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Abstract

In this paper we generalize the self-adjoint differential operator (used by Cheng-
Yau) on hypersurfaces of a constant curvature manifold to general submanifolds.
The generalized operator is no longer self-adjoint. However we present its adjoint
operator. By using this operator we get the pinching theorem on Willmore sub-
manifolds which is analogous to the pinching theorem on minimal submanifold
of a sphere given by Simon and Chern-Do Carmo-Kobayashi.

§0. Introduction

Let M be an n-dimensional manifold isometrically immersed in sphere Sn+p of dimen-
sion n + p. Let h be the second fundamental form of this submanifold. We denote by
S the square of the length of h, by ~H the mean curvature vector, by | ~H| the length of
~H respectively. We define a nonnegative function ρ2 by

ρ2 = S − n| ~H|2 (0.1)

The Willmore functional W is defined by

W (M) =
∫

M
ρndM (0.2)

which is a conformal invariant under Möbius (or conformal) transformations of Sn+p

(see [2], [9], [10]). Recently, Changping Wang got the Euler-Lagrange equations in [9],
and Zhen Guo, Haizhong Li and Changping Wang got the second variation formula
in the framework of Möbius geometry [6]. At the same time, in [6], the authors gave
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Euler-Lagrange equations with Euclidean quantities as follows

− ρn−2[SHα + Hβhβ
ijh

α
ij − hα

ijh
β
ikh

β
kj − n| ~H|2Hα]

+ (n− 1)∆(ρn−2Hα)− (ρn−2),ij(nHαδij − hα
ij) = 0,

(0.3)

where hα
ij are the components of h with respect to a local orthonormal frame

{ei, eα; 1 ≤ i ≤ n, n + 1 ≤ n + p}

(ei is tangent to M and eα is normal to M) and Hα = 1
n

∑
i h

α
ii. In particular, when

p = 1 and n = 2, equation (0.3) reduces to the well-known form

∆H + 2H(H2 −K) = 0, (0.4)

where H and K are mean curvature and Gauss curvature. A Submanifold is called
Willmore submanifold if it satisfied equation (0.3). It is easy to see from (0.4) that
all minimal surfaces are Willmore surfaces. The nonminimal Willmore surfaces exist
in large quantities (see [1], [5] and [7]). However, in case n ≥ 3, there are minimal
submanifolds which are not Willmore submanifolds. For instance, Clifford minimal

hypersurfaces Mk = Sk(
√

k
n) × Sn−k(

√
n−k

n ) are not Willmore hypersurfaces if 2k 6=
n(cf. [6]). In [6], we proved that tori

Wn
k = Sk

(√
n− k

n

)
× Sn−k

(√
k

n

)
(0.5)

are Willmore hypersurfaces and are stable. We call Wn
k Willmore tori. It should be

shown that Veronese surface and Willmore tori satisfy ρ2 = n/(2− 1/p).
In this paper we characterize the tow Willmore submanifolds by using Euclidean

invariant ρ2. Our main result is stated as follows:

Main Theorem. Let M be an n-dimensional compact oriented Willmore sub-

manifold in an (n + p)-dimensional unit sphere, without umbilical point. Then∫
M

((
2− 1

p

)
ρ2 − n

)
ρndM ≥ 0. (0.6)

In particular, if ρ2 ≤ n/(2− 1/p), then ρ2 = n/(2− 1/p), and M is isometric to either

(i) Willmore tori Wn
k in Sn+1. or

(ii) Verones surface in S4.

We organize this paper as follows. For the purpose to prove main Theorem, we
define the operator � and the operator �∗ in §1, and prove they are adjoint with respect
to suitable inner product. It is very interesting that this operator appears naturally in
the equation satisfied by Willmore submanifolds. In §2 we present key lemmas and
formulas. In §3 we prove main Theorem.

