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Abstract

We find some ranges for the4-tuples of integers(d, g, n, r) for which there is
a smooth connected non-degenerate curve of degreed and genusg, which is
k-normal for everyk ≤ r.

1. Introduction

Our starting point was the following very natural question:

Question 1.1 For what triples of integers (d, g, n) there is a smooth connected non-

degenerate and linearly normal curve in Pn of degree d and genus g?
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(Here Pn denotes the n-dimensional projective space over an algebraically closed
field).

For n = 3 this question was raised in [13], Problem 4d.4.
Several papers were devoted to this question without the linear normality assump-

tion, the so called Halphen existence problem (see, for example, [10], [12], [23], [5], [4],
[20], [21], [18], [15]).

A complete answer to Question 1.1 is known for n ≤ 5 (see [7] and [22]). For
n ≥ 6 some ranges are known for which the answer is positive (see for example [5]).
Further ranges can be found easily from [4] and [21], as communicated to us by O.
Păsărescu.

In this paper we deal with a more precise question, looking for the k-normal
curves, where k ≥ 1. We recall the definition.

Definition 1.2. Let k be a positive integer and let C ⊂ Pn be a curve (i.e. a locally
Cohen-Macaulay equidimensional subscheme of dimension 1). We will say that C is
k-normal if the restriction map ρC,k : H0(Pn,OPn(k)) → H0(C,OC(k)) is surjective.

We will say that C is strongly k-normal if the restriction map

ρC,j : H0(Pn,OPn(j)) → H0(C,OC(j))

is surjective for every j ≤ k.
Clearly C is k-normal if and only if H1(C, IC(k)) = 0 and is strongly k-normal if

and only if H1(C, IC(j)) = 0 for every j ≤ k.
A 1-normal curve is also called linearly normal.

The precise question we address in this paper is:

Question 1.3 Given a triple of integers (d, g, n) find an integer r := r(d, g, n) ≥ 1

such that there is a smooth connected non-degenerate and strongly r-normal curve in

Pn having degree d and genus g.

We give answers in a number of cases, where r is easy to compute, and is also
sharp with respect to curves lying on some particular kind of surfaces.

Our first result is the following Theorem, which holds in characteristic zero.

Theorem 1.4 Fix integers d, g, n such that n ≥ 3 and 0 ≤ d−n < g < d2

4(n−1) −
n−1

4 .

Set r :=
⌊

d−
√

d2−4(n−1)g

2(n−1)

⌋
, d0 := d− 2(n− 1)r, g0 := (n− 1)r2 − dr + g. Then:

(i) r ≥ 1 and 0 ≤ g0 ≤ d0 − n;

(ii) (characteristic zero) there is a strongly r-normal smooth connected non-

degenerate curve C ⊂ Pn of degree d and genus g, lying on a K3 surface

of degree 2(n− 1) and satisfying:

(a) h0(C,OC(j)) = (n− 1)j2 + 2 for 1 ≤ j ≤ r;

(b) h1(C, IC(r + 1)) = d0 − n− g0.

In particular C is not strongly (r + 1)-normal if and only if g0 < d0 − n.
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Theorem 1.4 applies in particular when n = 3; for n ≥ 4 we have the following
Theorem which holds in arbitrary characteristic, and covers some different ranges for
the triple (d, g, n).

Theorem 1.5 Fix integers d, g, n such that n ≥ 4 and n− 1 ≤ d− n < g. Then:

(i) If n = 4, assume g ≤ d2−2d−9
12 and set r :=

⌊
d−1−

√
(d−1)2−12g

6

⌋
. Then r ≥ 1,

and there is a strongly r-normal (not strongly (r+1)-normal) smooth connected

non-degenerate curve C ⊂ P4 of degree d and genus g lying on a Bordiga surface

of degree 6 satisfying h0(C,OC(j)) = 3j2 + j + 1, for 1 ≤ j ≤ r.

