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Willmore submanifolds in the unit sphere
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ABSTRACT

In this paper we generalize the self-adjoint differential operator (used by Cheng-
Yau) on hypersurfaces of a constant curvature manifold to general submanifolds.
The generalized operator is no longer self-adjoint. However we present its adjoint
operator. By using this operator we get the pinching theorem on Willmore sub-
manifolds which is analogous to the pinching theorem on minimal submanifold
of a sphere given by Simon and Chern-Do Carmo-Kobayashi.

§0. Introduction

Let M be an n-dimensional manifold isometrically immersed in sphere S™"*? of dimen-
sion n + p. Let h be the second fundamental form of this submanifold. We denote by
S the square of the length of h, by H the mean curvature vector, by |ﬁ | the length of
H respectively. We define a nonnegative function p? by

p? =S —n|H|? (0.1)
The Willmore functional W is defined by

W (M) = /M prdM (0.2)

which is a conformal invariant under Mobius (or conformal) transformations of S™1?
(see [2], [9], [10]). Recently, Changping Wang got the Euler-Lagrange equations in [9],
and Zhen Guo, Haizhong Li and Changping Wang got the second variation formula
in the framework of Mébius geometry [6]. At the same time, in [6], the authors gave
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Euler-Lagrange equations with Euclidean quantities as follows

— p"PISH® + HPhjhs — hishy hy; — n|H[PH®) (0.3)
+(n = DA 2H®) = (0"7%) 55 (nH*6;; — hfy) = 0,

where h?j are the components of h with respect to a local orthonormal frame
{enea;l <i<nn+1<n+p)

(e; is tangent to M and eq is normal to M) and H* = 1 3" h%. In particular, when
p =1 and n = 2, equation (0.3) reduces to the well-known form

AH +2H(H? - K) =0, (0.4)

where H and K are mean curvature and Gauss curvature. A Submanifold is called
Willmore submanifold if it satisfied equation (0.3). It is easy to see from (0.4) that
all minimal surfaces are Willmore surfaces. The nonminimal Willmore surfaces exist
in large quantities (see [1], [5] and [7]). However, in case n > 3, there are minimal
submanifolds which are not Willmore submanifolds. For instance, Clifford minimal

hypersurfaces M), = S* (\/%) x S"R(4/ "Tfk) are not Willmore hypersurfaces if 2k #
n(cf. [6]). In [6], we proved that tori

W = gk ( ”;k> « gk ( S) (0.5)

are Willmore hypersurfaces and are stable. We call W;* Willmore tori. It should be
shown that Veronese surface and Willmore tori satisfy p? = n/(2 — 1/p).

In this paper we characterize the tow Willmore submanifolds by using Euclidean
invariant p?. Our main result is stated as follows:

Main Theorem. Let M be an n-dimensional compact oriented Willmore sub-
manifold in an (n + p)-dimensional unit sphere, without umbilical point. Then

/M <(2 . ;>p2 - n) phdM > 0. (0.6)

In particular, if p?> <n/(2 — 1/p), then p*> = n/(2 —1/p), and M is isometric to either
(i) Willmore tori W' in S"*1. or
(i) Verones surface in S*.

We organize this paper as follows. For the purpose to prove main Theorem, we
define the operator [J and the operator [1* in §1, and prove they are adjoint with respect
to suitable inner product. It is very interesting that this operator appears naturally in
the equation satisfied by Willmore submanifolds. In §2 we present key lemmas and
formulas. In §3 we prove main Theorem.

§1. The operator [J and its adjoint operator

Let M be an n-dimensional submanifold isometrically immersed in space form N"*?(c)
with constant sectional curvature c. For each point P € M, we choose a local orthonor-
mal frame field e, -+ ,en,€n41, -+, €nqp around P, such that eq,--- , e, are tangent
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to M. The corresponding dual frame field is denoted by {wi, -+, wn,wnt1, - ,Wnip}-
When restricted on M, w, = 0. We make the following convention on the range of
indices:

and shall agree that repeated indices are summed over the respective ranges. Let
h = hfjw; ® wjeq denote the second fundamental form and H=Y o =32, hS)eq the
mean curvature vector of M to N. Then we have Gauss equation

Rijr = c(6idji — 6udjn) + Z(h% 51— hith5)s (1.1)

Codazzi equation
ik — Pik; =0, (1.2)
and Ricci equation

W ga = 155k = P Rt + T Ronit + 1 Rkt (1.3)
where
Ragij = hiyhy, — hichsy. (1.4)

For a section £%e,, of the normal bundle T+ (M) we define the covariant derivative
£ of €% by

Gwi = de* + EPwpa, (1.5)
and the covariant derivative £7; of 5 by
Giwi = d€5 + §Gwii —i—§ S Whas (1.6)

where w;; and w,g denote the connection forms on M and T(M), respectively.
For a section ¢ = ¢fwwjeq of the vector bundle TH(M) @T*(M) @ T*(M) we
can define its covariant derlvatlve o5 Uk by