§1. The operator � and its adjoint operator

Let M be an n-dimensional submanifold isometrically immersed in space form Nn+p(c)
with constant sectional curvature c. For each point P ∈ M , we choose a local orthonor-
mal frame field e1, · · · , en, en+1, · · · , en+p around P , such that e1, · · · , en are tangent
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to M . The corresponding dual frame field is denoted by {ω1, · · · , ωn, ωn+1, · · · , ωn+p}.
When restricted on M , ωα = 0. We make the following convention on the range of
indices:

1 ≤ i, j, k, · · · ≤ n;n + 1 ≤ α, β, γ · · · ≤ n + p,

and shall agree that repeated indices are summed over the respective ranges. Let
h = hα

ijωi ⊗ ωjeα denote the second fundamental form and ~H =
∑

α
1
n(
∑

i h
α
ii)eα the

mean curvature vector of M to N . Then we have Gauss equation

Rijkl = c(δikδjl − δilδjk) +
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk), (1.1)

Codazzi equation
hα

ij,k − hα
ik,j = 0, (1.2)

and Ricci equation

hα
ij,kl − hα

ij,lk = hα
imRmjkl + hα

mjRmikl + hβ
ijRβαkl, (1.3)

where
Rαβij = hα

ikh
β
kj − hβ

ikh
α
kj . (1.4)

For a section ξαeα of the normal bundle T⊥(M) we define the covariant derivative
ξα
,i of ξα by

ξα
,iωi = dξα + ξβωβα, (1.5)

and the covariant derivative ξα
,ij of ξα

,i by

ξα
,ijωj = dξα

,i + ξα
,jωji + ξβ

,iωβα, (1.6)

where ωij and ωαβ denote the connection forms on M and T⊥(M), respectively.
For a section φ = φα

ijωiωjeα of the vector bundle T⊥(M) ⊗ T ∗(M) ⊗ T ∗(M) we
can define its covariant derivative φα

ijk by

φα
ij,kωk = dφα

ij + φα
ikωkj + φα

kjωki + φβ
ijωβα. (1.7)

We denote the set of the smooth sections of normal bundle T⊥(M) by C∞(T⊥(M))
and the set of the smooth functions of M by C∞(M), and for each φ, define the operator

�∗
φ : C∞(T⊥(M)) → C∞(M)

by
�∗

φξ =
∑
α,i,j

φα
ijξ

α
,ij , (1.8)

where ξ = ξαeα is a section of T⊥(M). Since
∑

α,i,j φα
ijξ

α
,ij can be viewed as the inner

product < φ,∇2ξ > of tow tensors φ and ∇2ξ = ξα
,ijωiωjeα in C∞(T⊥M ⊗ T ∗M ⊗

T ∗M), the quantity is independence of the choice of the local orthonormal {ei, eα}.
We can also define another operator

�φ : C∞(M) → C∞(T⊥M)

by
�φf =

∑
α,i,j

φα
ijf,ijeα. (1.9)
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For any point q ∈ M , let < ,>q denote the inner product on T⊥q M (the fiber of T⊥M)
deduced by the metric of N . Then for any ξ, η ∈ C∞(T⊥M), since ξq, ηq ∈ T⊥q M , we
can define a function < ξ, η >∈ C∞(M) by < ξ, η > (q) =< ξq, ηq >q, and so can
define the global inner product ( , ) on C∞(T⊥M) by

(ξ, η) =
∫

M
< ξ, η > dM. (1.10)

Let the same symbol ( , ) denote the L2-inner product. Then we have.

Theorem 1.1

Let M be a compact oriented submanifold. If φ satisfies the conditions

(i) φα
ij = φα

ji, (ii)
∑

j

φα
ij,j = 0,

then �φ and �∗
φ are adjoint, which means

(�∗
φξ, f) = (ξ, �φf). (1.11)

Proof. By a direct computation we have

f�∗
φξ =

∑
α,i,j

fφα
ijξ

α
ij =

∑
j

(
f
∑
α,i

φα
ijξ

α
i

)
,j
−
∑

i

(∑
α,j

f,jφ
α
ijξ

α
)

,i

+
∑
α,i,j

f,ijφ
α
ijξ

α +
∑
α,i,j

f,jφ
α
ij,iξ

α −
∑
α,i,j

fφα
ij,jξ

α
,i .

(1.12)

Substituting the conditions (i) and (ii) into (1.12) and making use of Green’s Theorem,
we get ∫

M
f�∗

φξdM =
∫

M
< �φf, ξ > dM.

