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Abstract

We explore the geometry of the osculating spaces to projective varieties of
arbitrary dimension. In particular, we classify varieties having very degenerate
higher order osculating spaces and we determine mild conditions for the existence
of inflectionary points.

1. Introduction

The geometry of osculating spaces to projective varieties is a very classical but still
widely open subject. As is well-known, while the dimension of the tangent space at a
smooth point is always equal to the dimension of the variety, higher order osculating
spaces can be strictly smaller than expected also at a general point.

The investigation of algebraic surfaces having defective second order osculating
space was inaugurated in 1907 by Corrado Segre in his seminal paper [17]. The early
developments in the field are witnessed by a long series of nice contributions, among
which we cannot resist to mention at least [19] by Alessandro Terracini, [5] by Enrico
Bompiani, [20] and [21] by Eugenio Togliatti. We point out that the work of Togliatti
has been recently reconsidered by several authors: the main result of [21] is reproved in
[9] and [7], while the crucial example in [20] is analized in [14] and [12]. However, the
modern approach to the subject is mainly concerned with the osculatory behaviour at
every (not just at the general) point: see for instance [18], [8], [16], [3], [11].

Here we address the case of projective varieties of arbitrary dimension from various
points of view. Namely, in Section 2 we apply the classical approach of Bompiani and
we obtain a rough classification of projective varieties having very degenerate higher
order osculating spaces (see Theorem 2). In Sections 3 and 4, instead, we apply the
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modern theory of vector bundles and we find explicit conditions assuring the existence
of inflectionary points on projective varieties (see Theorems 4 and 5). Other related
results are collected in Propositions 1, 2, and 3.

This research is part of the T.A.S.C.A. project of I.N.d.A.M., supported by P.A.T.
(Trento) and M.I.U.R. (Italy).

2

Let X ⊂ Pr be an integral nondegenerate projective variety of dimension n defined
over the field C. Let p ∈ X be a smooth point and consider a lifting

U ⊆ Cn −→ Cr+1 \ {0}
t 7−→ p(t)

of a local regular parametrization of X centered in p. The osculating space T (m, p,X)
of order m at p ∈ X is by definition the linear span of the points [pI(0)] ∈ Pr, where I

is a multi-index such that |I| ≤ m. We say that X satisfies a differential equation of
order m at p if ∑

|I|≤m

aI(t1, . . . , tn)pI(t1, . . . , tn) = 0

in U , with aI(t1, . . . , tn) 6= 0 for some I with |I| = m. Hence we have

dim T (m, p,X) =
(

n + m

n

)
−N − 1

where N is the number of independent differential equations of order m satisfied by X

at p. In [2] we proved the following generalization of a classical result by Bompiani:

Theorem 1 ([2])
Let X ⊂ Pr be a smooth variety and let p ∈ X be a general point. Assume that

dim T (m, p,X) = h and dim T (m + 1, p,X) = h + k with 1 ≤ k ≤ n− 1. Then either

X ⊂ Ph+k or X is covered by infinitely many subvarieties Y of dimension at least n−k

such that Y ⊂ Ph−m.

As an application in the spirit of Bompiani’s paper [5], we are going to classify
smooth projective varieties satisfying many differential equations at a general point.

Remark 1. Fix p ∈ X and let Vm(p) be the C-vector space of the differential equations
of order ≤ m satisfied by X at p. Set Wm(p) = Vm(p)/Vm−1(p) and define hm(p) :=
dim Wm(p). There is a natural linear map

H0(Pn−1,O(d))⊗Wm(p) −→ Wm+d(p)(
∂

∂xα1
1 . . . xαn

n
, {f = 0}

)
7−→

{
∂f

∂xα1
1 . . . xαn

n
= 0

}
where α1 + . . . + αn = d. By the Hopf Theorem (see for instance [1], p. 108), we have

hm+d(p) ≥ hm(p) +
(

n− 1 + d

n− 1

)
− 1.
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Theorem 2

Let X be a smooth projective variety of dimension n. Assume that X satisfies

N ≥ (m− 1)
[(

n + m− 1
n− 1

)
− n− 1

]
−

m−2∑
d=1

(
n− 1 + d

n− 1

)
independent differential equations of order m at a general point p ∈ X. Then either

X ⊂ P(n+m
n )−N−1 or X is covered by infinitely many subvarieties Y of dimension at

least n− k ≥ 1 such that Y ⊂ P(n+m
n )−N−k−m.

