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Abstract

The complex Radon transform̂F of a rapidly decreasing distributionF ∈
O′

C(Cn) is considered. A compact setK ⊂ Cn is called linearly convex if

the setCn \ K is a union of complex hyperplanes. Let̂K denote the set of
complex hyperplanes which meetK. The main result of the paper establishes
the conditions on a linearly convex compactK under which the support theorem
for the complex Radon transform is true: from the relation supp(F̂ ) ⊂ K̂ it
follows thatF ∈ O′

C(Cn) is compactly supported and supp(F ) ⊂ K.

If f is the function defined on Rn (Cn), the classical real (complex) Radon transform
Rf of f is the function defined on hyperplanes; the value of Rf at a given hyperplane is
the integral of f over that hyperplane. For the theory of the Radon transform we refer
to J. Radon [11], F. John [6], [7], I.M.Gel’fand, M.I.Graev, and N.Ya. Vilenkin [1], S.
Helgason [2], [3], D. Ludwig [8], A. Hertle [4]. One of the basic results on the classical
Radon transform is Helgason’s support theorem [2]: A rapidly decreasing function
must vanish outside a ball if its real Radon transform does. This theorem holds for
every convex compact set in Rn and remains valid for rapidly decreasing distributions
[4].

In the present paper we prove the support theorem for the complex Radon trans-
form of distributions.

Notations. For z, w ∈ Cn we write 〈z, w〉 =
∑
zjwj .B

n(z,R) := {w ∈ Cn | |w −
z| < R} denotes the euclidean ball of center z and radius r in Cn. If X is a set, we
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denote by X̄ the closure of X. The standard Lebesgue measure in Cn is dω2n. S2n−1

denotes the unit sphere in Cn, and dσ is the area element on S2n−1. For n-tuples
p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) of non-negative integers, we denote by ∂p∂̄q

the partial derivative

∂|p|+|q|

∂zp1
1 . . . ∂zpn

n ∂z̄q1
1 . . . ∂z̄qn

n

of order |p| + |q| = p1 + . . . + pn + q1 + . . . + qn. Similarly, for z = (z1, . . . , zn) we
write zp = zp1

1 . . . zpn
n , z̄q = z̄p1

1 . . . z̄qn
n . For a domain Ω ⊂ Cn, we denote by S(Ω),

D(Ω), and E(Ω) the spaces of rapidly decreasing C∞ functions, C∞ functions with
compact support, and C∞ functions, respectively. The dual spaces S ′(Ω), D′(Ω), and
E ′(Ω) are the spaces of tempered distributions, distributions, and distributions with
compact support, respectively.

If ϕ ∈ S(Cn), the standard complex Radon transform of ϕ (denoted by ϕ̂) is
defined by

(1) ϕ̂(ξ, s) =
1
|ξ|2

∫
〈z,ξ〉=s

ϕ(z) dλ(z),

where (ξ, s) ∈ (Cn \ 0) × C, and dλ(z) is the area element on the hyperplane {z :
〈z, ξ〉 = s}. For a set A ⊂ Cn, we denote by Â the set of all (ξ, s) ∈ (Cn \ 0)× C such
that the hyperplane {z : 〈z, ξ〉 = s} meets A. A set A ⊂ Cn is called linearly convex
if, for every w /∈ A, there is a complex hyperplane {z : 〈z, ξ〉 = s} which contains w
and does not meet A (see Martineau [9]).

We use the approach of Gel’fand et al. [1] to introduce the complex Radon
transform of distributions. Let X = S2n−1 × C, and let E(X) be the set of complex-
valued functions ϕ(w, s) on S2n−1 × C which satisfy the following conditions:

(a) Functions ϕ(w, s) are infinitely differentiable with respect to s.
(b) For all p, q ≥ 0 the derivatives

∂p+qϕ(w, s)
∂sp∂s̄q

are continuous on S2n−1 × C.
(c) ϕ(weiθ, seiθ) = ϕ(w, s) for all θ ∈ [0, 2π].

We give E(X) the topology defined by the system of seminorms

qk(f) = max
k1+k2≤k

max
|s|≤k

max
w∈S2n−1

∣∣∣∣∂k1+k2f(w, s)
∂sk1∂s̄k2

∣∣∣∣ .
By D(X) we denote the space of all compactly supported functions in E(X). We give
D(X) the standard topology of the inductive limit of the spaces

Dm =
{
ϕ ∈ E(X) : supp(ϕ) ⊂ S2n−1 × {|s| ≤ m}

}
.

