Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. **55**, 2 (2004), 151–162 © 2004 Universitat de Barcelona

The space bv(p), its β -dual and matrix transformations

Abdullah M. Jarrah

Department of Mathematics, Qatar University, Doha, Qatar Department of Mathematics, Yarmouk University, Irbid, Jordan E-mail: jarrahahed@hotmail.com

Eberhard Malkowsky

Department of Mathematics, University of Giessen Arndtstrasse 2, D–35392 Giessen, Germany

c/o Department of Mathematics, Faculty of Science and Mathematics University of Niš, Višegradska 33, 18000 Niš, Serbia and Montenegro

 $E\text{-mail: eberhard.malkowsky} @math.uni-giessen.de \\ ema@BankerInter.net \\$

Received May 18, 2003. Revised December 19, 2003

Abstract

Let $p = (p_k)_{k=0}^{\infty}$ be a sequence with $p_k > 0$ for all k. We consider the space $bv(p) = \{x \in \omega : \sum_{k=0}^{\infty} |x_k - x_{k-1}|^{p_k} < \infty\}$, study its β -dual and characterize some matrix transformations on bv(p) which yield the results in [16] and [13] as special cases.

1. Introduction

We write ω for the set of all complex sequences $x = (x_k)_{k=0}^{\infty}$. Let ϕ , ℓ_{∞} and c_0 denote the set of all finite, bounded and null sequences. We write

$$\ell_p = \left\{ x \in \omega : \sum_{k=0}^{\infty} |x_k|^p < \infty \right\}$$

for 0 .

Keywords: Sequence spaces, β -dual space, matrix transformations.

MSC2000: 40H05, 46A45.

Research of the second author supported by the DAAD foundation (German Academic Exchange Service), grant 911 103 102 8, and the Serbian Ministry of Science and Technology, research project # 1232.

By e and $e^{(n)}$ $(n \in \mathbb{N}_0)$, we denote the sequences with $e_k = 1$ (k = 0, 1, ...), and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ $(k \neq n)$. For any sequence $x = (x_k)_{k=0}^{\infty}$, let $x^{[n]} = \sum_{k=0}^n x_k e^{(k)}$ be its *n*-section.

Let $p = (p_k)_{k=0}^{\infty}$ be a sequence of strictly positive reals throughout. The sets

$$\ell(p) = \left\{ x \in \omega : \sum_{k=0}^{\infty} |x_k|^{p_k} < \infty \right\},\$$
$$\ell_{\infty}(p) = \left\{ x \in \omega : \sup_k |x_k|^{p_k} < \infty \right\},\$$
$$c_0(p) = \left\{ x \in \omega : \lim_{k \to \infty} |x_k|^{p_k} = 0 \right\} \text{ and}\$$
$$c(p) = \left\{ x \in \omega : x - le \in c_0(p) \text{ for some } l \in \mathbb{C} \right\},\$$

were first introduced and studied by Nakano, [14], Simons [15] and Maddox [4]. If $p_k = p$ (k = 0, 1, ...) for constant p > 0 then these sets reduce to l_p , ℓ_{∞} , c_0 and c.

Given any sequence x, we write Δx for the sequence with $\Delta x_k = x_k - x_{k-1}$ for $k = 0, 1, \ldots$, and use the convention that any term with a negative subscript is equal to zero. We consider the set

$$bv(p) = \left\{ x \in \omega : \Delta x \in \ell(p) \right\} = \left\{ x \in \omega : \sum_{k=0}^{\infty} |x_k - x_{k-1}|^{p_k} < \infty \right\};$$

if $p_k = p > 1$ for all k = 0, 1, ... where p is a constant, then bv(p) reduces to the set bv^p studied in [13], and bv(e) = bv, the well-known set of sequences of bounded variation.

Let x and y be sequences, X and Y be subsets of ω and $A = (a_{nk})_{n,k=0}^{\infty}$ be an infinite matrix of complex numbers. We write

$$xy = (x_k y_k)_{k=0}^{\infty}, \ x^{-1} * Y = \{a \in \omega : ax \in Y\}$$

and

$$M(X,Y) = \bigcap_{x \in X} x^{-1} * Y = \{a \in \omega : ax \in Y \text{ for all } x \in X\}$$

for the multiplier space of X and Y. In the special case of Y = cs, $X^{\beta} = M(X, cs)$ is the β -dual of X. By A_n we denote the sequence in the *n*-th row of A, and we write $A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$ (n = 0, 1, ...) and $A(x) = (A_n(x))_{n=0}^{\infty}$, provided $A_n \in x^{\beta}$ for all *n*. Furthermore (X, Y) denotes the class of all matrices that map X into Y, that is $A \in (X, Y)$ if and only if $A_n \in X^{\beta}$ for all *n* and $A(x) \in Y$ for all $x \in X$.