Proof. We split the proof into three cases, according to the possible values of hm(p).
If

hm(p) =
(

n + m

n

)
−

(
n + m− 1

n

)
=

(
n + m− 1

n− 1

)
,

then T (m, p,X) = T (m − 1, p,X). From [6], Proposition 2.3, it follows that

X ⊂ P(n+m
n )−N−1.

If hm(p) =
(
n+m−1

n−1

)
− k with 1 ≤ k ≤ n − 1, then dim T (m, p,X) = dim T (m −

1, p,X)+k. From Theorem 1 it follows that either X ⊂ P(n+m
n )−N−1 or X is covered by

infinitely many subvarieties Y of dimension at least n−k such that Y ⊂ P(n+m
n )−N−k−m.

Assume finally hm(p) ≤
(
n+m−1

n−1

)
− n. From Remark 1 it follows that

hm−d ≤
(

n + m− 1
n− 1

)
− n−

(
n− 1 + d

n− 1

)
+ 1

for every d ≤ m− 2. Therefore X satisfies at most

(m− 1)
(

n + m− 1
n− 1

)
− (m− 1)n + (m− 2)−

m−2∑
d=1

(
n− 1 + d

n− 1

)
equations and this contradiction ends the proof. �

3

Let X be an integral n-dimensional projective variety defined over an algebraically
closed field K of arbitrary characteristic. Fix a proper closed subset T of X, L ∈
Pic(X), and V ⊆ H0(X, L) such that V spans L. Hence V induces a morphism
φV : X → P(V ∗) ∼= Pr, with r := dim(V ) − 1. Set U := X\T . We always assume
that U is smooth and that φV |U is an embedding. We aim to find conditions on X,
L, V and T which force the existence of q ∈ φV (U) which is a hyperosculating point
of the variety φV (X). Of course if T = ∅, then X is smooth and φV is an embedding.
For any integer m ≥ 0, let Pm(L) be the sheaf of principal parts of order ar most m

of L ([15], §2 and §6). Since U is smooth and n-dimensional, Pm(L)|U is locally free
of rank

(
n+m

n

)
. There is a Taylor series map am : V ⊗OX → Pm(L) and the sheaves

Im(am) and Coker(am) measure the osculating behaviour up to order m of the variety
φV (X) ⊂ Pr. In particular, if T (m, p,X) is the m-osculating space as defined in the
previous section, we have T (m, p,X) = P(Im(am(p))) ⊆ P(V ∗). We say that q ∈ U is
a hyperosculating point of order at most m for V if the sheaf Coker(am) is not locally
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free at q; we use the convention that q ∈ U is not a hyperosculating point of order
at most m for V if Coker(am) is the zero-sheaf in a neighborhood of q. Since U is
reduced, the set of hyperosculating points is a proper closed subset of U .

Remark 2. Let X be a reduced algebraic variety and F a coherent sheaf on X. For every
p ∈ X set α(p) = dimKFp/mpFp, where Fp is the stalk of F at p and mp is the maximal
ideal of OX,p. It is easy to check that the function α : X → N is locally constant if and
only if F is locally free. It follows that if X ⊂ Pn and q ∈ Xreg, then q is hyperosculating
if and only if there is m > 0 such that dim T (m, q,X) < dim T (m, p,X) for a general
p ∈ X.

Set x(m) := rank(Im(am)). The main result of [8] can be formulated as follows:

Theorem 3 ([8])

Assume T = ∅, V = H0(X, L) and r + 1 =
(
n+m

m

)
. If x(m) = r + 1 and there is

no hyperosculating point of order at most m, then X ∼= Pn and L ∼= OPn(m).

