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Abstract

Consider an open setΩ ⊂ Rn and a function in the variable exponent Sobolev
spaceW 1,p(·)(Ω). We show that there exists a family of curvesΓ with zero
p(·)-modulus such that the quasi-continuous representative ofu is absolutely
continuous on every rectifiable path not inΓ. To prove this result we need the
following assumptions: the exponent satisfiesp : Ω → [m,M ] for 1 < m ≤
M < ∞ and smooth functions are dense in Sobolev space.

1. Introduction

Variable exponent Lebesgue and Sobolev spaces have attracted steadily increasing
interest over the last couple of years. These spaces have been independently discovered
by several researchers [9, 15, 19, 22]. These investigators were motivated by differential
equations with non-standard coercivity conditions, arising for instance from modeling
certain fluids (e.g, [1, 7, 18]). For some of the latest advances in the study of variable
exponent spaces see [3, 4, 11, 12, 16].

Classical Sobolev spaces can be characterized in many different ways. The ACL-
characterization is that a function belongs to the Sobolev space W 1,p if and only if it
has a Lebesgue p-integrable representative which is absolutely continuous on almost
every line segment parallel to the coordinate axes and the classical derivatives defined
almost everywhere are Lebesgue p-integrable. Note that the classical derivatives of the
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representative coincide with the distributional derivatives almost everywhere. This
characterization goes back to Nikodym [17].

A finer version of the ACL-characterization is the ACC-characterization. In the
ACC-characterization, we consider not only line segments but all rectifiable curves.
Fuglede proved in [10] that a Sobolev function in W 1,p has a representative which is
absolutely continuous on every curve not belonging to a certain exceptional family of
zero p-modulus. On the other hand, it is clear that a function which has the ACC-
property also has the ACL-property.

In this article we generalize these results to the variable exponent Sobolev spaces.
We patch together pieces of classical proofs in a way which neatly avoids all the prop-
erties not possessed by variable exponent spaces. For instance the original proof by
Fuglede [10] relies on convolutions and translation invariance which cannot used in our
context.

The ACL-characterization follows immediately from the fact that variable expo-
nent Sobolev space can be locally imbedded in W 1,1. For the ACC-characterization
we use the variable exponent Sobolev capacity and quasi-continuous representatives
considered in the variable exponent setting by Harjulehto, Hästö, Koskenoja and Varo-
nen in [12]. We first show that the well-known relation between modulus and capacity
holds, i.e. if a set has zero capacity, then it defines a curve family with zero modulus.
These results are derived under the assumption that smooth functions are dense in
Sobolev space. Although this is not always the case, it is quite a lenient condition,
allowing for instance some discontinuous exponents (see Section 3).

Definitions. By Ω we always denote an open subset of Rn. Let p : Ω → [1,∞) be a
measurable function, called the variable exponent on Ω, and set p+ = ess supx∈Ω p(x)
and p− = ess infx∈Ω p(x). We define the variable exponent Lebesgue space Lp(·)(Ω) to
consist of all measurable functions u : Ω → R for which there exists λ > 0 such that
%p(·)(λu) =

∫
Ω |λu(x)|p(x) dx < ∞. We define the Luxemburg norm on this space by

‖u‖p(·) = inf{λ > 0 : %p(·)(u/λ) 6 1}.

The variable exponent Sobolev space W 1,p(·)(Ω) is the subspace of functions u ∈ Lp(·)(Ω)
whose distributional gradient exists almost everywhere and satisfies |∇u| ∈ Lp(·)(Ω).
The norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·) makes W 1,p(·)(Ω) a Banach space. One central
property of these spaces is that %p(·)(ui) → 0 if and only if ‖ui‖p(·) → 0, provided that
p+ < ∞. This and many other basic results are proved in [15].

2. The modulus

A curve γ in Rn is a non-constant continuous map γ : I → Rn, where I = [a, b] is a
closed interval in R. The image of γ, γ(I), is denoted by |γ|. Let Γrect be the family
of rectifiable curves in Rn. Note that if the curve γ is rectifiable, then we can assume
that I = [0, `(γ)], where `(γ) is the length of γ.
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Given a family Γ of rectifiable curves, we denote by F (Γ) the set of all admissible
functions, i.e. all Borel functions u : Rn → [0,∞] such that∫

γ
u ds ≥ 1

for every γ ∈ Γ, where ds represents integration with respect to curve length. We
define the p(·)-modulus of Γ by

Mp(·)(Γ) = inf
u∈F (Γ)

∫
Rn

u(x)p(x)dx.