(ii) If n = 5, assume g ≤ d2−3d−12
14 and set r :=

⌊
2d−3−

√
(2d−3)2−56g

14

⌋
. Then r ≥ 1,

and there is a strongly r-normal (not strongly (r+1)-normal) smooth connected

non-degenerate curve C ⊂ P5 of degree d and genus g lying on a Bordiga surface

of degree 7 satisfying h0(C,OC(j)) = 7
2j2 + 3

2j + 1, for 1 ≤ j ≤ r.

(iii) If n ≥ 6 after setting δ := 3 if n = 6 and δ := 4 if n ≥ 7, assume

g < (d−n)(d+n−δ)
4n−2δ . Set r :=

⌊
d−δ−

√
(d−δ)2−8(2n−δ)g

4n−2δ

⌋
. Then r ≥ 1, and there

is a strongly r-normal (not strongly (r + 1)-normal) smooth connected non-

degenerate curve C ⊂ Pn of degree d and genus g lying on a smooth rational

surface of degree 2n − δ and satisfying h0(C,OC(j)) = 2n−δ
2 j2 + δ

2j + 1, for

1 ≤ j ≤ r.

We observe that the bound for g in item (iii) of Theorem 1.5 is weaker than the
bound g ≤ (d−n)2

4n−2δ given in [5], hence Theorem 1.5 produces also a wider range for the
Halphen existence problem.

2. The proofs

We begin with an easy but useful method to construct smooth strongly r-normal
curves.

Remark 2.1. Recall that if S ⊆ Pn is an arithmetically Cohen-Macaulay (aCM for
short) surface and H is its hyperplane divisor, then H1(OS(jH)) = H2(IS(jH)) = 0
for every j ∈ Z. In particular H1(OS) = 0, that is S is regular.

It follows also that if C0 ⊂ S is a curve, then for any j ∈ Z the linear system
|C0 + jH| cuts out on C0 a complete linear series, as one can see from the exact
sequence:

0 → H0(OS(jH)) → H0(OS(C0 + jH)) → H0(OC0(jH + C0))
→ H1(OS(jH)) = 0.

In particular h0(OS(C0 + jH)) = 0 if and only if h0(OC0(jH + C0)) = 0.

Proposition 2.2

Let S ⊆ Pn be a smooth aCM surface of degree s and sectional genus π, and let

H be a hyperplane divisor of S. Let C0 ⊆ S be a reduced curve of degree d0 and
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arithmetic genus g0 and denote by c the number of connected components of C0. Let

r > 0 be an integer and let C ∈ |C0 + rH|. Then

(i) d := deg C = d0 + rs, and

pa(C) = g0 + rd0 + sr(r−1)
2 + r(π − 1), or equivalently

pa(C) = g0 + (d− s
2 + π − 1)r − s

2r2.

(ii) C is strongly (r− 1)-normal and h1(IC(r)) = c− 1; in particular C is strongly

r-normal if and only if C0 is connected. Moreover C is (r + 1)-normal if and

only if C0 is linearly normal.

(iii) A general C ∈ |C0 + rH| is smooth irreducible in any of the following cases:

(iiia) |C0| is base-point free;

(iiib) KS = 0, C0 is smooth irreducible and g0 > 0;

(iiic) KS = 0, C0 is smooth, g0 = 0, d0 ≥ 2 and either r ≥ 2 or the characteristic

is zero;

(iiid) C0 = L1 + · · · + Lc, where L1, . . . , Lc are pairwise disjoint straight lines

with self-intersection − 1, and either r ≥ 2 or the characteristic is zero.

Proof. (i) The computation of deg C is obvious. Moreover from the adjunction formula
we get first KS ·H = 2π − 2− s and then the expression for pa(C).

(ii) If C0 is reduced we have h1(IC0(j)) = 0 for j < 0 and h1(IC0) = c − 1.
We have also that C0 is linearly normal if and only if H1(IC0(1)) = 0. Moreover by
Gorenstein liaison (see [17], Corollary 5.3.4) we have H1(IC0(j)) = H1(IC(j + r)) for
every j ∈ Z, whence the conclusion.

(iii) If we are in case (iiia) it is easy to see that |C0 + rH| is very ample and the
conclusion follows.

