effective for t~e eases (b, e) -:f. 1 -:f. (b, e');

5) As in Section 3, We can assume, without loss of genera1ity, (1, t) == 1, 1 :s t :s 1 and.,t

odd.

The characterization of the manifolds among Lins-Mande1 generalized spaces is similar

to the previous one:
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Proposition. [38J The graph G(b, 1, t, e, e') represents a 3~maniEold iff either 1 is even or

at least one ofthe following eonditions holds: (i) e = O, (ii) e' = O, (iii) e = -e'. O

Theorem. [38] The 3-manifold S(b, 1, t, e, e'), with e =f:. O=f:. e', is the b-Eold eyc1ie eovering

oE§,3, branehed over b(l, t). The assoeiated monodromy is denned by:

w(ml)(i) = i +e',

w(mz)(i) = i - e.

ThereEore, the c1ass oE generalized Lins-Mande1 manifolds S(b, 1, t, e, e'), with e =f:. O =f:. e',

is precisely the c1ass of all eyc1ie coverings OE§,3 branched over the two-bridge links (with

the exeeption of the trivial link with two eomponents). O

Corollary. [38] The 3-manifold S(b,l,t,e,e' ) is a sphere iff either e = O or e' = O or

1= 1. O

5. FURTHER OENERALIZATIONS

The attempt of obtaining a class of gems representing aH coverings of §,3, branched over

two-bridge links, leads to the fol1owing extension.

Take b,l E Z+, t E Zz/, with (l,t) = 1. Let (0-,7) be a transitive permutation pair of

L:b. Define the fol1owing four fixed-point-free involutions on V = Zb x Zz/:

1:1 = tI,

I:z(i,j) = (alj(j)(i), 1 - j),

1:3(i,j) = (r-lj(j-t)(i), 1 - j +2t).

Denote by G(b, 1, t, a, r) the resulting 4-coloured graph and by S(b, 1, t, a, r) the associ

ated space.

¡FIGURE 61
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Lemma. [39J a) If vis the eyc1ic permutation (O 1 2 ... b-1), then S(b, 1, t, vC' ,v-C) ~

S(b, 1, t, e, e');

b) Ifa = 1 orr =1, then S(b,l,t,a,r) ~~P;

e) S(b,1,t,a-1 ,r-1) ~ S(b,l,t,a,r) ~ S(b,l,t,r,a). O

Theorem. [39J S(b, 1, t, (j, r) is the b-fold eovering of§3 branched over a l-subeomplex R

with the following deseription:

1) if 1is odd and

a) a, r, r.p =f:. 1, then R is a O-graph (Figure 3.a), non-trivia11y embedded when 1 =f:. 1;

b) a, r =f:. 1 and r.p = 1, then R is the two-bridge knot b(l, t);

e) a = 1 or r =1, then R is the trivial knot;

2) if 1 is even and

a) a, r, r.p =f:. 1, then R is a handcuff-graph (Figure 3.b), non-trivia11y embedded;

b) a, r =ft 1 and r.p = 1, then R is the two-bridge link b(l, t);

e) a = 1 or r = 1, then R is the trivial knot.

In any case, the fundamental group 71"1 (§3 - R) admits a presentation with two generators

X, y and, in the cases l.a and 2.a, it is the free group < X, Y; 0 >. The monodromy

associated to the eovering is defined by

w(X) = a,

w(Y) = r. O

REMARKS. (a) If1= 2 and t = 1, the branchingset R is precisely the universal graph G of

Montesinos (Figure 1). Moreover, w is the monodromy of the branched covering Nb(a, r);

so we have the homeomorphism S(b, 2, 1, a, r).~ Nb(a, r). Since each (singular) 3-manifold

is homeomorphic to a lmitable Nb(a, r), the subclass of graphs {G(b, 2,1, a, r)} is a,(very

symmetric) "universal" class of 4-coloured graphs representing all singular 3-manifolds.

(b) The class ®l,t = {G(b,l,t,a,r) I a,r =f:. 1, r.p = 1, bE Z+} precisely represents aH

coverings of §3, branched over the two-bridge link b(l, t). Thus, every space of ®l,t is a
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manifold. Moreover, since a non-toroidal two-bridge link is universal ([25]), every subclass

{<5"t I t .¡. ±1 (mod in is a "universal" class of gems representing all 3-maniftilds.
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Figure 1. The Montesinos universal graph G
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Figure 2. The Lins-:'landel gem G(4,4,1,3)
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Figure 3. (a) A O-graph (trivially embedded) - (b) A handcuff-graph (trivially embedded)



Figure 4. The two-bridge knot b(3,1)
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Figure 5. The graph G(6,3,2,3,2)
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