If F (Γ) = ∅, then we set Mp(·)(Γ) = ∞.

Lemma 2.1

The p(·)-modulus is an outer measure on the space of all curves of Rn. This means

that the following hold:

(1) Mp(·)(∅) = 0,

(2) Γ1 ⊂ Γ2 implies Mp(·)(Γ1) ≤ Mp(·)(Γ2),
(3) Mp(·) (

⋃∞
i=1 Γi) ≤

∑∞
i=1 Mp(·)(Γi).

Proof. Since the zero function belongs to F (∅) we obtain (1). If Γ1 ⊂ Γ2 then F (Γ1) ⊃
F (Γ2) and hence (2) holds.

To prove (3) we may assume that the sum in the right-hand side is finite. For
ε > 0 we pick ui ∈ F (Γi) such that∫

Rn

ui(x)p(x)dx < Mp(·)(Γi) + ε2−i.

We set u(x) =
(∑∞

i=1 ui(x)p(x)
) 1

p(x) . Since u ≥ ui for all i, the function u satisfies∫
γ u ds ≥ 1 for every γ ∈

⋃∞
i=1 Γi. Thus we obtain

Mp(·)

( ∞⋃
i=1

Γi

)
≤
∫

Rn

u(x)p(x)dx =
∫

Rn

∞∑
i=1

ui(x)p(x)dx ≤
∞∑
i=1

Mp(·)(Γi) + ε.

Letting ε → 0, we obtain (3). �

A family of curves Γ is said to be exceptional if Mp(·)(Γ) = 0. The following lemma
is a generalization of [10, Theorem 3(f)].

Lemma 2.2 (Fuglede’s Lemma)

Let (ui)∞i=1 be a sequence of non-negative Borel functions in Lp(·)(Rn) converging

to zero.Then there exists a subsequence (uik)∞k=1 and an exceptional set Γ of rectifiable

curves such that for all rectifiable γ /∈ Γ we have

lim
k→∞

∫
γ
uikds = 0.
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Proof. We choose a subsequence of (ui)∞i=1, which is again denoted by (ui)∞i=1, so that

(2.3) ‖ui‖p(·) ≤
2−i

i
.

Let Γ be the family of curves such that for all γ ∈ Γ∫
γ
ui ds 6→ 0,

as i →∞. We write

Γi =
{

γ ∈ Γ :
∫

γ
ui ds ≥ 1

i

}
and

v =
∞∑
i=1

iui.

Observe that iui is admissible for Γi and that v is a non-negative Borel function in
Rn. If γ ∈ Γ, then γ ∈ Γi for infinitely many i and hence by the Lebesgue monotone
convergence theorem ∫

γ
v ds =

∞∑
i=1

∫
γ
iui ds = ∞.

But this means that vk = v
k , k = 1, 2, . . ., is admissible for Γ. On the other hand, it

follows from (2.3) and the homogeneity of the norm that

‖vk‖p(·) =
1
k
‖v‖p(·) ≤

1
k

k∑
i=1

‖iui‖p(·) ≤
1
k

for each k = 1, 2, . . .. This means that vk → 0 in Lp(·) and for every k = 1, 2, . . .

Mp(·)(Γ) ≤
∫

Rn

(vk(x))p(x) dx ≤ ‖vk‖p(·) ≤
1
k
,

where the second inequality is [15, (2.11)]. Letting k →∞ we conclude that Mp(·)(Γ) =
0, as required. �

3. The capacity

Next we consider a variable exponent Sobolev capacity, which was introduced by Har-
julehto, Hästö, Koskenoja and Varonen in [12]. Suppose that E is an arbitrary subset
of Rn. The Sobolev p(·)-capacity of E is defined by

Cp(·)(E) = inf
∫

Rn

(
|u(x)|p(x) + |∇u(x)|p(x)

)
dx,

where the infimum is taken over those u ∈ W 1,p(·)(Rn) which are at least 1 in some
open set containing E. If 1 < p− ≤ p+ < ∞, then the Sobolev p(·)-capacity is an outer
measure and a Choquet capacity [12, Corollaries 3.3 and 3.4]. As in the fixed exponent
case, the capacity is a finer measure than the n-dimensional Lebesgue measure [12,
Section 4]. For example, if Cp(·)(E) = 0, then the s-dimensional Hausdorff measure of
E is zero for every s > n− p− (if p− > n, then the set E is empty).
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We say that a function u : Rn → R is quasi-continuous if for every ε > 0 there
exists an open set O with Cp(·)(O) < ε such that u restricted to Rn \ O is continuous.
We recall the following fact [12, Theorem 5.2], which is crucial to us here. Assume
that 1 < p− ≤ p+ < ∞ and the class of continuous functions is dense in W 1,p(·)(Rn).
Then every u ∈ W 1,p(·)(Rn) has a quasicontinuous representative, i.e. there exists a
quasi-continuous function v ∈ W 1,p(·)(Rn) such that u = v almost everywhere in Rn.