Assume (iiib). Then the linear system |C0| cuts out on C0 the complete canonical
series (see Remark 2.1). Hence if g0 > 0 it follows that |C0| has no base points on C0,
whence has no base points. Then the previous case applies.

For the remaining cases it is sufficient to show that |C0 + rH| is base-point free
whenever r ≥ 1. Indeed if r = 1 one can use Bertini and if r > 1 case (iiia) applies
with r replaced by r − 1 and C0 replaced by a general curve of |C0 + rH|.

Assume (iiic). By Remark 2.1 the linear system |C0 + rH| cuts out on C0 a
complete linear series. Since C2

0 = −2 by adjunction, this linear series has degree
rd0 + C2

0 ≥ d0 − 2 ≥ 0 and hence it is base-point free, being C0 rational. This easily
implies that |C0 + rH| is base-point free, as claimed.

Now assume (iiid). Let 1 ≤ t ≤ c and set Yt := E1 + · · · + Et. Observe that
(Yt + rH) · Ej = r − 1 ≥ 0 for every j = 1, . . . , t and (Yt + rH) · Ej = r > 0 for
j = t + 1, . . . , c. Since Ej is rational it follows that H1(OEj (C0 + rH)) = 0 for every
j, whence the exact sequence

· · · → H1(OS(Yt + rH − Ej)) → H1(OS(Yt + rH)) → 0

and since S is aCM it follows easily by induction on t that H1(OS(Yt + rH)) = 0.
By the above observation it follows that the linear system |C0 + rH| cuts out on

every Ej (j = 1, . . . c) a complete linear series of non-negative degree, whence |C0+rH|
is base-point free (e.g. see the argument for the case (iiib)). �
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Lemma 2.3 below allows to compute the postulation of the linear series cut out
on a k-normal curve lying on a aCM surface S by the linear system |kH|, where H is a
hyperplane divisor on S. This Lemma will be needed in the proofs of both Theorem 1.4
and Theorem 1.5.

Lemma 2.4 shows that some K3 smooth surfaces are aCM, and this allows to
apply our Proposition 2.2, in order to prove Theorem 1.4.

Lemma 2.3

Let S ⊆ Pn be an aCM surface of degree s, sectional genus π and let H be a

hyperplane divisor of S. Let C ⊆ S be a k-normal curve and assume that the linear

systems |kH −C| and |KS − kH| are non-effective. Then h0(OC(k)) = s
2k2 + ( s

2 − π +
1)k + pa(S) + 1.

Proof. Since S is aCM we have H1(OS(C − kH)) = H1(IC(k)) = 0. Hence from the
exact sequence 0 → OS(kH − C) → OS(kH) → OC(kH) → 0 we get h0(OC(k)) =
h0(OS(k)).

Now we have H1(OS(k)) = H2(IS(k)) = 0 since S is aCM and H2(OS(k)) =
H0(OS(KS − kH)) = 0 by assumption. Then h0(OC(k)) = χ(OS(k)) and the conclu-
sion follows easily by using the hyperplane sequence. �

Lemma 2.4

Any smooth K3 surface S ⊂ Pn (n ≥ 3) of degree 2n− 2 is non-degenerate, aCM

and has sectional genus n.

Proof. Let H = S ∩ L be a general hyperplane section of S. Since KS = 0 and
H1(OS) = 0 the linear system |L| cuts out on H the complete canonical series, whence
the embedding H ⊂ L is the canonical model of H. In particular H ⊂ L is non-
degenerate and projectively normal (see e.g. [1]), whence S is non-degenerate and
aCM. The last assertion is obvious. �

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. (i) Consider the real polynomial g(x) := (n−1)x2−dx+ g

and let ∆ be its discriminant.
Since ∆ > (n − 1)2 and g(1) ≥ 0, g has two real roots x1 and x2 with 1 ≤ x1 <

x2 − 1. By assumption r := bx1c, whence r ≥ 1, g(r) ≥ 0 and g(r + 1) < 0. The
conclusion follows since g0 = g(r) and g(r + 1) = g0 − d0 + n− 1.

