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Abstract

Let p = (pk)∞k=0 be a sequence withpk > 0 for all k. We consider the
spacebv(p) = {x ∈ ω :

∑∞
k=0 |xk − xk−1|pk < ∞}, study itsβ–dual and

characterize some matrix transformations onbv(p) which yield the results in
[16] and[13] as special cases.

1. Introduction

We write ω for the set of all complex sequences x = (xk)∞k=0. Let φ, `∞ and c0 denote
the set of all finite, bounded and null sequences. We write

`p =

{
x ∈ ω :

∞∑
k=0

|xk|p < ∞

}
for 0 < p < ∞.
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By e and e(n) (n ∈ N0), we denote the sequences with ek = 1 (k = 0, 1, . . . ), and
e
(n)
n = 1 and e

(n)
k = 0 (k 6= n). For any sequence x = (xk)∞k=0, let x[n] =

∑n
k=0 xke

(k)

be its n–section.
Let p = (pk)∞k=0 be a sequence of strictly positive reals throughout. The sets

`(p) =

{
x ∈ ω :

∞∑
k=0

|xk|pk < ∞

}
,

`∞(p) =
{

x ∈ ω : sup
k
|xk|pk < ∞

}
,

c0(p) =
{

x ∈ ω : lim
k→∞

|xk|pk = 0
}

and

c(p) = {x ∈ ω : x− le ∈ c0(p) for some l ∈ C} ,

were first introduced and studied by Nakano, [14], Simons [15] and Maddox [4]. If
pk = p (k = 0, 1, . . . ) for constant p > 0 then these sets reduce to lp, `∞, c0 and c.

Given any sequence x, we write ∆x for the sequence with ∆xk = xk − xk−1 for
k = 0, 1, . . . , and use the convention that any term with a negative subscript is equal
to zero. We consider the set

bv(p) = {x ∈ ω : ∆x ∈ `(p)} =

{
x ∈ ω :

∞∑
k=0

|xk − xk−1|pk < ∞

}
;

if pk = p > 1 for all k = 0, 1, . . . where p is a constant, then bv(p) reduces to the set bvp

studied in [13], and bv(e) = bv, the well–known set of sequences of bounded variation.
Let x and y be sequences, X and Y be subsets of ω and A = (ank)∞n,k=0 be an

infinite matrix of complex numbers. We write

xy = (xkyk)∞k=0, x−1 ∗ Y = {a ∈ ω : ax ∈ Y }

and
M(X, Y ) = ∩x∈Xx−1 ∗ Y = {a ∈ ω : ax ∈ Y for all x ∈ X}

for the multiplier space of X and Y . In the special case of Y = cs, Xβ = M(X, cs) is
the β–dual of X. By An we denote the sequence in the n–th row of A, and we write
An(x) =

∑∞
k=0 ankxk (n = 0, 1, . . . ) and A(x) = (An(x))∞n=0, provided An ∈ xβ for all

n. Furthermore (X, Y ) denotes the class of all matrices that map X into Y , that is
A ∈ (X, Y ) if and only if An ∈ Xβ for all n and A(x) ∈ Y for all x ∈ X.

An FK space is a complete linear metric space with the property that convergence
implies coordinatewise convergence; a BK space is a normed FK space. An FK

space X ⊃ φ is said to have AK if every sequence x = (xk)∞k=0 ∈ X has a unique
representation x =

∑∞
k=0 xke

(k), that is x = limn→∞ x[n]. The space `(p) is an FK

space with AK if and only if p ∈ `∞, with its metric given by the paranorm g(x) =
(
∑∞

k=0 |xk|pk)1/M where M = max{1, supk pk} ([14], [5] and [6]). Thus if p ∈ `∞
then, by [17, Theorem 4.3.12, p. 63], bv(p) is an FK space with g(x) = (

∑∞
k=0 |xk −

xk−1|pk)1/M . Further results on the topological structures of the spaces `∞(p), c0(p)
and c(p) can be found in [1]; they are not needed here.

In this paper, we study the β–dual of the set bv(p), and determine (bv(p))β when
p ∈ `∞, thus extending the result given in [13]. Furthermore, we characterize the classes
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(bv(p), `(s)), (bv(p), `∞(s)), (bv(p), c0(s)), (bv(p), c(s)) for bounded positive sequences
s = (sk)∞k=0, (bv(p), `1), (bv(p), `∞), (bv(p), c0) and (bv(p), c) and obtain the results in
[16] and [13] as special cases.

2. The β–dual of bv(p)

In this section, we study the β–dual of bv(p) and some special cases.