This completes the proof of (1.11).
Now we take

φα
ij = mHαδij − hα

ij , (1.13)

then this φ satisfies the conditions in Theorem 1.1 by Codazzi equation (1.2). Let �
and �∗ denote the operators corresponding to φ defined by (1.8) and (1.9). Then

(�∗ξ, f) = (ξ,�f) (1.14)

and ∫
M

�∗ξ = 0 (1.15)

holds. �

Remark. In case p = 1, the operator � is essentially the operator given by Cheng and
Yau in [3]. The only difference is: the operator acts on C∞(M), not on the set of the
sections of T⊥M . However, in this case, we have a bijective mapping C∞(T⊥M) 3
ξ = fen+1 ↔ f ∈ C∞(M). By substituting f for fen+1, we see that � is exactly the
operator defined by Cheng-Yau.
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§2. The formulas and the lemmas

Let ~H =
∑

α Hαeα, where Hα = 1
n

∑
i h

α
ii. Then we have∑

k

hα
kk,i = nHα

,i , (2.1)

and ∑
k

hα
kk,ij = nHα

,ij . (2.2)

It is easy to check that

hα
ijh

α
kk,ij = −n�∗ ~H + n2Hα∆Hα, (2.3)

where ∆ denotes the Laplacian operator, which means that for a function f,∆f =∑
i f,ii; for a normal vector field ξαeα,∆ξα =

∑
i ξ

α
,ii; and for tensor hα

ijωiωjeα, ∆hα
ij =∑

k hα
ij,kk.
On the other hand, we have

1
2
∆| ~H|2 =

1
2
∆
∑
α

(Hα)2 = Hα∆Hα + |∇ ~H|2, (2.4)

where we denote the gradient operator by ∇ and define the normal |∇ ~H| of ∇ ~H =
Hα

i ωieα by

|∇ ~H|2 =
∑
i,α

(Hα
,i )

2. (2.5)

Remark. It should be noted that, in general, |∇ ~H|2 6= |∇| ~H||2.
From (2.3) and (1.3), we have

hα
ij∆hα

ij = −n�∗ ~H + n2Hα∆Hα+hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk + hα

ijh
β
kiRβαjk.

(2.6)
From (2.4) and (2.6) We have

1
2∆ρ2 = −n�∗ ~H + |∇h|2 − n|∇ ~H|2 + n(n− 1)Hα∆Hα

+ hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk + hα

ijh
β
kiRβαjk,

(2.7)

where ρ2 = S − n| ~H|2. Noting that ∆ is self-adjoint and �∗ and � are adjoint, with
respect to inner - product defined in Theorem 1.1, we get the following key formula

1
2(ρn−2,∆ρ2) = −n( ~H, �ρn−2) + n(n− 1)( ~H, ∆(ρn−2 ~H))

+ (ρn−2, |∇h|2 − n|∇ ~H|2 + hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk + hα

ijh
β
kiRβαjk).

(2.8)

Remark. It is very interesting that the quantity

( ~H,�ρn−2)− (n− 1)( ~H,∆(ρn−2 ~H))

appears naturally in the equation satisfied by Willmore submanifolds.
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Lemma 2.1

|∇h|2 − n|∇ ~H|2 ≥ 0, (2.9)

and the equality holds if and only if ∇h = 0.

Proof. Set a tensor F by

Fα
ijk = hα

ijk −
n

n + 2
{Hα

,i δjk + Hα
,jδik + Hα

,kδij}. (2.10)

It is to check that

|F |2 =
∑
αijk

(Fα
ijk)

2 = |∇h|2 − 3n2

n + 2
|∇ ~H|2. (2.11)

Thus, we have

|∇h|2 − n|∇ ~H|2 = |F |2 +
2(n− 1)
n + 2

|∇ ~H|2 ≥ 2(n− 1)
n + 2

|∇ ~H|2 ≥ 0. (2.12)

From (2.2) one can see that |∇h|2 − n|∇ ~H|2 = 0 implies ∇h = 0. �

§3. Willmore submanifolds in unit sphere Sn+p

Let Mn be a submanifold of an n+p-dimensional unit sphere Sn+p. Willmore function
W (M) is defined by (0.2). Then M is a Willmore submanifold (it is a critical subma-
nifold of the Willmore function W (M)) if and only if, for any α with n+1 ≤ α ≤ n+p,

− ρn−2[SHα + Hβhβ
ijh

α
ij − hα

ijh
β
ikh

β
kj − n| ~H|2Hα]

+ (n− 1)∆(ρn−2Hα)− (ρn−2),ij(nHαδij − hα
ij) = 0.

(3.1)

Multiplying this equation by Hα and taking the sum for all α′s, and then taking its
integration we have

(n− 1)(∆(ρn−2 ~H), ~H)− (�ρn−2, ~H)

= (ρn−2, [S − n| ~H|2]| ~H|2 + Hβhβ
ijh

α
ijH

α −Hαhα
ijh

β
ikh

β
kj).