An FK space is a complete linear metric space with the property that convergence implies coordinatewise convergence; a BK space is a normed FK space. An FKspace $X \supset \phi$ is said to have AK if every sequence $x = (x_k)_{k=0}^{\infty} \in X$ has a unique representation $x = \sum_{k=0}^{\infty} x_k e^{(k)}$, that is $x = \lim_{n\to\infty} x^{[n]}$. The space $\ell(p)$ is an FKspace with AK if and only if $p \in \ell_{\infty}$, with its metric given by the paranorm g(x) = $(\sum_{k=0}^{\infty} |x_k|^{p_k})^{1/M}$ where $M = \max\{1, \sup_k p_k\}$ ([14], [5] and [6]). Thus if $p \in \ell_{\infty}$ then, by [17, Theorem 4.3.12, p. 63], bv(p) is an FK space with $g(x) = (\sum_{k=0}^{\infty} |x_k - x_{k-1}|^{p_k})^{1/M}$. Further results on the topological structures of the spaces $\ell_{\infty}(p)$, $c_0(p)$ and c(p) can be found in [1]; they are not needed here.

In this paper, we study the β -dual of the set bv(p), and determine $(bv(p))^{\beta}$ when $p \in \ell_{\infty}$, thus extending the result given in [13]. Furthermore, we characterize the classes

 $(bv(p), \ell(s)), (bv(p), \ell_{\infty}(s)), (bv(p), c_0(s)), (bv(p), c(s))$ for bounded positive sequences $s = (s_k)_{k=0}^{\infty}, (bv(p), \ell_1), (bv(p), \ell_{\infty}), (bv(p), c_0)$ and (bv(p), c) and obtain the results in [16] and [13] as special cases.

2. The β -dual of bv(p)

In this section, we study the β -dual of bv(p) and some special cases.

2.1. The case $p_k > 1$.

Throughout this subsection, let p be a sequence with $p_k > 1$ and $q_k = p_k/(p_k - 1)$ for $k = 0, 1, \ldots$. We write $\ell_1^+ = \{x \in \ell_1 : x_k \ge 0 \text{ for all } k\}$. If $a \in cs$, then we define the sequence R by $R_k = \sum_{j=k}^{\infty} a_j$ for $k = 0, 1, \ldots$.

We need the following results.

Lemma 2.1

We put

$$M_1(p) = \bigcup_{N \in \mathbb{N} \setminus \{1\}} \left\{ a \in \omega : \sum_{k=0}^{\infty} |R_k|^{q_k} N^{-q_k} < \infty \right\},$$
$$M_2(p) = \bigcap_{v \in \ell_1^+} \left\{ a \in \omega : \sum_{k=0}^{\infty} a_k \sum_{j=0}^k v_j^{1/p_j} \text{ converges } \right\}$$

and $M(p) = M_1(p) \cap M_2(p)$. Then we have $(bv(p))^{\beta} = M(p)$.

Proof. First we assume $a \in M(p)$. Since $e^{(0)} \in \ell_1^+$, $a \in M_2(p)$ implies $a \in cs$, and so the sequence R is defined. Abel's summation by parts yields

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n+1} R_k \Delta x_k - R_{n+1} x_{n+1} \quad (n = 0, 1, \dots) \text{ for all } x.$$
 (2.1)

By [7, Theorem 1], $a \in M_1(p)$ implies $R \in (\ell(p))^{\beta}$. Since $x \in bv(p)$ if and only if $\Delta x \in \ell(p)$, we conclude

$$R\Delta x \in cs \text{ for all } x \in bv(p).$$
 (2.2)

Let $x \in bv(p)$ be given. We put $v_k = |\Delta x_k|^{p_k}$ for $k = 0, 1, \dots$ Then $v \in \ell_1^+$ and

$$|R_{n+1}x_{n+1}| \le |R_{n+1}| \sum_{k=0}^{n+1} |x_k - x_{k-1}| \le |R_{n+1}| \sum_{k=0}^{n+1} v_k^{1/p_k} \text{ for all } n$$

By [10, Corollary 1], $a \in M_2(p)$ implies

$$R_{n+1} \sum_{k=0}^{n+1} v_k^{1/p_k} \to 0 \quad (n \to \infty),$$
(2.3)

hence

$$Rx \in c_0. \tag{2.4}$$

Now (2.1), (2.2) and (2.4) imply $ax \in cs$ for all $x \in bv(p)$, that is $a \in (bv(p))^{\beta}$.

JARRAH AND MALKOWSKY

Conversely, we assume $a \in (bv(p))^{\beta}$. Then $ax \in cs$ for all $x \in bv(p)$, and $e \in bv(p)$ implies $a \in cs$. Therefore the sequence R is defined. Let $v \in \ell_1^+$ be given. We define the sequence x by $x_k = \sum_{j=0}^k v^{1/p_j}$ for $k = 0, 1, \ldots$. Then we obtain $\sum_{k=0}^{\infty} |\Delta x_k|^{p_k} = \sum_{k=0}^{\infty} |v_k| < \infty$, that is $x \in bv(p)$, and consequently $ax \in cs$, that is $a \in M_2(p)$. Now [10, Corollary 1] implies (2.3), and thus (2.4) holds for all $x \in bv(p)$. Finally, from (2.1), we obtain (2.2). Since $x \in bv(p)$ if and only if $\Delta x \in \ell(p)$, this implies $R \in (\ell(p))^{\beta}$ and $(\ell(p))^{\beta} = M_1(p)$ by [7, Theorem 1]. \Box

Lemma 2.2

We have $a \in (bv(p))^{\beta}$ if and only if $R \in (\ell(p))^{\beta} \cap M(bv(p), c_0)$.