(ii) An easy calculation shows that g0 ≤ d0−n implies g0 <
d2
0

4(n−1) and (d0, g0) 6=
(2n−1, n). Hence by [15], Theorem 4.6 (see also [18] for n = 3) there are a smooth K3
surface S ⊆ Pn of degree 2(n − 1) and a smooth connected curve C0 ⊆ S of genus g0

and degree d0 such that Pic(S) is freely generated by the classes of C0 and H, where
H is a hyperplane divisor (here characteristic zero is needed).

The surface S is non-degenerate, has sectional genus n and is aCM by Lemma 2.4.
Let C be a general curve in the linear system |C0 +rH|. Then C is smooth, connected,
of degree d and genus g and strongly r-normal by Proposition 2.2 (i), (ii), (iiib), (iiic),
and satisfies (a) by Lemma 2.3.
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In order to prove (b) we use first the above mentioned structure of Pic(S) to
show that H0(OS(C0 −H)) = H0(OS(H −C0)) = 0 (see [3], proof of Proposition 5.7,
with obvious changes). In particular C0 is non-degenerate. Moreover by Remark 2.1
we have h0(OC0(C0 −H)) = 0, whence C0 is non-special, since ωC0 = OC0(C0). Then
h0(OC(1)) = d0 − g0 + 1, and the conclusion follows easily. �

Now we need some prepapatory results, in order to prove Theorem 1.5.

Lemma 2.5

Let S ⊂ Pn (n ≥ 4) be a smooth, regular, non-degenerate, linearly normal surface

of degree s and sectional genus π. Assume s ≥ 2π + 1. Then S is aCM.

Proof. Let H := S ∩L be a general hyperplane section. Since h1(OS) = 0, H ⊂ L is a
linearly normal curve of degree s ≥ 2π +1 = 2pa(H)+1. By [2] or [16] or [19] (see the
introduction of [9]) or [9], Theorem 1, the embedding of H in L is projectively normal.
Hence S is aCM. �

Corollary 2.6

Let S ⊂ Pn (4 ≤ n ≤ 14) be a Bordiga surface, i.e. a smooth surface isomorphic

to the blowing-up of P2 at 14−n general points, and embedded by the complete linear

system of all quartics through them. Then S is aCM, has degree n + 2 and sectional

genus 3.

Proof. S has degree n+2 and sectional genus 3 by construction. If n ≥ 5 the conclusion
follows immediately from Lemma 2.5. Let now n = 4. Even this case is classically well-
known, but we prefer to give a proof. Let H = S ∩ L be a general hyperplane section
of S. Hence H is isomorphic to a smooth plane quartic curve. Thus H has genus 3
and it is not hyperelliptic because ωH

∼= OH(1) is very ample. Since h1(OS) = 0, the
embedding of H in L is linearly normal. By [14] (or, in arbitrary characteristic, [9],
Theorem 1 and 0.1) H ⊂ L is a projectively normal embedding. Hence S is aCM also
in this case. �

Corollary 2.7

Let S ⊂ Pn (n ≥ 4) be a non-degenerate, smooth, linearly normal, rational surface

of degree 2n− δ (δ ≥ 3). Then S is aCM, and has sectional genus n− δ + 1.

Proof. Let H = S ∩ L be a general hyperplane section of S. Then H ⊂ L is a non-
degenerate linearly normal curve of degree 2n − δ, which is non-special by Clifford.
Hence its genus is n−δ+1 by Riemann-Roch. The conclusion follows by Lemma 2.5. �

Now we can prove Theorem 1.5.

Proof of Theorem 1.5. (i) Consider the real polynomial g(x) := 3x2− (d− 1)x+ g

and let ∆ be its discriminant.
Since ∆ > 9 and g(1) ≥ 0, g(x) has two real roots x1 and x2 with 1 ≤ x1 < x2−1.

By assumption r = bx1c, whence r ≥ 1, g(r) ≥ 0 and g(r + 1) < 0. Then, if we set
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g0 := g(r) and d0 := d − 6r, we have 0 ≤ g0 ≤ d0 − 5. Hence by [23], Theorem 1.2.2,
there is a smooth connected curve C0 of degree d0 and genus g0 lying on a Bordiga
surface S of degree 6, clearly not linearly normal. Moreover from the proof it follows
also that |C0| is base-point free. Let C be a general curve in the linear system |C0+rH|,
where H is a hyperplane divisor. Then C satisfies the requirements by Corollary 2.6,
Proposition 2.2 (i), (ii), (iiia), and Lemma 2.3.