(3.2)

Substituting (3.2) into (2.8) and using Lemma 2.1, we get the following theorem.

Theorem 3.1

Suppose Mn is a compact oriented Willmore submanifold in Sn+p. Then

0 ≥
∫

M
ρn−2{nρ2| ~H|2 + nHβhβ

ijh
α
ijH

α − nHαhα
ijh

β
ikh

β
kj

+hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk + hα

ijh
β
kiRβαjk}dM.

(3.3)
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Set
Q = nρ2| ~H|2 + nHβhβ

ijh
α
ijH

α − nHαhα
ijh

β
ikh

β
kj

+hα
ijh

α
kmRmijk + hα

ijh
α
miRmkjk + hα

ijh
β
kiRβαjk.

(3.4)

Let Aα denotes the matrix (hα
ij)n×n. From the Gauss equation, we have

Q = nρ2| ~H|2 + nρ2 +
∑
α,β

HαHβtr(AαAβ)

−
∑
α,β

tr[(AαAβ −AβAα)(AβAα −AαAβ)]−
∑
α,β

(tr(AαAβ))2.
(3.5)

Let

Bα = Aα −HαI,

where I is the unit matrix. Thus we can rewrite Q as follow

Q = nρ2| ~H|2 − nHαHβtr(BαBβ)

+nρ2 − tr[(BαBβ −BβBα)(BβBα −BαBβ)]−
∑
α,β

[tr(BαBβ)]2. (3.6)

Set

Lαβ = tr(BαBβ). (3.7)

Then the p × p matrix (Lαβ) is symmetric and can be assumed to be diagonal for a
suitable choice of en+1, · · · , en+p. We set

Lα = Lαα, (3.8)

then

ρ2 =
∑
α

Lα. (3.9)

So we have
nρ2| ~H|2 − nHαHβtr(BαBβ)=

∑
α

(Hα)2(ρ2 − Lα)

=
∑
α

(Hα)2
(∑

β 6=α

Lβ

)
≥ 0.

(3.10)

And the equality implies HαLβ = 0, α 6= β.

Lemma 3.1 (see [4], [8])

tr[(BαBβ −BβBα)(BβBα −BαBβ)] +
∑
α,β

[tr(BαBβ)]2 ≤ (2− 1/p)ρ4. (3.11)

and equality implies one of the following (i) and (ii).

(i) p = 1,

(ii) If p ≥ 2, then p must be 2. After a suitable renumbering of the en+1, en+2, we

have Bn+1 = λÃ,Bn+2 = µB̃, λµ 6= 0,

where
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Ã =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
. . . . . . . . . . . . .
0 0 0 · · · 0

 , B̃ =


1 0 0 · · · 0
0 − 1 0 · · · 0
0 0 0 · · · 0
. . . . . . . . . . . . . . .
0 0 0 · · · 0

 . (3.12)

From (3.10) and (3.11) we get

Q ≥ ρ2(n− (2− 1
p
)ρ2). (3.13)

Lemma 3.2

Let M be an n-dimensional compact oriented Willmore submanifold in an (n+p)-
dimensional unit sphere. Then∫

M

((
2− 1

p

)
ρ2 − n

)
ρndM ≥ 0, (3.14)

and equality implies ∇h = 0 and one of the following (a) and (b):

(a) p = 1,

(b) p ≥ 2, ~H = 0.

Proof. Since the equality of (3.14) holds implies that equalities of (3.3), (3.10) and
(3.11) hold, we see that ∇h = 0 comes from Theorem 3.1, ~H = 0 comes from (3.10)
and (ii) of Lemma 3.1. This completes the proof of Lemma 3.2. �

Proof of the Main Theorem. If p = 1, then from Lemma 3.2, M is a hypersurface
with parallel second fundamental form, and it is known that M is either total geodesic
or M = Sk(a) × Sn−k(b), a2 + b2 = 1. Since M satisfies Willmore condition (3.1), by

using Theorem 3.1 in our paper [6] we have a =
√

n−k
n and b =

√
k
n .

If p ≥ 2, then from Lemma 3.2, we know M is minimal with S = ρ2 = n/(2−1/p).
Following Chern, Do Carmo and Kobayashi’ the result in [4], we know M is Veronese
surface. This completes the proof of the main Theorem. �
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