Proof. If $R \in (\ell(p))^{\beta} \cap M(bv(p), c_0)$ then $a \in (bv(p))^{\beta}$ by (2.1).

Conversely, if $a \in (bv(p))^{\beta}$ then $R \in (\ell(p))^{\beta}$ and $\sum_{k=0}^{\infty} a_k \sum_{j=0}^{k} v_j^{1/p_j}$ converges for all $v \in \ell_1^+$ by Lemma 2.1. This implies $Rx \in c_0$ for all $x \in bv(p)$, as in the first part of the proof of Lemma 2.1. \Box

As an immediate consequence of (2.1) and Lemma 2.2, we obtain

Corollary 2.1

If $a \in (bv(p))^{\beta}$ then we have

$$\sum_{k=0}^{\infty} a_k x_k = \sum_{k=0}^{\infty} R_k \Delta x_k \text{ for all } x \in bv(p).$$
(2.5)

Lemma 2.3

We put

$$M_3(p) = \bigcup_{N \in \mathbb{N} \setminus \{1\}} \left\{ a \in \omega : \lim_{n \to \infty} \sum_{k=0}^n |a_n|^{q_k} N^{-q_k/p_k} = 0 \right\}$$

and

$$M_4(p) = \bigcup_{N \in \mathbb{N} \setminus \{1\}} \left\{ a \in \omega : \sup_n \sum_{k=0}^n |a_n|^{q_k} N^{-q_k/p_k} < \infty \right\}.$$

(a) Then we have $M_3(p) \cap c_0 \subset M(bv(p), c_0)$. (b) If $h = inf_k p_k > 1$ then we have $M(bv(p), c_0) \subset M_4(p) \cap c_0$.

Proof. (a) First we assume $a \in M_3(p) \cap c_0$. Let $\varepsilon > 0$ and $x \in bv(p)$ be given. We put $y = \Delta x \in \ell(p)$ and choose $m_0 \in \mathbb{N}$ such that

$$\sum_{k=m}^{\infty} |y_k|^{p_k} < \varepsilon \text{ for all } m \ge m_0.$$
(2.6)

Since $a \in c_0$ and $a \in M_3(p)$, we can choose $n_0 \in \mathbb{N}$ and $N \in \mathbb{N} \setminus \{1\}$ such that

$$\sum_{k=0}^{m_0} |a_n| |y_k| < \varepsilon \text{ for all } n \ge n_0$$
(2.7)

and

$$\sum_{k=0}^{n} |a_n|^{q_k} N^{-q_k/p_k} < \varepsilon \text{ for all } n \ge n_0.$$
(2.8)

Let $n \ge n_0$ be given. By (2.7), [3, (2)], (2.6) and (2.8), we have

$$|a_n x_n| \le \sum_{k=0}^{m_0} |a_n y_k| + \sum_{k=m_0+1}^n |a_n y_k|$$

$$< \varepsilon + N \left(\sum_{k=m_0+1}^n |a_n|^{q_k} N^{-q_k} + \sum_{k=m_0+1}^n |y_k|^{p_k} \right)$$

$$< \varepsilon (1+N) + \sum_{k=m_0+1}^n |a_n|^{q_k} N^{-q_k/p_k} < \varepsilon (2+N),$$

that is $a \in M(bv(p), c_0)$.

(b) Now let $\inf_k p_k = h > 1$. We assume $a \in M(bv(p), c_0)$. First $e \in bv(p)$ implies $a \in c_0$. We assume $a \notin M_4(p)$. Then

$$\sup_{n} \sum_{k=0}^{n} |a_n|^{q_k} N^{-q_k/p_k} = \infty \text{ for all } N \in \mathbb{N} \setminus \{1\}.$$

$$(2.9)$$

We put n(0) = -1. First, by (2.9), we can choose $n(1) \in \mathbb{N}$ such that

$$\sum_{k=n(0)+1}^{n(1)} |a_{n(1)}|^{q_k} 2^{-q_k/p_k} > 3.$$
(2.10)

Since $a \in c_0$, we can choose m(1) > n(1) such that

$$\sum_{k=0}^{n(1)} |a_m|^{q_k} 3^{-q_k/p_k} < 1 \text{ for all } m \ge m(1)$$
(2.11)

and

$$|a_m| < \frac{1}{3} |a_{n(1)}|$$
 for all $m \ge m(1)$ (note $|a_{n(1)}| > 0$ by (2.10)). (2.12)