G5k = Aoy + Ofwig + Sijwni + B1jwpa- (17)
We denote the set of the smooth sections of normal bundle T+ (M) by C>(T+(M))
and the set of the smooth functions of M by C°°(M), and for each ¢, define the operator
05 C®(TH(M)) — C=(M)
by
|:|¢§ Z ¢ z]v (18)

« Z,j
where £ = £%,, is a section of T+(M). Since Y, ij 95:€5; can be viewed as the inner
product < ¢, V2£ > of tow tensors ¢ and V¢ = 5 wlw]ea in C®(T+*M @ T*M ®
T*M), the quantity is independence of the choice of the local orthonormal {e;, e }.
We can also define another operator

Oy: C®(M) — C®(T+M)

Usf = Z¢%f,ijea- (1.9)

a7z’-]
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For any point ¢ € M, let <, >, denote the inner product on TqLM (the fiber of T+-M)
deduced by the metric of N. Then for any &,1 € C(T+M), since £qg>Mq € TqLM, we
can define a function < &,n >€ C®°(M) by < &,n > (q) =< &;,1nq >4, and so can
define the global inner product ( , ) on C®(T+M) by

(fm)z/M<€m>dM. (1.10)

Let the same symbol ( , ) denote the L%-inner product. Then we have.

Theorem 1.1

Let M be a compact oriented submanifold. If ¢ satisfies the conditions
(@) ¢f =i (@) 0%, =
J
then Uy and D:; are adjoint, which means

(Og¢, ) = (&, 0sf). (1.11)

Proof. By a direct computation we have

o5 =3 fagies = > (1o 05er)  — 20 (X faehe) |
J

Oéﬂ’,j ] 0471' i @,
+ D FutE + D fi05E" = D L8

a’lhj a’lhj a7l7j

(1.12)

Substituting the conditions (i) and (ii) into (1.12) and making use of Green’s Theorem,
we get

/M fOsedM = /M < Oyf, &> dM.

This completes the proof of (1.11).
Now we take

(;5% = mHaéij - h%, (113)
then this ¢ satisfies the conditions in Theorem 1.1 by Codazzi equation (1.2). Let O
and [0* denote the operators corresponding to ¢ defined by (1.8) and (1.9). Then

(O°¢, f) = (&,0/) (1.14)
and
/ 0% =0 (1.15)
M
holds. O

Remark. In case p = 1, the operator [ is essentially the operator given by Cheng and
Yau in [3]. The only difference is: the operator acts on C*° (M), not on the set of the
sections of 7M. However, in this case, we have a bijective mapping C(T+M) >
& = feny1 <« f € C®°(M). By substituting f for fe,t1, we see that [ is exactly the
operator defined by Cheng-Yau.
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§2. The formulas and the lemmas

Let H =Y, H%,, where H* = L5, h. Then we have
Z h i = (2.1)

and
> hitkag = nH. (2:2)
It is easy to check that '
hehgy i = —nO*H + n* H*AH®, (2.3)
where A denotes the Laplacian operator, which means that for a function f,Af =
> fii; for a normal vector field £%q, ALY = 3, £%;; and for tensor hfjwiwjeq, Ahg; =
ok he ke

On the other hand, we have

1 _’2_1 a2 _ pra a 712
A = QAZQ:(H )2 = H*AH® + |VH|?, (2.4)

where we denote the gradient operator by V and define the normal |Vﬁ | of VH =
Hwieq by
IVH|> =Y (H$). (2.5)

7,0

Remark. It should be noted that, in general, [VH|? # |V|H]||2.
From (2.3) and (1.3), we have

he ARG = —n*H + n? H* AH+hh Riniji, + sy R + h s Raajic.
(2.6)
From (2.4) and (2.6) We have

TAp? = —nO*H + |Vh|> — n|VH? + n(n — 1) H*AH®
(2.7)
+ h‘a hkaijk + h‘w hmszkjk + h%hZiRﬂajk7

where p? = S — n|ﬁ |2. Noting that A is self-adjoint and [J* and O are adjoint, with
respect to inner - product defined in Theorem 1.1, we get the following key formula

30" Ap) = —n(H,0p"2) 4 nn — 1)(H, A(p"2H)) 28)
+ (P4 |Vh? = n|VH? + Wi e Bk + 5 hoi Bmkjk -+ hi; hk@R’g‘”k)

Remark. It is very interesting that the quantity
(H,0p"2) — (n — 1)(H, A(p"2H))

appears naturally in the equation satisfied by Willmore submanifolds.
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Lemma 2.1
IVh|> = n|VH? >0, (2.9)
and the equality holds if and only if Vh = 0.

