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Abstract

Let X be a real Banach space that does not contain a copy of`1. ThenX∗

contains asymptotically isometric copies of`1 if and only if X has a quotient
which is asymptotically isometric toc0.

1. Introduction

It is a classical result of W.B. Johnson and H.P. Rosenthal [8] that if X is a separable
Banach space, then X∗ contains a subspace isomorphic to `1 if and only if X has a
quotient isomorphic to c0. In [1], an asymptotically isometric version of this result
was proved, that is, if X is a separable Banach space, then X∗ contains asymptotically
isometric copies of `1 if and only if X has a quotient which is asymptotically isometric
to c0. The notion of an asymptotically isometric copy of `1(resp. c0) was introduced
in [5] (resp. [6]) and used to show that some spaces fail the fixed point property for
non-expansive self-maps on closed bounded convex sets. Another well-known result of
J. Hagler and W.B. Johnson [7] says that if a real Banach space X does not contain a
copy of `1, then X∗ contains a subspace isomorphic to `1 if and only if X has a quotient
isomorphic to c0. The main result of this note states that as in the isomorphic case, if
a real Banach space X does not contain a copy of `1, then X∗ contains asymptotically
isometric copies of `1 if and only if X has a quotient which is asymptotically isometric
to c0.

Our notation and terminology are standard as may be found in [9], [3].
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2. Definitions and results

Definition 2.1 ([5]). A Banach space X is said to contain an asymptotically isometric
copy of `1 if there is a null sequence (εn)n in (0,1) and a sequence (xn)n in X such that

∞∑
n=1

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tnxn

∥∥∥ ≤ ∞∑
n=1

|tn|

for all (tn)n ∈ `1. We will refer to the sequence (xn)n as an asymptotically isometric
`1-sequence.

Definition 2.2 ([6]). A Banach space X is said to contain an asymptotically isometric
copy of c0 if there is a null sequence (εn)n in (0, 1) and a sequence (xn)n in X such
that

sup
n

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tnxn

∥∥∥ ≤ sup
n
|tn|

for all (tn)n ∈ c0.
We say that a Banach space X is asymptotically isometric to c0 if X has a basis

(xn)n with the above property.

Before giving the main result, we prove the following result which is of independent
interest.

Theorem 2.1

Let X be a Banach space. Then X∗ contains a weak∗-null asymptotically isomet-

ric `1-sequence if and only if X has a quotient which is asymptotically isometric to

c0.

Proof. (Necessity) Suppose that (x∗n)n is a weak∗-null asymptotically isometric `1-
sequence in X∗. Then there is a null sequence (εn)n in (0,1) such that

∞∑
n=1

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tnx∗n

∥∥∥ ≤ ∞∑
n=1

|tn|

for all (tn)n ∈ `1. Define T : X −→ c0 by T (x) = (x∗n(x))n for all x ∈ X. Then

T ∗(t) =
∞∑

n=1
tnx∗n for all t = (tn)n ∈ `1. Thus T ∗ is an isomorphism into. This implies

that T is onto. Define T̂ : X/Ker(T ) −→ c0 by T̂ ([x]) = T (x) for all [x] ∈ X/Ker(T ).
Therefore T̂ is an isomorphism onto. For each n ∈ N, choose zn ∈ X/Ker(T ) with
T̂ (zn) = en, where (en)n is the standard unit vector basis in c0. Hence (zn)n is a

shrinking basis for X/Ker(T ). Define z∗n(
∞∑

k=1

akzk) = an, for all
∞∑

k=1

akzk ∈ X/Ker(T ).