(ii) Consider the real polynomial g(x) := 7
2x2 − 2d−3

2 x + g.
The same proof as in (i) works using the degree 7 Bordiga surface, just quoting

[23], Proposition 2.2.1.
(iii) Consider the real polynomial g(x) := 1

2(2n− δ)x2 − 2d−δ
2 x + g.

The proof is the same as before, using [5], Proposition 5. Indeed by this proposi-
tion there is a surface S satisfying the assumptions of Corollary 2.7 (hence aCM) and
for any pair of integers d0 and g0 such that 0 ≤ g0 ≤ d0 − n − 1 there is a smooth
connected curve C0 ⊂ S having degree d0 and genus g0. Moreover from the proof it
follows also that |C0| is base-point free. �

3. Further examples and remarks

The method used to prove Theorems 1.4 and 1.5 is based on the general principle
established in Proposition 2.2, namely to construct the desired curves starting from
known ones lying on suitable aCM surfaces.

In this way we could answer our Question 1.3, finding some ranges for the 4-tuples
(d, g, n, r) for which there are smooth connected non-degenerate curves of degree d and
genus g in Pn which are, in addition, strongly r-normal.

As we have seen from Proposition 2.2, the first problem is arithmetic, and in our
cases it was an easy one.

Wider ranges could be found, at least in principle, by using curves lying on other
surfaces, as for example the cubic surface in P3 (see [10] and [12]), the Del Pezzo surfaces
in P4, P5 (see [23]), and other rational surfaces in Pn (n ≥ 6) (see [4], [20]). But it
is immediate to see that here the arithmetical part becomes much more complicated,
hence it seems much harder to give clean statements for wider ranges.

It is however easy to produce curves not falling in the ranges of Theorems 1.4
and 1.5, just starting from disjoint union of lines. Here the arithmetic part is irrelevant.

We give some examples below, as a straightforward application of Proposition 2.2.

Example 3.1: Let 3 ≤ n ≤ 8 and let S ⊆ Pn be a Del Pezzo surface. Then S is
rational and by construction it has degree n and sectional genus 1. Hence S is aCM
by Lemma 2.5. Moreover it contains 9−n pairwise disjoint lines with self-intersection
− 1. Fix integers c and t such that t ≥ 1 and 1 ≤ c ≤ 9− n and set:

d := c + n(t + 1)
g := 1 + ct + nt(t+1)

2

Then by Proposition 2.2 S contains a smooth connected non-degenerate curve C of
degree d and genus g, which is aCM if c = 1 and strongly t (and not (t + 1))-normal
if c ≥ 2.
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Example 3.2: Let n ≥ 6 and write n = 3k +h (0 ≤ h ≤ 2). Let S ⊆ Pn be the rational
surface constructed in [4]. S has degree n−k +1, sectional genus k and contains 5−h

pairwise disjoint lines with self intersection − 1. Then by Lemma 2.5 S is aCM. Fix
integers c and t such that t ≥ 1 and 1 ≤ c ≤ 5− h and set:

d := c + (n− k + 1)(t + 1)
g := 1 + ct + (n−k+1)t(t+1)

2 + k − 1

Then by Proposition 2.2 S contains a smooth connected non-degenerate curve of
degree d and genus g, which is aCM if c = 1 and strongly t (and not (t + 1))-normal
if c ≥ 2.

Remark 3.3. If S is either a smooth cubic surface in P3 or a smooth surface of minimal
degree in any projective space and C ⊂ S is any curve, the first cohomology of C

is known (see [8] and [6]). Hence a complete classification of the strongly r-normal
curves lying on S is in principle possible. Moreover from the above mentioned papers
it follows also that if C is r-normal and r < max{j ∈ Z | H1(IC(j)) 6= 0}, then C is
strongly r-normal.
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