Let RD(X) be the subspace of D(X) formed by the Radon transforms ϕ̂ of functions
in D(Cn) (the equality ϕ̂(weiθ, seiθ) ≡ ϕ̂(weiθ, seiθ) follows for ϕ ∈ D(Cn) from the
definition of ϕ̂). Similarly, we define the subspace RS(X) of S(X).
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The dual Radon transform is the operator R∗ : E(X) → E(Cn) given by

[R∗(f)](z) =
∫

S2n−1

f(w, 〈z, w〉) dσ(w).

It is easy to see that the operator R∗ is continuous. It follows from the definition of
the Radon transform that

(2)
∫

Cn

[R∗(f)](z)ϕ(z) dω2n(z) =
∫
C

∫
S2n−1

f(w, s)ϕ̂(w, s) dσ(w)dω2(s)

for every function ϕ ∈ D(Cn).
Let MD be the subspace of D(X) formed by the functions

(3) ψ(w, s) =
∂2n−2ϕ̂(w, s)
∂sn−1∂s̄n−1

, ϕ̂ ∈ RD(X).

We give MD the topology induced from D(X).

Definition 1. Let F ∈ D′. The Radon transform RF of F is the functional on MD
given by

(4) 〈RF,ψ〉 = 〈F,R∗ψ〉.

For every function ϕ ∈ S(Cn) the following inversion formula holds [1, p. 118]:

(5) ϕ(z) = (−1)n−1cnR
∗
(
∂2n−2ϕ̂(w, s)
∂sn−1∂s̄n−1

)
,

where ϕ̂(w, s) is the Radon transform of ϕ, and cn > 0. It follows from the inversion
formula (5) that for each function ψ ∈ MD the function R∗(ψ)(z) belongs to D(Cn).
Therefore the functional RF is well defined.

Definition 2. We say that the Radon transform RF of a distribution F ∈ D′ is defined
as a distribution if the functional RF given by (4) can be extended to a continuous
functional on D(X).

It has been shown in [4] that there are distributions in Rm whose real Radon
transforms are not defined as distributions. It is natural to suppose that there are
such examples in the case of the complex Radon transform. If the distribution F is
given by the function f(z) ∈ S(Cn), then it follows from (5) and (2) that the Radon
transform RF is defined as a distribution and it is given by the function f̂(w, s).

We denote by O′
C(Cn) the space of rapidly decreasing distributions [5, p. 419].

A distribution T ∈ D′(Cn) belongs to O′
C(Cn) if and only if for every k ∈ Z the

distribution (1 + |x|2)kT is integrable; i.e.,

(6) (1 + |x|2)kT =
∑

|p|+|q|≤m(k)

∂p∂̄qµpq(k),

where m(k) ∈ N and {µpq}(k) is a finite family of bounded measures on Cn. In
particular, every distribution with compact support is rapidly decreasing.

Let T ∈ O′
C(Cn). We show that equality (4) defines the extension of the Radon

transform RT to a continuous linear functional on D(X). Let h(w, s) ∈ D(X) be such
that |h(w, s)| ≤ 1. There is R > 0 such that h(w, s) = 0 for |s| ≥ R, and we have
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(7) |[R∗h](z)| ≤
∫

S2n−1

|h(w, 〈z, w〉)|dσ(w) ≤
∫

|〈z,w〉|≤R

dσ(w) ≤ dn max
(

1,
R2

|z|2

)
,

where dn > 0. Suppose that the sequence {hN (w, s)} in D(X) converges to 0. Then,
for every multi-indices p and q, we have

(8) ∂p∂̄q [R∗(hN )] (z) =
∫

S2n−1

∂|p|+|q|

∂s|p|∂s̄|q|
hN (w, 〈z, w〉)wpw̄qdσ(w).

There exists R > 0 such that supp(hN ) ⊂ S2n−1 × {s : |s| ≤ R} for all N . Then it
follows from (7) and (8) that

(9)
∣∣∂p∂̄q [R∗(hN )] (z)

∣∣ ≤ dn max
(

1,
R2

|z|2

)
max
w,s

∣∣∣∣∣ ∂|p|+|q|

∂s|p|∂s̄|q|
hN (w, s)

∣∣∣∣∣ .
This means that the functions [R∗(hN )] (z), together with derivatives of all orders,
vanish at infinity. By the definition of the topology of D(X) we have

(10) lim
N→∞

max
w,s

∣∣∣∣∣ ∂|p|+|q|

∂s|p|∂s̄|q|
hN (w, s)

∣∣∣∣∣ = 0.