Proof. Set a tensor F' by

n
i?k = ?jk — 771 n Q{Hgéjk + H?élk + H,O/éfdlj} (210)
It is to check that
2 a \2 2 3n° 712
FI? = (F3)? = VA - IVHI". (2.11)
— n—+ 2
aijk
Thus, we have
2 72 2, 2(n—1) 2o 2(n—1) _ =9
|Vh|* —n|VH|* = |F|*+ ——*|VH|* > ———~|VH|* > 0. (2.12)
n-+ 2 n—+ 2

From (2.2) one can see that |VA|2 — n|VH|? = 0 implies VA = 0. O

§3. Willmore submanifolds in unit sphere S™*?

Let M™ be a submanifold of an n+ p-dimensional unit sphere S™*?. Willmore function
W (M) is defined by (0.2). Then M is a Willmore submanifold (it is a critical subma-
nifold of the Willmore function W (M)) if and only if, for any o with n+1 < o < n+p,

— p"2[SH® + HPR S — he b by — n| H[2HY|

(3.1)
+ (n = 1)A(p"H*) — (p" %) i;(nH*6;5 — hy) = 0.

Multiplying this equation by H* and taking the sum for all o’s, and then taking its
integration we have

(n = 1)(A(p"2H), H) - (Op" 2, H)

= (p" 2, [S —n|HH? + Hﬁhfjhgjm _ H“h%hfkh’,fj).

(3.2)
Substituting (3.2) into (2.8) and using Lemma 2.1, we get the following theorem.

Theorem 3.1

Suppose M™ is a compact oriented Willmore submanifold in S™*P. Then

—2( 2| 772 B BB
OZ/Mp" {np*|H| +nHﬁhijh%Haanah%hikhkj (3:3)

HhE RS Runiji + h&ho; Ry + hSs i, Roa i ydM.
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Set

Q = npleIQ + nHﬁhfjh%Ha - nHah?jhiﬁkh,gj (3 4)
+hijhiem Bmijk + hijhoi Rmkje + h%hgiRﬁajk'

Let A, denotes the matrix (h%)nxn From the Gauss equation, we have

Q =np*|H|?> +np*+> HYHPtr(AA
8

a,B
N Z tr{(AaApg — AgAa)(ApAa — AaAp)] — Z(tT(AaA,@))2. (3.5)
o,B o

Let
B, = A, — H"I,

where [ is the unit matrix. Thus we can rewrite @) as follow

Q =np*lH|? - nH*HPtr(B,Bg)
+1p” = tr((BaBg — B3Ba)(BsBa — BaBg)] — > _[tr(BaBg))2. (3.6)
a?ﬁ
Set

Log = t?“(BaBg). (3.7)

Then the p x p matrix (Log) is symmetric and can be assumed to be diagonal for a
suitable choice of e, 41, ,enqp. We set

Lo = Loa, (3.8)

then

PP =) L. (3.9)

So we have
np?|H|? — nH*HPtr(BoBg)= Y (H*)*(p* — La)

And the equality implies H*Lg = 0, o; B.
Lemma 3.1 (see [4], [8])
tr((BaBs — BsBa)(BsBa — BaBg)] + %{thaBg)P <@-1/pp' (311

and equality implies one of the following (i) and (ii).

(i) p=1,
(ii) Ifp > 2, then p must be 2. After a suitable renumbering of the e, 1, €py2, We
have B, 11 = AA, Bpyo = uB, Ap # 0,

where
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01 0 0 1 0 0 0
100 0 o 10 0
A=|o0 0 0 o, B={oo o 0 (3.12)
0 0 O 0 0 0 0 0
From (3.10) and (3.11) we get
1
Q>p*(n—(2- ];)/P)- (3.13)

Lemma 3.2

Let M be an n-dimensional compact oriented Willmore submanifold in an (n+p)-
dimensional unit sphere. Then

/M ((2 - ;);ﬂ - n> prdM > 0, (3.14)

and equality implies Vh = 0 and one of the following (a) and (b):

(@) p=1,
(b) p>2,H=0.

Proof. Since the equality of (3.14) holds implies that equalities of (3.3), (3.10) and
(3.11) hold, we see that Vh = 0 comes from Theorem 3.1, H = 0 comes from (3.10)
and (ii) of Lemma 3.1. This completes the proof of Lemma 3.2. O

Proof of the Main Theorem. If p = 1, then from Lemma 3.2, M is a hypersurface
with parallel second fundamental form, and it is known that M is either total geodesic
or M = S¥(a) x S"7*(b),a® + b*> = 1. Since M satisfies Willmore condition (3.1), by

using Theorem 3.1 in our paper [6] we have a = / ”Tfk and b = \/% .

If p > 2, then from Lemma 3.2, we know M is minimal with S = p? = n/(2—1/p).
Following Chern, Do Carmo and Kobayashi’ the result in [4], we know M is Veronese
surface. This completes the proof of the main Theorem. [
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