Then (z∗n)n is a basis for (X/Ker(T ))∗. It can be checked that Ker(T ) = (span{x∗n :
n ∈ N})> and Q∗(z∗n) = x∗n for all n ∈ N (in fact we have shown that (x∗n)n is a
w∗-basic sequence), where Q : X −→ X/Ker(T ) is the quotient mapping. Next we
show that Y = X/Ker(T ) is asymptotically isometric to c0. For all (tn)n ∈ c0, consider

z =
∞∑

n=1
tnzn. Then, for each n ∈ N, tn = z∗n(z). By the Hahn-Banach Theorem, there
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is a z∗ ∈ Y ∗ such that ‖z∗‖ = 1 and z∗(z) = ‖z‖. Since Q∗ : Y ∗ −→ X∗ is a linear
isometry into, we have

∞∑
n=1

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tnz∗n

∥∥∥ ≤ ∞∑
n=1

|tn|,

for all (tn)n ∈ `1. Since (z∗n)n is a basis for Y ∗, z∗ =
∞∑

n=1
z∗(zn)z∗n. Thus

∥∥∥ ∞∑
n=1

z∗n(z)zn

∥∥∥ =
∞∑

n=1

z∗n(z)z∗(zn)

≤
∞∑

n=1

|z∗n(z)||z∗(zn)|

=
∞∑

n=1

1
1− εn

|z∗n(z)|(1− εn)|z∗(zn)|

≤
(

sup
n

1
1− εn

|z∗n(z)|
) ∞∑

n=1

(1− εn)|z∗(zn)|

≤
(

sup
n

1
1− εn

|z∗n(z)|
) ∥∥∥ ∞∑

n=1

z∗(zn)z∗n
∥∥∥

= sup
n

1
1− εn

|z∗n(z)|.

On the other hand, for each k ∈ N,∣∣∣z∗k ( ∞∑
n=1

z∗n(z)zn

) ∣∣∣ ≤ ∥∥∥ ∞∑
n=1

z∗n(z)zn

∥∥∥,

and hence

sup
n
|z∗n(z)| ≤

∥∥∥ ∞∑
n=1

z∗n(z)zn

∥∥∥.

Thus,

sup
n
|z∗n(z)| ≤

∥∥∥ ∞∑
n=1

z∗n(z)zn

∥∥∥ ≤ sup
n

1
1− εn

|z∗n(z)|.

That is,

sup
n
|tn| ≤

∥∥∥ ∞∑
n=1

tnzn

∥∥∥ ≤ sup
n

1
1− εn

|tn|.

Let yn = (1 − εn)zn, for all n ∈ N. Then (yn)n is a basis for Y , and moreover, for all
(tn)n ∈ c0, we have

sup
n

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tnyn

∥∥∥ ≤ sup
n
|tn|.

This completes the proof of the necessity of Theorem 2.1.
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(Sufficiency) Assume that X/M(M is a closed subspace of X) is asymptotically
isometric to c0. Then there is a null sequence (εn)n in (0, 1) and a basis ([xn])n in
X/M such that

sup
n

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tn[xn]
∥∥∥ ≤ sup

n
|tn|

for all (tn)n ∈ c0. Define [xn]∗ on (X/M)∗ by [xn]∗(
∞∑

k=1

tk[xk]) = tn, for all
∞∑

k=1

tk[xk] ∈

X/M . For each n ∈ N,∣∣∣[xn]∗
( ∞∑

k=1

tk[xk]
) ∣∣∣ = |tn| =

1
1− εn

(1− εn)|tn| ≤
1

1− εn

∥∥∥ ∞∑
k=1

tk[xk]
∥∥∥.

Thus ‖[xn]∗‖ ≤ 1
1−εn

, for all n ∈ N. Let ω∗n = [xn]∗

‖[xn]∗‖ . Then for all scalars

t1, t2, ..., tm and for all m ∈ N, we have ‖
m∑

n=1
tnω∗n‖ ≤

m∑
n=1

|tn|. On the other hand,

since ‖
m∑

n=1
sgn(tn)[xn]‖ ≤ 1,

∥∥∥ m∑
n=1

tnω∗n

∥∥∥ ≥
∣∣∣ ( m∑

n=1

tnω∗n

) ( m∑
n=1

sgn(tn)[xn]
) ∣∣∣

=
m∑

n=1

|tn|
1

‖[xn]∗‖

≥
m∑

n=1

(1− εn)|tn|.