We set k = 0 in (6). Then we obtain from (6) and (4) that

〈RT, hN 〉 = 〈T, [R∗hN ]〉 =
∑

|p|+|q|≤m

(−1)|p|+|q|
∫

Cn

∂p∂̄q[R∗hN ](z)dµpq(z).

Since the measures µpq are bounded, it follows from (9) and (10) that 〈RT, hN 〉 → 0
as N → ∞. Thus, for eve ry T ∈ O′

C(Cn), the functional RT is well-defined and
continuous on D(X).

Theorem 1

Let T ∈ O′
C(Cn) and let K ⊂ Cn be a linearly convex compact set. Suppose

that for every z /∈ K there exists a hyperplane P = {λ : 〈λ,w0〉 = s0} satisfying the

following conditions:

(i) P contains z.

(ii) P does not meet K.

(iii) The set C \Kw0 is connected, where Kw0 = {〈λ,w0〉}λ∈K is the projection of K

on w0. Then T has support in K if and only if its Radon transform RT has support

in K̂.

E.T. Quinto [10] has proved the following theorem1

Theorem 2

Assume the Radon transform R on complex hyperplanes has a nowhere zero real

analytic weight. Let A be an open connected set of complex hyperplanes. Let f ∈
1 The author’s thanks are due to my referee who referred to Quito’s article.
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E ′(Cn) with Rf(H) = 0 for all H ∈ A and assume for some H0 ∈ A, H0 is disjoint

from suppf . Then, for all H ∈ A, H is disjoint from suppf .

If under the hypotheses and notation of Theorem 1 the distribution T belongs
to E ′(Cn), then the proof of Theorem 1 can be reduced to the Theorem 2. The
proof of Theorem 1 is based on the reducing to the case of compactly supported
distributions (we use the special case of Theorem 2 which was proved by the author
[13] independently of Quinto’s result.) As usual we use the properties of the convolution
suppT ∗ αε of T and smooth compactly supported functions αε ∈ D(Bn(0, ε)). The
difficulty is that the compact set

Kε =
⋃

z∈K

B̄n(z, ε)

may not satisfy the condition (iii) of Theorem 1 which is essential [13]. However it
can be shown that supp (T ∗ αε) ⊂ K̄ε, where K̄ε is the smallest compact set which
contains Kε and satisfies the condition (iii) of Theorem 1. Therefore we have to show
that the sets K̄ε are correctly defined and K̄ε → K as ε → 0 2. However, for our
purpose, it is enough to prove a “weak” version of this assertion (Lemma 2 below).

Proof of Theorem 1. Suppose that T ∈ O′
C(Cn) has support in K. Then T ∈ E(Cn).

Let h(w, s) ∈ D(X) be such that supp(h) ⊂ X \K̂. If z ∈ K, then the point (w, 〈z, w〉)
belongs to K̂ for every w ∈ S2n−1. Therefore the functions

[R∗h](z) =
∫

S2n−1

h(w, 〈z, w〉)dσ(w),

∂p∂̄q [R∗(h)] (z) =
∫

S2n−1

∂|p|+|q|

∂s|p|∂s̄|q|
h(w, 〈z, w〉)wpw̄qdσ(w)

vanish on K. So [R∗h](z) is an infinitely differentiable function which, together with
derivatives of all orders, vanishes on the support of the distribution T . Then we have
〈T,R∗h〉 = 0. Thus, for each h ∈ D(X) with supp(h) ∈ X \ K̂ we have 〈RT, h〉 =
〈T, [R∗h]〉 = 0. This means that supp(RT ) ⊂ K̂.

Before proving the second statement of Theorem 1, we have to show that the dual
Radon transform and the convolution operation commute:

Lemma 1

Let ϕ(z) ∈ D(Cn). Then for every ψ(w, s) ∈ E(X) the following formula holds:

ϕ ∗ [R∗ψ] = R∗[ϕ̂ ∗s ψ],

where ϕ̂(w, s) is the Radon transform of ϕ, and ∗s denotes the convolution with respect

to the second variable s.

2 The idea to introduce the sets K̄ε was proposed by the referee of this article.
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Proof. For every function α(z) ∈ D(Cn) we have

(11)
∫

Cn

(ϕ ∗ [R∗ψ])(z)α(z)dω2n(z) =
∫

Cn

[R∗ψ](z) (α ∗ ϕ1) (z)dω2n(z),

where ϕ1(z) = ϕ(−z). Let J be the integral on the right-hand side of (11). It follows
from (2) that

J =
∫

S2n−1×C

ψ(w, s)α̂ ∗ ϕ1(w, s)dσ(w)dω2(s),

where α̂ ∗ ϕ1(w, s) is the Radon transform of the convolution α ∗ ϕ. We have [1, p.p.
116-117]

α̂ ∗ ϕ1(w, s) = (α̂ ∗s ϕ̂1)(w, s), ϕ̂1(w, s) = ϕ̂(−w, s) = ϕ̂(w,−s).