Now, by (2.9), we choose n(2) > m(1) such that

$$\sum_{k=n(0)+1}^{n(2)} |a_{n(2)}|^{q_k} 3^{-q_k/p_k} > 4.$$
(2.13)

Then, by (2.13) and (2.11)

$$\sum_{k=n(1)+1}^{n(2)} |a_{n(2)}|^{q_k} 3^{-q_k/p_k} = \sum_{k=n(0)+1}^{n(2)} |a_{n(2)}|^{q_k} 3^{-q_k/p_k} - \sum_{k=n(0)+1}^{n(1)} |a_{n(2)}|^{q_k} 3^{-q_k/p_k} > 3.$$

Continuing in this way, we can define an increasing sequence $(n(j))_{j=0}^{\infty}$ of integers such that

$$M_j = \sum_{k=n(j-1)+1}^{n(j)} |a_{n(j)}|^{q_k} (j+1)^{-q_k/p_k} > j+1 \quad (j=1,2,\dots)$$
(2.14)

and

$$|a_{n(j)}| < \frac{1}{3} |a_{n(j-1)}| \quad (j = 1, 2, ...).$$
 (2.15)

We put $\alpha = h - 1 > 0$ and define the sequences y and x by

$$y_k = \operatorname{sgn}(a_{n(j)}) |a_{n(j)}|^{q_k - 1} (j+1)^{-q_k/p_k} M_j^{-1}$$

for $n(j-1) + 1 \le k \le n(j)$ $(j = 1, 2, ...)$

and $x_k = \sum_{j=0}^k y_k$ for $k = 0, 1, \ldots$. Then, since $M_j > j + 1$ for all $j, p_k \ge 1 + \alpha$ for all $k, \alpha > 0$ and $q_k/p_k - q_k = -1$ for all k, we have

$$\sum_{k=0}^{\infty} |y_k|^{p_k} = \sum_{j=1}^{\infty} \sum_{k=n(j-1)+1}^{n(j)} |a_{n(j)}|^{q_k} (j+1)^{-q_k} M_j^{-p_k}$$

$$\leq \sum_{j=0}^{\infty} \frac{1}{(j+1)^{\alpha}} M_j^{-1} \sum_{k=n(j-1)+1}^{n(j)} |a_{n(j)}|^{q_k} (j+1)^{-q_k/p_k} (j+1)^{-q_k+q_k/p_k}$$

$$= \sum_{j=0}^{\infty} \frac{1}{(j+1)^{1+\alpha}} M_j^{-1} M_j = \sum_{j=0}^{\infty} \frac{1}{(j+1)^{1+\alpha}} < \infty,$$

that is $y \in \ell(p)$, and so $x \in bv(p)$. But, on the other hand,

$$\begin{aligned} |a_{n(j)}x_{n(j)}| &= \left| a_{n(j)}\sum_{k=0}^{n(j)} y_k \right| \ge \sum_{k=n(j-1)+1}^{n(j)} |a_{n(j)}|^{q_k} (j+1)^{-q_k/p_k} M_j^{-1} \\ &- |a_{n(j)}| \sum_{l=1}^{j-1} \sum_{k=n(l-1)+1}^{n(l)} |a_{n(l)}|^{q_k-1} (l+1)^{-q_k/p_k} M_l^{-1} \\ &\ge 1 - \sum_{l=1}^{j-1} \frac{1}{3^l} M_l^{-1} \sum_{k=n(l-1)+1}^{n(l)} |a_{n(l)}|^{q_k} (l+1)^{-q_k/p_k} \\ &\ge 1 - \sum_{l=1}^{j-1} 3^{-l} \ge 1 - \frac{1}{2} = \frac{1}{2} \text{ for all } j = 1, 2, \dots, \end{aligned}$$

that is $ax \notin c_0$. \Box

Remark 1. In the case of Lemma 2.3 (b), we may have

$$M_4(p) \cap c_0 \neq M(bv(p), c_0).$$

Proof. We put $p_k = k+2$, $x_k = (k+1)/2$ and $a_k = 1/(k+1)$ for k = 0, 1, ... Then it follows that

$$\sum_{k=0}^{\infty} |x_k - x_{k-1}|^{p_k} = \sum_{k=0}^{\infty} 2^{-(k+2)} < \infty,$$

that is $x \in bv(p)$,

$$\sum_{k=0}^{n} |a_n|^{q_k} 2^{-q_k/p_k} = \sum_{k=0}^{n} (n+1)^{-(k+2)/(k+1)} 2^{-1/(k+1)} \le \sum_{k=0}^{n} \frac{1}{n+1} = 1$$

for all n, and trivially $a \in c_0$, thus $a \in M_4(p) \cap c_0$, but $a_n x_n = 1/2$ for all n, that is $a \notin M(bv(p), c_0)$. \Box

Now we give the β -dual of the set bv(p) when the sequence p is bounded.