For our remaining results we need to assume that continuously differentiable func-
tions are dense in Sobolev space. This is a real assumption, since it is well-known that
this is not always the case in the variable exponent setting. We only have some partial
results:

(i) Samko proved in [20] that smooth function are dense in W 1,p(·)(Rn) if p+ < ∞
and there exists a constant C > 0 such that for every |x− y| ≤ 1

2 the exponent
p satisfies

|p(x)− p(y)| ≤ C

− log |x− y|
.

Diening proved a similar, though slightly weaker, result [2].
(ii) Edmunds and Rákosńık showed that a certain monotonicity condition on the

exponent is also sufficient for the density of smooth functions, see [5].
(iii) Hästö [14] gave an example of the variable exponent Sobolev space in which

continuous functions are not dense. In this example the exponent has growth
just slightly greater than allowed in (i) at a saddle point. Therefore the previous
two conditions together seem to be quite close to optimal.

Shanmugalingam proved the following lemma in a metric measure space with a
fixed exponent, [21, Lemma 3.6]. Our proof uses the same idea. We denote by ΓE the
family of all rectifiable curves whose image intersect the set E.

Lemma 3.1

Assume that 1 < p− ≤ p+ < ∞ and C1-functions are dense in W 1,p(·)(Rn).
Suppose that E ⊂ Rn. If Cp(·)(E) = 0, then Mp(·)(ΓE) = 0.

Proof. Since Cp(·)(E) = 0 we can choose a function ui ∈ W 1,p(·)(Rn) ∩ C1(Rn), for
every i, such that ‖ui‖1,p(·) ≤ 2−i and ui(x) ≥ 1 for every x ∈ E. We define

vk =
k∑

i=1

|ui|.

For every l ≥ m we find that

‖vl − vm‖1,p(·) ≤
l∑

i=m+1

‖ui‖1,p(·) ≤ 2−m

and therefore the sequence (vk)∞k=1 is a Cauchy sequence in the Banach space W 1,p(·)(Rn).
Since the sequence vk(x) is non-negative and increasing for every x ∈ Rn the limit
v(x) = limk→∞ vk(x) (possibly +∞) exists for every x ∈ Rn and v ∈ W 1,p(·)(Rn) is a
Borel function.
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For x ∈ E we see that vk(x) ≥ k for every k and thus

E ⊂ E∞ = {x ∈ Rn : lim
k→∞

vk(x) = ∞}.

Therefore it suffices to show that Mp(·)(ΓE∞) = 0.
Since the ∇vk are continuous, ∇v is a Borel function, and so Lemma 2.2 gives a

subsequence of (vk), denoted again by (vk), such that there is an exceptional family
Γ1 and

(3.2) lim
k→∞

∫
γ
|∇vk −∇v| ds = 0

for every rectifiable curve γ not in Γ1.
Let Γ2 be the family of all curves γ such that

∫
γ v ds = ∞ and Γ3 the family of

curves γ with
∫
γ |∇v| ds = ∞. Since v/i is admissible for Γ2 and every i = 1, 2, 3. . .

and since v ∈ Lp(·)(Rn), we find that

Mp(·)(Γ2) ≤
∫

Rn

(v(x)
i

)p(x)
+
( |∇v(x)|

i

)p(x)
dx ≤

‖v‖1,p(·)

i

for large enough i, by [15, (2.11)]. Therefore Mp(·)(Γ2) = 0. Similarly Mp(·)(Γ3) = 0
and hence by subadditivity Mp(·)(Γ∗) = 0, where Γ∗ = Γ1 ∪ Γ2 ∪ Γ3. To complete the
proof we show that ΓE∞ ⊂ Γ∗. Fix γ ∈ ΓE∞ and suppose that γ /∈ Γ∗. Since γ /∈ Γ2

there is y ∈ |γ| with v(y) < ∞. For any point x ∈ |γ| we find that

|vi(x)| ≤ |vi(x)− vi(y)|+ |vi(y)| ≤
∫

γ
|∇vi| ds + |vi(y)|,

because vi ◦γ is absolutely continuous on [0, `(γ)]. Using (3.2) and γ /∈ Γ1 for the first
inequality and γ /∈ Γ3 for the second inequality we find that

lim sup
i→∞

|vi(x)| ≤ lim sup
i→∞

|vi(y)|+
∫

γ
|∇v| ds < ∞.