Our set-up suggests the following natural generalization:

Proposition 1

Assume X smooth, r + 1 =
(
n+m

m

)
= x(m), codim(T ) ≥ 2 and that there is no

hyperosculating point of order at most m on U , then X ∼= Pn and L ∼= OPn(m).

Proof. By assumption there is an everywhere injective map (with locally free or zero
cokernel) am|U : V ⊗OU → Pm(L)|U . Since X is reduced, this implies the injectivity
of am as a map of sheaves. Since X is smooth, Pm(L) is locally free. An injective
map of sheaves between two locally free sheaves with the same rank is either an iso-
morphism or its cokernel is supported exactly by an effective Cartier divisor (use the
determinant). Hence am is an isomorphism. By Theorem 3, X ∼= Pn and φV is a
Veronese embedding. �

Next we introduce a deeper result which points to the same direction. For any
vector bundle E on X (or on U), let c∗(E) denote its total Chern class in the Chow
ring of X (resp. U). Since U is smooth, for every integer t > 0 we have the following
exact sequence on U :

0 → St(Ω1
U ) → P t(L)|U → P t−1(L)|U → 0 (1)

Hence by induction on m one can compute the Chern classes on U (not on X) of
Pm(L)|U in terms of c1(L|U) and the Chern classes of Ω1

U , i.e. the Chern classes of U .

Theorem 4

Assume x(m) = r + 1 ≤
(
n+m

n

)
≤ r + n, and that there is no hyperosculating

point of order at most m on U . Then ct(Pm(L)|U) = 0 for every integer t such that(
n+m

n

)
− r − 1 < t ≤ n.
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Proof. Set AU := Coker(am|U). Since x(m) = r + 1, am is generically injective. Since
X is reduced and Pm(L)|U has no torsion, it follows that am is injective as a map of
sheaves. Hence Im(am|U) ∼= V ⊗OU and we have an exact sequence on U :

0 → V ⊗OU → Pm(L)|U → AU → 0 (2)

By assumption, AU is locally free with rank
(
n+m

n

)
− r− 1 < n. Hence ct(AU ) = 0 for

every integer t such that n ≥ t > rank(AU ). By (2), we have ci(Pm(L)|U) = ci(AU )
for every i, so the proof is over. �

We have also the following result.

Proposition 2

Set R := ω
⊗(n+m

n+1 )
U ⊗ L⊗(n+m

n )|U . Assume r =
(
n+m

n

)
and that am is surjective at

each point of U . Then c∗(Pm(L)|U) = 1/c∗(R) in the Chow group of U .

Proof. We have R ∼= det(Pm(L)|U) (use m times (1)). Since dim(V ) = rank(Pm(L)|U)+
1 and am|U is surjective, Ker(am|U) is a line bundle on U . This line bundle is R∗ and
we have the following exact sequence on U :

0 → R∗ → V ⊗OU → Pm(L)|U → 0 (3)

which gives the claimed relation between the Chern polynomials. �

4

Here we maintain the previous notation, but from now on we have to require
char(K) = 0. First of all, we show that very mild assumptions force the existence
of hyperosculating points.

Theorem 5

Let x(m) = r + 1 =
(
n+m

m

)
− 1 and set J := ω⊗m

X ⊗ L⊗(n+1). If for some integer

y with 0 ≤ y ≤ n − 2 and a big and nef divisor H on X we have Jn−y · Hy > 0
(intersection product of n divisors), then φV (X) must have hyperosculating points of

order at most m.

Proof. We divide the proof into three steps.

Step 1) Here we assume the existence of an integral curve D ⊂ X such that
− n − 1 ≤ ωX ·D < 0 and D · L < m. Hence the linear span 〈φV (D)〉 of φV (D) has
dimension at most m−1. Chosen p ∈ φV (D)reg and a local coordinate corresponding to
the direction of φV (D), we recover a linear relation about the first m partial derivatives
in that direction.