Theorem 2.1

Let $p \in \ell_{\infty}$ and $p_k > 1$ for all $k = 0, 1, \ldots$. Then $a \in (bv(p))^{\beta}$ if and only if for some $N \in \mathbb{N} \setminus \{1\}$

$$\sum_{k=0}^{\infty} |R_k|^{q_k} N^{-q_k} < \infty$$
 (2.16)

and

$$\sup_{n} \sum_{k=0}^{n} |R_{n}|^{q_{k}} N^{-q_{k}} < \infty.$$
(2.17)

Proof. We have $a \in (bv(p))^{\beta}$ by Lemma 2.2 if and only if $R \in (\ell(p))^{\beta}$, that is if and only if (2.16) holds by [7, Theorem 1], and $R \in M(bv(p), c_0)$. We show that $R \in M(bv(p), c_0)$ if and only if (2.17) holds. To do this, we define the matrix $C = (c_{nk})_{n,k=0}^{\infty}$ by $c_{nk} = R_n$ for $0 \leq k \leq n$ and $c_{nk} = 0$ for k > n (n = 0, 1, ...). Since $x \in bv(p)$ if and only if $y = \Delta x \in \ell(p)$, we have $R \in M(bv(p), c_0)$ if and only if $C \in (\ell(p), c_0)$ which by [3, Corollary] is the case if and only if

$$\lim_{n \to \infty} c_{nk} = \lim_{n \to \infty} R_n = 0,$$

which trivially holds since $R_n = \sum_{k=n}^{\infty} a_n$, and

$$\sup_{n} \sum_{k=0}^{\infty} |c_{nk}|^{q_k} N^{-q_k/p_k} = \sup_{n} \sum_{k=0}^{n} |R_n|^{q_k} N^{-q_k/p_k} < \infty$$

for some $N \in \mathbb{N} \setminus \{1\}$, and the last condition obviously is equivalent with (2.17). \Box

There is an alternative proof of Theorem 2.1 in which Lemma 2.2 is not needed.

Remark 2. When $p \in \ell_{\infty}$ then $\ell(p)$ is an FK space with AK with respect to the paranorm g defined by $g(x) = (\sum_{k=0}^{\infty} |x_k|^{p_k})^{1/H}$ where $H = \sup_k p_k$, and we would conclude that $a \in (bv(p))^{\beta}$ if and only if $R \in \ell(p) \cap M(bv(p), c)$ by [12, Theorem 2.5]. Furthermore, as in the proof of Theorem 2.1, we would be able to show $R \in (bv(p), c)$ if and only if condition (2.17) holds.

Now we consider a few special cases. Part (b) of the following remark is [13, Theorem 2.1]

Remark 3. Let
$$p \in \ell_{\infty}$$
 and $p_k > 1$ for all k .
(a) If $h = \inf_k p_k > 1$ and $M(bv(p)) = \{a \in \omega : \sup_n \sum_{k=0}^n |a_n|^{q_k} < \infty\}$ then
 $a \in (bv(p))^{\beta}$ if and only if $R \in \ell(q) \cap M(bv(p))$. (2.18)

Moreover

$$a \in M(bv(p), c_0)$$
 if and only if $\sup_n \sum_{k=0}^n |a_n|^{q_k} < \infty.$ (2.19)

(b) Let $p_k = p > 1$ for all k and $M(bv^p) = ((n+1)^{1/q})^{-1} * \ell_{\infty}$. Then we have

 $a \in bv^p$ if and only if $R \in \ell_q \cap M(bv^p)$. (2.20)

Furthermore neither $\ell_q \subset M(bv^p)$ nor $M(bv^p) \subset \ell_q$ (cf. [13, Remark 1]).

Proof. (a) Let h > 1 and $H = \sup_k p_k < \infty$. Then it follows that $(\ell(p))^\beta = \ell(q)$ by [7, Theorem 4]. We show condition (2.19). First we assume $a \in M(bv(p), c_0)$. Then there is $N \in \mathbb{N} \setminus \{1\}$ such that

$$\sup_{n} \sum_{k=0}^{n} |a_{n}|^{q_{k}} N^{-q_{k}} < \infty,$$
(2.21)

as we have seen in the proof of Theorem 2.1, and this implies

$$\sup_{n} \sum_{k=0}^{n} |a_{n}|^{q_{k}} \le N^{H/(h-1)} \sup_{n} \sum_{k=0}^{n} |a_{k}|^{q_{k}} N^{-q_{k}} < \infty.$$

Conversely, we assume

$$\sup_{n} \sum_{k=0}^{n} |a_{n}|^{q_{k}} < \infty.$$
(2.22)

Then obviously condition (2.21) is satisfied for all $N \in \mathbb{N} \setminus \{1\}$. Furthermore it follows that $a \in c_0$. For otherwise, if $a \notin c_0$ there would be a real c with 0 < c < 1 and a subsequence $(a_{n(j)})_{j=0}^{\infty}$ of the sequence a such that $|a_{n(j)}| \geq c$ for all j, and so $\sum_{k=0}^{n(j)} |a_{n(j)}|^{q_k} \geq \sum_{k=0}^{n(j)} c^{q_k} \geq c^{H/(h-1)}(n(j)+1)$ for all j, contrary to the assumption that (2.22) is satisfied. Finally, (2.22) and $a \in c_0$ together imply $a \in M(bv(p), c_0)$ by [3, Corollary].