Then

J =
∫

S2n−1×C

ψ(w, s)(α̂ ∗s ϕ̂1)(w, s)dσ(w)dω2(s)

=
∫

S2n−1×C

(ψ ∗s ϕ̂)(w, s)α̂(w, s)dσ(w)dω2(s).

In view of (2), we have

J =
∫

Cn

R∗[ϕ ∗s ψ](z)α(z)dω2n(z).

Then it follows from (11) that∫
Cn

{(ϕ ∗ [R∗ψ])(z)−R∗[ϕ ∗s ψ](z)}α(z)dω2n(z) = 0

for every α(z) ∈ D(Cn). Therefore (ϕ ∗ [R∗ψ])(z) ≡ R∗[ϕ ∗s ψ](z). The lemma is
proved. �

Now suppose that the support of the Radon transform RT of a distribution T ∈
O′

C(Cn) is contained in K̂. Let {αm(z)}∞m=1 be a sequence of smooth functions on
Cn with supp(αm) ⊂ {z : |z| ≤ 1/m} that converges in the space of measures to
the delta function at the origin. We assume that the functions αm(z) are even, i.e.,
αm(−z) = αm(z). We set Tm = T ∗ αm. Then the function Tm(z) belongs to S(Cn)
[12, p. 244], and Tm → T in O′

C(Cn) [4]. Denote by Km the compact set

Km =
⋃

z∈K

B̄n(z, 1/m).

Let T̂m(w, s) be the Radon transform of Tm(z). We show that supp(T̂m) ⊂ K̂m. The
hyperplane {z : 〈z, w〉 = s} meets Km if and only if there are z′ ∈ K, z′′ ∈ B̄n(0, 1/m)
such that 〈z′, w〉 = s− 〈z′′, w〉. Therefore

(12) K̂m =
⋃

(w,s)∈K̂

(
{w} × B̄1(s, 1/m)

)
.
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Let h(w, s) ∈ D(S2n−1 × C) be such that supp(h) ∩ K̂m = ∅. Since the functions αm

are even, it follows from (4) that

〈RTm, h〉 = 〈Tm, R
∗(h)〉 = 〈T ∗ αm, R

∗(h)〉 = 〈T, αm ∗R∗(h)〉.

Then by Lemma 1, we have 〈T, αm ∗R∗(h)〉 = 〈T,R∗(α̂m ∗s h)〉. Then

(13) 〈RTm, h〉 = 〈T,R∗(α̂m ∗s h)〉 = 〈RT, α̂m ∗s h〉.

We claim that K̂∩supp(α̂m∗sh) = ∅. Indeed, suppose that (w0, s0) ∈ K̂∩supp(α̂m∗sh).
This implies (since α̂m(w, s) = 0 for |s| ≥ 1/m) that for some s1 ∈ B̄1(0, 1/m) we have
(w0, s0 + s1) ∈ supp(h). By (12) we also have (w0, s0 + s1) ∈ K̂m, which contradicts
that supp(h) ∩ K̂m = ∅. Therefore K̂ ∩ supp(α̂m ∗s h) = ∅, and it follows from (13)
(since supp(RT ) ⊂ K̂) that 〈RTm, h〉 = 0. Therefore

(14) supp(RTm) ⊂ K̂m.

As remarked above, the functions Tm(z) belong to S(Cn). Then the distributions RTm

are given by the Radon transforms T̂m(w, s) of functions Tm(z).
In view of (12), there exist R > 0 such that for all m the sets K̂m are contained

in the set {(w, s) : |s| ≤ R}. Let RRTm(w, t) be the real Radon transform of Tm(z),
that is

RRTm(w, t) =
∫

Re〈z,w̄〉=t

Tm(z)dλ(z),

where dλ(z) is the area element on the real hyperplane {z : Re〈z, w̄〉 = t}. Then we
have

RRTm(w, t) =

∞∫
−∞

T̂m(w̄, t+ ix)dx.

Since K̂m ⊂ {(w, s) : |s| ≤ R}, it follows from (14) that RRTm(w, t) = 0 for |t| ≥ R.
Then by the Helgason’s support theorem, the supports of the functions Tm(z) are
compact.