That is,
m∑

n=1

(1− εn)|tn| ≤
∥∥∥ m∑

n=1

tnω∗n

∥∥∥ ≤ m∑
n=1

|tn|.

Hence (ω∗n)n is an asymptotically isometric `1-sequence in (X/M)∗. Since Q∗ :
(X/M)∗ −→ X∗ is a linear isometry into, (Q∗(ω∗n))n is also an asymptotically iso-
metric `1-sequence in X∗. It is easy to check that (Q∗(ω∗n))n is a weak∗-null sequence
in X∗. This completes the proof. �

Remark 2.1. The main result in [1], Theorem 1, can be easily obtained by the above
result. Indeed, if a Banach space X is separable and X∗ contains asymptotically
isometric copies of `1, it is easy to construct a weak∗-null asymptotically isometric
`1-sequence in X∗.

To complete the proof of our main result, Theorem 2.4, we need the following two
results.

Theorem 2.2 ([7], [2])

Let X be a real Banach space, and let (x∗n)n be a sequence in X∗ equivalent to

the unit vector basis of `1. If no normalized `1-block of (x∗n)n is weak∗-null sequence,

then X contains a copy of `1.
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Theorem 2.3 ([4])

If a Banach space X contains an asymptotically isometric copy of c0, then X∗

contains an asymptotically isometric copy of `1.

Theorem 2.4

Let X be a real Banach space that does not contain a copy of `1. Then X∗

contains asymptotically isometric copies of `1 if and only if X has a quotient which is

asymptotically isometric to c0.

Proof. (Necessity) Since X∗ contains asymptotically isometric copies of `1, there is a
null sequence (εn)n in (0,1) and a sequence (x∗n)n in X∗ such that

∞∑
n=1

(1− εn)|tn| ≤
∥∥∥ ∞∑

n=1

tnx∗n

∥∥∥ ≤ ∞∑
n=1

|tn|

for all (tn)n ∈ `1. According to the Theorem 2.2, there is a weak∗-null sequence (z∗n)n

which is a normalized `1-block of (x∗n)n, that is, z∗n =
∑

k∈An

akx
∗
k, where (An)n is a

sequence of pairwise disjoint finite subsets of N, An < An+1, and
∑

k∈An

|ak| = 1, for all

n ∈ N. Then for all scalars t1, t2, ..., tm and all m ∈ N, we have∥∥∥ m∑
n=1

tnz∗n

∥∥∥ =
∥∥∥ m∑

n=1

tn

( ∑
k∈An

akx
∗
k

) ∥∥∥
≤

m∑
n=1

|tn|
( ∑

k∈An

|ak|
)

=
m∑

n=1

|tn|.

On the other hand, for each n ∈ N, choose kn ∈ An with 1− εkn = min
k∈An

(1− εk). Then

∥∥∥ m∑
n=1

tnz∗n

∥∥∥ =
∥∥∥ m∑

n=1

tn

( ∑
k∈An

akx
∗
k

) ∥∥∥
≥

m∑
n=1

|tn|
( ∑

k∈An

(1− εk)|ak|
)

≥
m∑

n=1

(1− εkn)|tn|.

Thus (z∗n)n is a weak∗-null asymptotically isometric `1-sequence in X∗. It follows from
Theorem 2.1 that X has a quotient which is asymptotically isometric to c0.

(Sufficiency) Suppose that X/M(M is a closed subspace of X) is asymptotically
isometric to c0. Then, by Theorem 2.3, (X/M)∗ = M⊥ contains an asymptotically
isometric copy of `1. Thus X∗ contains an asymptotically isometric copy of `1. This
completes the proof. �
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