Now (2.18) is clear.

(b) The condition in (2.20) is an immediate consequence of Part (a). \Box

Concerning the proof of Remark 3 (a) we note.

Remark 4. If h = 1 then condition (2.21) does not imply $a \in c$.

Proof. We choose $p_k = 1 + 1/(k+1)$ (k = 0, 1, ...) and $a_n = (-1)^n$ (n = 0, 1, ...). Then $a \notin c$, but $\sup_n \sum_{k=0}^n |a_n|^{q_k} 2^{-q_k} = \sup_n \sum_{k=0}^n 2^{-(k+1)} < \infty$. \Box

2.2. The case $p_k \leq 1$.

Now we determine the β -dual of bv(p) when $p_k \leq 1$ for all $k = 0, 1, \ldots$

Lemma 2.4

Let $p_k \leq 1$ for all k. Then we have M(bv(p), c) = c.

Proof. First, we assume $a \in M(bv(p), c)$. Since $e \in bv(p)$, this implies $a \in c$.

Conversely we assume $a \in c$. This implies $a \in \ell_{\infty}$, hence $\sup_{n,k} |a_n|^{p_k} < \infty$, since $p_k \leq 1$ for all k. We define the matrix $C = (c_{nk})_{n,k=0}^{\infty}$ by $c_{nk} = a_n$ for $0 \leq k \leq n$ and $c_{nk} = 0$ for k > n (n = 0, 1, ...). From $a \in c$ and $\sup_{n,k} |c_{nk}|^{p_k} < \infty$, we conclude $C \in (\ell(p), c)$ by [3, Corollary]. Now, since $x \in bv(p)$ if and only if $y = \Delta x \in \ell(p)$, and $a_n x_n = a_n \sum_{k=0}^n y_k$, the fact that $C \in (\ell(p), c)$ implies $a \in M(bv(p), c)$. \Box

Theorem 2.2

Let $p_k \leq 1$ for all k. Then we have $a \in (bv(p))^{\beta}$ if and only if

$$\sup_{n} \left| \sum_{k=n}^{\infty} a_k \right|^{p_n} < \infty$$

Proof. By [3, Theorem 1 (ii)], [12, Theorem 2.5] and [10, Corollary 1], we have $a \in (bv(p))^{\beta}$, if and only if $R \in (\ell(p))^{\beta} = \ell_{\infty}(p)$ and $R \in M(bv(p), c) = c$, the last condition being redundant, since $R_n = \sum_{k=n}^{\infty} a_k$ for $n = 0, 1, \ldots$

Remark 5. If p = e, then by Theorem 2.2 $bv^{\beta} = \{a \in \omega : \sup_{k=n} a_k | < \infty\}$, and so obviously $bv^{\beta} = cs$, a well-known result (cf. [17, Theorem 7.3.5 (iii)]).

3. Matrix transformations on bv(p)

In this section, we characterize some matrix transformations on bv(p) and consider some special cases.

Theorem 3.1

Let $p, s \in \ell_{\infty}$. We assume $p_k \leq 1$ and $s_k \geq 1$ in (1.), and $s_k \leq 1$ in (3.) and (4.) below. Then the conditions for $A \in (bv(p), Y)$ for $Y = \ell(s), \ell_{\infty}(s), c_0(s), c(s)$ can be read from the table

To From	$\ell(s)$	$\ell_{\infty}(s)$	$c_0(s)$	c(s)
bv(p)	(1.)	(2.)	(3.)	(4.)

where

- (1.): for $p_k \leq 1$ and $s_k \geq 1$ (k = 0, 1, ...), (1.1) where (1.1) $\sup_k \sum_{n=0}^{\infty} |\sum_{j=k}^{\infty} a_{nj} B^{-1/p_k}|^{s_n} < \infty$ for some B > 1;
- (2.): for $p_k \leq 1$ (k = 0, 1, ...), (2.1) where (2.1) $\sup_n (\sup_k | \sum_{j=k}^{\infty} a_{nj} | B^{-1/p_k})^{s_n} < \infty$ for some B > 1for $p_k > 1$ (k = 0, 1, ...), (2.2) and (2.3) where (2.2) $\sup_n \sum_{k=0}^{\infty} | \sum_{j=k}^{\infty} a_{nj} |^{q_k} B^{-q_k/s_n} < \infty$ for some B > 1(2.3) $\begin{cases} \text{ for each } n \text{ there is } N_n > 1 \text{ such that} \\ \sup_m \sum_{k=0}^{m} | \sum_{j=m}^{\infty} a_{nj} |^{q_k} N_n^{-q_k} < \infty; \end{cases}$ (3.): for $p_k \leq 1$ (k = 0, 1, ...), (3.1) and (3.2) where (3.1) $\lim_{n \to \infty} | \sum_{j=k}^{\infty} a_{nj} |^{s_n} = 0$ for each k(3.2) $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} \sup_{m \to \infty} (\sup_{m \to \infty} | \sum_{j=m}^{\infty} a_{mj} |^{m-1/p_k})^{s_n} = 0$