Hence v(x) < ∞ for all x ∈ |γ| and γ /∈ ΓE∞ . Thus ΓE∞ ⊂ Γ∗, which completes the
proof. �

4. Fuglede’s Theorem

We say that u : Ω → R is absolutely continuous on lines, u ∈ ACL(Ω), if u is absolutely
continuous on almost every line segment in Ω parallel to the coordinate axes. Note
that an ACL function has classical derivatives almost everywhere.

An ACL function is said to belong to ACLp(·)(Ω) if |∇u| ∈ Lp(·)(Ω). Since
W 1,p(·)(Ω) ↪→ W 1,1(Ω) locally, we obtain the following lemma by [8, Chapter 4.9] or
[23, Theorem 2.1.4].

Lemma 4.1

If u ∈ ACLp(·)(Ω) ∩ Lp(·)(Ω), then it has classical partial derivatives almost ev-

erywhere and these coincide with the weak partial derivatives as distributions so that

u ∈ W 1,p(·)(Ω). If u ∈ W 1,p(·)(Ω), then there exists v ∈ ACLp(·)(Ω) such that u = v

almost everywhere. In short, ACLp(·)(Ω) ∩ Lp(·)(Ω) = W 1,p(·)(Ω).
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Let u : Rn → R and let Γ be the family of curves γ parametrized by arc-length such
that u◦γ is not absolutely continuous on [0, `(γ)]. We say that u is absolutely continuous
on curves, u ∈ ACCp(·)(Ω), if Mp(·)(Γ) = 0. It is clear that ACCp(·)(Ω) ⊂ ACL(Ω).
An ACCp(·)(Ω) function is said to belong to ACCp(·)(Ω) if |∇u| ∈ Lp(·)(Ω).

The following theorem generalizes a result of Fuglede, [10, Theorem 14], to the
variable exponent case.

Theorem 4.2 (Fuglede’s Theorem)

Assume that 1 < p− ≤ p+ < ∞ and that C1-functions are dense in W 1,p(·)(Rn).
Then

ACCp(·)(Rn) ∩ Lp(·)(Rn) = W 1,p(·)(Rn).

Proof. By Lemma 4.1, ACLp(·)(Rn) ∩ Lp(·)(Rn) ⊂ W 1,p(·)(Rn) and hence

ACCp(·)(Rn) ∩ Lp(·)(Rn) ⊂ W 1,p(·)(Rn).

To prove the converse, fix u ∈ W 1,p(·)(Rn). By [12, Lemma 5.1] there exists a
sequence (ui) of functions in W 1,p(·)(Rn) ∩ C1(Rn) such that ui → u in W 1,p(·)(Rn)
and ui(x) → ũ(x) for every x ∈ Rn except in the set E of p(·)-capacity zero. Here ũ is
a p(·)-quasi-continuous representative of u.

Since ui → ũ in W 1,p(·)(Rn) we may assume, passing to a subsequence, that

(4.3) ‖∇ui+1 −∇ui‖p(·) ≤ 2−i,

for every i = 1, 2, . . .. Since

ui = u1 +
i−1∑
j=1

(uj+1 − uj),

we have |∇ui| ≤ gi for every i = 1, 2, . . ., where

gi = |∇u1|+
i−1∑
j=1

|∇(uj+1 − uj)|.

The sequence (gi) is increasing, hence the limit (possibly ∞) g(x) = limi→∞ gi(x)
exists for each x ∈ Rn. Since the gi’s are continuous, g is a Borel function and it
follows from (4.3) that gi → g in Lp(·)(Rn).

Let Γ1 be the family of all rectifiable curves γ in Rn such that∫
γ
g ds = ∞.

Since g/j is admissible for Γ1, we find that Mp(·)(Γ1) = 0. By Lemma 2.2 we choose a
subsequence of (gi) such that

lim sup
i→∞

∫
γ
|gi − g| ds = 0

except in an exceptional set Γ2. Since the p(·)-capacity of E is zero, Lemma 3.1 implies
that Mp(·)(ΓE) = 0. We write Γ = Γ1 ∪ Γ2 ∪ ΓE . By subadditivity, Mp(·)(Γ) = 0. The
curve family Γ has the following special property: if γ1 ∈ Γ and γ2 is a curve containing
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γ1, i.e. |γ1| ⊂ |γ2|, then γ2 ∈ Γ. This property follows, since each of Γ1, Γ2 and ΓE has
it.