Step 2) Set R := ω
⊗(n+m

n+1 )
X ⊗ L⊗(n+m

n ) and notice that a positive multiple of R

is isomorphic to a positive multiple of J . By Step 1) we may assume that for every
integral curve D ⊂ X such that − n− 1 ≤ ωX ·D < 0 we have R ·D ≥ 0. For every
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integral curve E ⊂ X such that ωX ·E ≥ 0 we have R ·E > 0 because L is ample. Set
ε := m/(n + 1) and let

Nε(X, L) := {Z ∈ N(X)R : ωX · Z + εL · Z ≥ 0},

where N(X)R is the tensor product with R of the free group of 1-cycles on X modulo
numerical equivalence ([13]). By the very definition of ε, we have R · Z ≥ 0 for every
Z ∈ Nε(X, L). By the Cone Theorem ([13], Theorem 1.4), R is nef. Since R is a
rational multiple of J , we have Rn−y ·Hy > 0. From [4], Lemma 2.2.7, it follows that
h1(X, R∗) = 0.

Step 3) Assume by contradiction that there are no hyperosculating points of order
at most m. As in the proof of Proposition 2, we have an exact sequence

0 → O⊕x
X → Pm(L) → R → 0 (4)

where x :=
(
n+m

m

)
−1. By Step 2), we have h1(X, R∗) = 0. Hence the exact sequence (4)

splits and we obtain Pm(L) ∼= O⊕x⊕R with x :=
(
n+m

n

)
−1. Let C be the intersection

of n− 1 general members of |L|. Hence (L∗)⊕(n−1) is the conormal module of C in X

and (Ω1
X |C) ⊗ L) is an extension of ωC ⊗ L by O⊕(n−1)

C . Hence Sm(Ω1
X) ⊗ L⊗m|C is

an extension of an ample rank
(
n+m−1

m

)
−

(
n+m−2

m

)
vector bundle F by the trivial rank(

n+m−2
m

)
vector bundle. By (1), there is an injection

j : Sm(Ω1
X)⊗ L⊗m|C → Pm(L)|C ∼= O⊕x

C ⊕ (R|C).

At least
(
n+m−2

m

)
−1 of the trivial factors of Sm(Ω1

X)⊗L⊗m|C are mapped isomorphi-
cally onto some of the trivial factors of Pm(L)|C. Hence j induces a map u : F → O⊕x

C

with rank(u) ≥ rank(F )− 1 > 0, in contradiction with the ampleness of F . �

Remark 3. Let C ⊂ Pr be an integral non-degenerate curve and f : X → C its
normalization map. Take L := f∗(OC(1)) and V := f∗(H0(Pr,OPr(1))). By the Brill
- Segre formula (see e.g. [10], p. 54), there are no hyperosculating points if and only
if C is a rational normal curve.

Sometimes it is also possible to bound the drop of the dimension of the osculating
space at a hyperosculating point. For instance, consider the following generalization
of a result by Lanteri (see [11], Theorem B):

Proposition 3

Assume that X is a linear Pn−1-bundle over a smooth curve. Then dim T (2, p,X) ≥
n + 1 for every p ∈ X.

Proof. We follow an argument provided by Lanteri in [11] for the 2-dimensional case.
Since

dim V = dim Ker(αm(p)) + dim Im(αm(p)),

we have
dim T (m, p,X) + dim |V − (m + 1)p| = r − 1

for every m ≥ 1, and we deduce that

dim T (2, p,X) = n + codim(|V − 3p|, |V − 2p|).
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Therefore it is sufficient to show that |V − 3p| 6= |V − 2p| for every p ∈ X. In order to
do so, let F (p) be the fiber of X through p and notice that

|V − 3p| = 2F (p) + |V − 2F (p)− p|,

as it easily follows from the fact that Dn−1.F (p) = 1 for every D ∈ |V |. If |V − 2p| =
2F (p) + |V − 2F (p) − p| for some point p ∈ X, then every hyperplane tangent to X

at p is tangent along the whole fiber F (p). In particular, the tangent space to X is
constant along a positive dimensional subvariety, in contradiction with Zak’s Theorem
on the finiteness of the Gauss map (see for instance [22], Chapter I, Corollary 2.8).
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