$$(3.2) \lim_{M \to \infty} \limsup_{n \to \infty} (\sup_{k} | \sum_{j=k} a_{nj} | M^{-q_{j-k}} |^{-n} = 0$$

for $p_k > 1$ $(k = 0, 1, ...)$, (2.3) , (3.1) and (3.3) where
$$(3.3) \begin{cases} \lim_{M \to \infty} \limsup_{n \to \infty} (\sum_{k=0}^{\infty} |\sum_{j=k}^{\infty} a_{nj} |^{q_k} B^{q_k/s_n} M^{-q_k})^{s_n} = 0 \\ \text{for all } B \ge 1; \end{cases}$$

(4.): for $p_k \leq 1$ (k = 0, 1, ...) (4.1) and there exists a sequence $(\alpha_k)_{k=0}^{\infty}$ such that (4.2) and (4.3) where (4.1) $\sup_{n,k} |\sum_{j=k}^{\infty} a_{nj}| B^{-1/p_k} < \infty$ for some B > 1(4.2) $\lim_{n\to\infty} |\sum_{j=k}^{\infty} a_{nj} - \alpha_k|^{s_n} = 0$ for each k(4.3) $\lim_{M\to\infty} \limsup_{n\to\infty} (\sup_{k=0} |\sum_{j=k}^{\infty} a_{nj} - \alpha_k| M^{-1/p_k})^{s_n} = 0;$ for $p_k > 1$ (k = 0, 1, ...), (2.3), (4.4) and there exists a sequence $(\alpha_k)_{k=0}^{\infty}$ such that (4.2) and (4.5) where (4.4) $\sup_n \sum_{k=0}^{\infty} |\sum_{j=k}^{\infty} a_{nj}|^{q_k} B^{-q_k} < \infty$ for some B > 1(4.5) $\begin{cases} \lim_{M\to\infty} \limsup_{n\to\infty} \lim_{n\to\infty} (\sum_{k=0}^{\infty} \sum_{j=k}^{\infty} |a_{nj} - \alpha_k|^{q_k} B^{q_k/s_n} M^{-q_k})^{s_n} \\ = 0 \end{cases}$

Proof. In each case, we apply [12, Theorem 2.7] and Theorem 2.2 for $p_k \leq 1$ or Theorem 2.1 for $p_k > 1$. Then (1.) follows from [2, Theorem 5.1.1], (2.) from [8, Theorem 5(i)] for $p_k \leq 1$ and [8, Theorem 7] for $p_k > 1$, (3.) from [8, Theorem 5 (ii)] for $p_k < 1$ and [8, Theorem 8] for $p_k > 1$, and (4.) follows from [8, Theorem 5 (iii)] for $p_k \leq 1$ and [8, Theorem 9] for $p_k > 1$. \Box

Theorem 3.2

Let $p \in \ell_{\infty}$. Then the conditions for $A \in (bv(p), Y)$ for $Y = \ell_1, \ell_{\infty}, c_0, c$ can be read from the table

	To From	ℓ_1	ℓ_∞	c_0	c
Ι	bv(p)	(1.)	(2.)	(3.)	(4.)

where

- (1.): for $p_k \leq 1$ (k = 0, 1, ...), (1.1) where (1.1) $\sup_k \sum_{n=0}^{\infty} |\sum_{j=k}^{\infty} a_{nj}| B^{-1/p_k} < \infty$ for some B > 1for $p_k > 1$ (k = 0, 1, ...), (1.2) and (1.3) where (1.2) $\sup_{\substack{N \subset \mathbb{N}_0 \\ Nfinite}} \sum_{k=0}^{\infty} |\sum_{n \in N} \sum_{j=k}^{\infty} a_{nj}|^{q_k} B^{-q_k} < \infty$ for some B > 1(1.3) is (2.3) in Theorem 3.1;
- (2.): for $p_k \leq 1$ (k = 0, 1, ...), (2.1) where (2.1) $\sup_{n,k} |\sum_{j=k}^{\infty} a_{nj}|^{p_k} < \infty$ for $p_k > 1$ (k = 0, 1, ...), (1.3) and (2.2) where (2.2) $\sup_n \sum_{k=0}^{\infty} |\sum_{j=k}^{\infty} a_{nj}|^{q_k} B^{-q_k} < \infty$ or some B > 1;
- (3.): for $p_k \leq 1$ (k = 0, 1, ...), (2.1) and (3.1) where (3.1) $\lim_{n \to \infty} \sum_{j=k}^{\infty} a_{nj} = 0$ for each k for $p_k > 1$ (k = 0, 1, ...), (1.3), (2.2) and (3.1)

(4.): for
$$p_k \leq 1$$
 $(k = 0, 1, ...)$, (2.1) and (4.1) where
(4.1) $\lim_{n\to\infty} \sum_{j=k}^{\infty} a_{nj} = \alpha_k$ for each k
for $p_k > 1$ $(k = 0, 1, ...)$, (1.3), (2.2) and (4.1).