It remains to show that ũ is absolutely continuous on each rectifiable curve γ :
[0, l(γ)] → Rn, γ /∈ Γ. Let (aj , bj), j = 1, 2, . . ., k, be disjoint intervals on [0, l(γ)] and
write A = ∪k

j=1[aj , bj ]. Then

k∑
j=1

|ũ(γ(bj))− ũ(γ(aj))| = lim
i→∞

k∑
j=1

|ui(γ(bj))− ui(γ(aj))|

≤ lim sup
i→∞

k∑
j=1

∫
γ|[aj,bj ]

|∇ui| ds

≤ lim
i→∞

∫
γ|A

gi ds =
∫

γ|A
g ds.

(4.4)

The first equality follows, since γ does not intersect E, and convergence is point-
wise outside E. The first inequality follows, since every ui is absolutely continuous.
The second inequality follows, since |∇ui| ≤ gi, and the last equality follows, since
γ|[aj ,bj ] /∈ Γ for any j. Since g ◦ γ ∈ L1([0, l(γ)]), inequality (4.4) implies that ũ ◦ γ is
absolutely continuous on [0, l(γ)] as required. The proof is complete. �

Remark 4.5. In summary, Lemma 4.1 and Theorem 4.2 imply that

ACCp(·)(Rn) ∩ Lp(·)(Rn) = ACLp(·)(Rn) ∩ Lp(·)(Rn) = W 1,p(·)(Rn).

It is also interesting to note that the p(·)-quasi-continuous representative of u ∈
W 1,p(·)(Rn) is the representative which is absolutely continuous on every curve ex-
cept on a set of zero p(·)-modulus.

Theorem 4.2 is formulated in Rn and not in an open subset of Rn. However, since
the ACCp(·)-condition has local character, we indicate briefly how the corresponding
problem can be handled in an open set Ω ⊂ Rn.

If p : Ω → [1,∞), then the p(·)-modulus of a curve family Γ of curves in Ω is
defined by

Mp(·)(Γ) = inf
u∈F (Γ)

∫
Ω

u(x)p(x)dx.

where F (Γ) is as in Section 2. Note that we can always take u = 0 in Rn \ Ω.
The extension of a function u ∈ W 1,p(·)(Ω) to a function ũ ∈ W 1,p̃(·)(Rn) involves

an extension of p to p̃ : Rn → [1,∞). In general this can be quite difficult, see [6,
Theorem 4.1] and [3, Section 4]. However, if u ∈ W 1,p(·)(Ω) has compact support in
Ω, then this can be done easily.

Theorem 4.6 (Fuglede’s Theorem in Ω)

Suppose that p : Ω → [1,∞) and 1 < p− ≤ p+ < ∞. If C1
0 (Ω)-functions are dense

in the set of functions in W 1,p(·)(Ω), with compact support in Ω, then

ACCp(·)(Ω) ∩ Lp(·)(Ω) = ACLp(·)(Ω) ∩ Lp(·)(Ω) = W 1,p(·)(Ω).
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Proof. Let u ∈ W 1,p(·)(Ω) and let U be an open set such that U is a compact subset
of Ω. We first show that u|U has a representative which is in ACCp(·)(U). Choose
a function ξ ∈ C∞

0 (Ω) such that 0 ≤ ξ ≤ 1 and ξ = 1 on U . Now uξ has compact
support in Ω. We define an extension of p by

p̃(x) =
{

p(x) , x ∈ Ω
2 , x ∈ Rn \ Ω.

Setting uξ = 0 outside Ω we find that

‖uξ‖1,p̃(·) = ‖uξ‖1,p(·)

where the first norm is taken in Rn and the second in Ω. As in the proof of Theorem 4.2
we conclude that uξ has a representative ũ such that ũ ∈ ACC p̃(·)(Rn). Since p(x) =
p̃(x) in U , ũ|U is a representative of u|U in W 1,p(·)(U) and ũ|U is also in ACCp(·)(U).

Let Γ be the family of curves on which u is not absolutely continuous. Let Ui be
an increasing sequence of open sets whose closures lie in Ω such that ∪ Ui = Ω. Let
Γi be the family of curves in Γ which lie wholly in Ui. Then Γ = ∪Γi. By the previous
argument, Mp(·)(Γi) = 0, hence by subadditivity Mp(·)(Γ) = 0. This completes the
proof. �
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