To complete the proof of Theorem 1, we need the following lemma:

Lemma 2

Under the hypotheses and notation of Theorem 1, there exist, for every z0 6∈ K, a

neighborhood Vz0 and δ > 0 such that the functions Tm(z) vanish on Vz0 for m ≥ 1/δ.

Proof. Fix z0 6∈ K. Then there exists a point (w0, s0) ∈ S2n−1 × C such that {z :
〈z, w0〉 = s0} ∩K = ∅, 〈z0, w0〉 = s0 and the set C \ {〈z, w0〉}z∈K is connected. Then
(w0, 〈z0, w0〉) 6∈ K̂. We set

A =
{
s ∈ C | (w0, s) ∈ K̂

}
, Am =

{
s ∈ C | (w0, s) ∈ K̂m

}
.

It follows from (12) that
Am =

⋃
s∈A

B̄1(s, 1/m).
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By definition of K̂, for every s ∈ A there exists z ∈ K such that 〈z, w0〉 = s. Then
A = {〈z, w0〉}z∈K . Similarly Am = {〈z, w0〉}z∈Km . Since the sets K and Km are
compact, it follows that the sets A and Am are also compact. For some R > 0 we have
A ∪ Am ⊂ B̄1(0, R). Since 〈z0, w0〉 6∈ A, there is γ > 0 such that 〈z0 + λ,w0〉 6∈ A for
every λ ∈ B̄n(0, γ). Hence the convex compact set Γ1 =

{
〈z, w0〉, z ∈ B̄n(z0, γ)

}
and

the set A do not intersect. Fix s1 ∈ {s ∈ C : |s| > R}. Then s1 ∈ C \ A. Since the
set C \ A is connected, there exists a broken line Γ2 ⊂ C \ A joining s1 to the point
〈z0, w0〉. Thus (Γ1 ∪ Γ2) ∩ A = ∅. Then, since the sets Γ1 ∪ Γ2 and A are compact,
there exists δ ∈ (0, 1) such that for all m ≥ 1/δ we have{

(Γ1 ∪ Γ2) +B1(0, δ)
}
∩

{
A+ B̄1 (0, 1/m)

}
= ∅,

that is
{
(Γ1 ∪ Γ2) +B1(0, δ)

}
∩Am = ∅. Put

D = {s ∈ C : |s| > R} ∪
{
(Γ1 ∪ Γ2) +B1(0, δ)

}
.

By construction D is a connected unbounded open set containing the point 〈z0+λ,w0〉
for every λ ∈ B̄n(0, γ). We have by the definition of the sets Am that (D×{w0})∩K̂m =
∅ for m ≥ 1/δ. Then it follows from (14) that (D × {w0}) ∩ supp(T̂m) = ∅ for
m ≥ 1/δ. Since the supports of Tm are compact, it follows from [13, Theorem 2] that
for every λ ∈ B̄n(0, γ) and m ≥ 1/δ the functions Tm(z) vanish on the hyperplane
{z : 〈z, w0〉 = 〈z0 + λ,w0〉}. Then, for every z ∈ B̄n(z0, γ) and m ≥ 1/δ, we have
Tm(z) = 0. The lemma is proved. �

As mentioned above, Tm → T in O′
C(Cn). This means that

(15) lim
m→∞

〈Tm, ϕ〉 = 〈T, ϕ〉, ∀ϕ ∈ OC(Cn),

where OC(Cn) is the space of all infinitely differentiable functions f on Cn for which
there exist an integer k such that (1+|x|2)k∂p∂̄qf(z) vanishes at infinity for all p, q [5, p.
173]. Since D(Cn) ⊂ OC(Cn), formula (15) holds for every ϕ ∈ D(Cn). Let ϕ ∈ D(Cn)
be such that supp(ϕ) ∩K = ∅. By Lemma 2 for every z ∈ suppϕ there are δ(z) > 0
and a ball Bn(z, γ(z)) such that Tm(z) = 0 on Bn(z, γ(z)) for m ≥ 1/δ(z). Since the
support of ϕ is compact, it can be covered by a finite union of balls Bn(zk, γ(zk)),
where k = 1, 2 . . . , N . Setting δ0 = min{δ(zk), 1 ≤ k ≤ N}, we have Tm(z) = 0 for
z ∈ supp(ϕ) and m ≥ 1/δ0. Then it follows from (15) that

〈T, ϕ〉 = lim
m→∞

〈Tm, ϕ〉 = 0.

Since ϕ ∈ D(Cn) is an arbitrary function such that supp(ϕ)∩K = ∅, we have supp(T ) ⊂
K. The theorem is proved. �
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