Proof. For $p_k \leq 1$, (1.) is an immediate consequence of Theorem 3.1 (1.). In the other cases, we apply [12, Theorem 2.7] and Theorem 2.2 for $p_k \leq 1$ or Theorem 2.1. Then the case $p_k > 1$ follows from [9, Satz 1]. Furthermore (2.), (3.) and (4.) follow from [3, Theorem 1], [3, Theorem 1] and [17, 8.3.6, p. 123], and from [3, Corollary], respectively. \Box

Now we apply Theorems 3.1 and 3.2 to obtain the mapping theorems in [16] and [13].

Remark 6. Putting p = e in Theorem 3.1 (1.), (2.), (3.) and (4.), we obtain [16, Theorems 1, 2, 3, and 4], respectively. Furthermore, [16, Corollaries 2⁶ (ii), p. 58, 1⁶ (i), p. 59 and Corollaries 2⁶, p. 60 and p. 61] follow from Theorem 3.2 (1.), (2.) (3.) and (4.), respectively. In fact, condition (3.1) is replaced in [16, Corollary 2⁶, p. 60] by the conditions $\lim_{n\to\infty} a_{nk} = 0$ for each k and $\lim_{n\to\infty} \sum_{k=0}^{\infty} a_{nk} = 0$, which are obviously equivalent with condition (3.1), since $a_{nk} = \sum_{j=k}^{\infty} a_{nj} - \sum_{j=k+1}^{\infty} a_{nj}$ for all k, and also $\sum_{j=k}^{\infty} a_{nj} = \sum_{j=0}^{\infty} a_{nj} - \sum_{j=0}^{k-1} a_{nj}$ for all k; a similar remark applies to the conditions in [16, Corollary 2⁶, p. 61]. Finally, [13, Theorems 3.2 and 3.1 (a), (b) and (c)] are an immediate consequence of Theorem 3.2 (1.), (2.), (3.) and (4.), respectively.

Remark 7. In view of [11, Theorem 1], we obtain the characterizations of the classes (X,Y) for X = bv(p) and Y = bv(s), $Y = Z(\Delta) = \{y \in \omega : \Delta y \in Z\}$ for $Z = \ell_{\infty}(s), c_0(s), c(s), \ell_1, \ell_{\infty}, c_0$ and c, if we replace the terms a_{nj} by $c_{nj} = a_{nj} - a_{n-1,j}$ (n, j = 0, 1, ...) in the respective conditions of Theorems 3.1 and 3.2.

References

- 1. K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, *Canad. J. Math.* 44 (1992), 298–302.
- K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223–238.
- C.G. Lascarides and I.J. Maddox, Matrix transformations between some classes of sequences, *Proc. Cambridge Philos. Soc.* 68 (1970), 99–104.
- 4. I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. 18 (1967), 345–355.
- 5. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, *Proc. Cambridge Philos. Soc.* **64** (1968), 335–340.
- 6. I.J. Maddox, Some properties of paranormed sequence spaces, J. London Math. Soc. 1 (1969), 316–322.
- 7. I.J. Maddox, Continuous and Köthe Toeplitz duals of certain sequence spaces, *Proc. Cambridge Philos. Soc.* 65 (1969), 431–435.
- I.J. Maddox and M.A.L. Willey, Continuous operators on paranormed spaces and matrix transformations, *Pacific J. Math.* 53 (1974), 217–228.

JARRAH AND MALKOWSKY

- 9. E. Malkowsky, Klassen von Matrixabbildungen in paranormierten *FK* Räumen, *Analysis* **7** (1987), 275–292.
- E. Malkowsky, A note on the Köthe-Toeplitz duals of generalized sets of bounded and convergent difference sequences, J. Anal. 4 (1996), 81–91.
- 11. E. Malkowsky, Linear operators in certain BK spaces, Bolyai Soc. Math. Stud. 5 (1996), 241-250.
- 12. E. Malkowsky, Linear operators between some matrix domains, *Rend. Circ. Mat. Palermo (2)* Suppl. 68 (2002), 641–655.
- E. Malkowsky, V. Rakočević, and S. Živković, Matrix transformations between the sequence spaces bv^p and certain BK spaces, Appl. Math. Comput. 147 (2004), 377–396.
- 14. H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
- 15. S. Simons, The sequence spaces $\ell(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math. Soc. (3) 15 (1965), 422–436.
- 16. S.M. Sirajudeen, Matrix transformations of bv into $\ell(p)$, $\ell(q)$, $c_0(q)$ and c(q), Indian J. Pure Appl. Math. 23 (1992), 55–61.
- 17. A. Wilansky, *Summability through Functional Analysis*, North–Holland Mathematics Studies, **85** 1984.