2.1. The case pk > 1.

Throughout this subsection, let p be a sequence with pk > 1 and qk = pk/(pk− 1)
for k = 0, 1, . . . . We write `+

1 = {x ∈ `1 : xk ≥ 0 for all k}. If a ∈ cs, then we define
the sequence R by Rk =

∑∞
j=k aj for k = 0, 1, . . . .

We need the following results.

Lemma 2.1

We put

M1(p) =
⋃

N∈N\{1}

{
a ∈ ω :

∞∑
k=0

|Rk|qkN−qk < ∞

}
,

M2(p) =
⋂

v∈`+1

a ∈ ω :
∞∑

k=0

ak

k∑
j=0

v
1/pj

j converges


and M(p) = M1(p) ∩M2(p). Then we have (bv(p))β = M(p).

Proof. First we assume a ∈ M(p). Since e(0) ∈ `+
1 , a ∈ M2(p) implies a ∈ cs, and so

the sequence R is defined. Abel’s summation by parts yields
n∑

k=0

akxk =
n+1∑
k=0

Rk∆xk −Rn+1xn+1 (n = 0, 1, . . . ) for all x. (2.1)

By [7, Theorem 1], a ∈ M1(p) implies R ∈ (`(p))β. Since x ∈ bv(p) if and only if
∆x ∈ `(p), we conclude

R∆x ∈ cs for all x ∈ bv(p). (2.2)
Let x ∈ bv(p) be given. We put vk = |∆xk|pk for k = 0, 1, . . . . Then v ∈ `+

1 and

|Rn+1xn+1| ≤ |Rn+1|
n+1∑
k=0

|xk − xk−1| ≤ |Rn+1|
n+1∑
k=0

v
1/pk

k for all n.

By [10, Corollary 1], a ∈ M2(p) implies

Rn+1

n+1∑
k=0

v
1/pk

k → 0 (n →∞), (2.3)

hence
Rx ∈ c0. (2.4)

Now (2.1), (2.2) and (2.4) imply ax ∈ cs for all x ∈ bv(p), that is a ∈ (bv(p))β.
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Conversely, we assume a ∈ (bv(p))β. Then ax ∈ cs for all x ∈ bv(p), and e ∈ bv(p)
implies a ∈ cs. Therefore the sequence R is defined. Let v ∈ `+

1 be given. We define
the sequence x by xk =

∑k
j=0 v1/pj for k = 0, 1, . . . . Then we obtain

∑∞
k=0 |∆xk|pk =∑∞

k=0 |vk| < ∞, that is x ∈ bv(p), and consequently ax ∈ cs, that is a ∈ M2(p). Now
[10, Corollary 1] implies (2.3), and thus (2.4) holds for all x ∈ bv(p). Finally, from
(2.1), we obtain (2.2). Since x ∈ bv(p) if and only if ∆x ∈ `(p), this implies R ∈ (`(p))β

and (`(p))β = M1(p) by [7, Theorem 1]. �

Lemma 2.2

We have a ∈ (bv(p))β if and only if R ∈ (`(p))β ∩M(bv(p), c0).

Proof. If R ∈ (`(p))β ∩M(bv(p), c0) then a ∈ (bv(p))β by (2.1).
Conversely, if a ∈ (bv(p))β then R ∈ (`(p))β and

∑∞
k=0 ak

∑k
j=0 v

1/pj

j converges
for all v ∈ `+

1 by Lemma 2.1. This implies Rx ∈ c0 for all x ∈ bv(p), as in the first
part of the proof of Lemma 2.1. �

As an immediate consequence of (2.1) and Lemma 2.2, we obtain

Corollary 2.1

If a ∈ (bv(p))β then we have

∞∑
k=0

akxk =
∞∑

k=0

Rk∆xk for all x ∈ bv(p). (2.5)

Lemma 2.3

We put

M3(p) =
⋃

N∈N\{1}

{
a ∈ ω : lim

n→∞

n∑
k=0

|an|qkN−qk/pk = 0

}
and

M4(p) =
⋃

N∈N\{1}

{
a ∈ ω : sup

n

n∑
k=0

|an|qkN−qk/pk < ∞

}
.

(a) Then we have M3(p) ∩ c0 ⊂ M(bv(p), c0).
(b) If h = infkpk > 1 then we have M(bv(p), c0) ⊂ M4(p) ∩ c0.

Proof. (a) First we assume a ∈ M3(p) ∩ c0. Let ε > 0 and x ∈ bv(p) be given. We put
y = ∆x ∈ `(p) and choose m0 ∈ N such that

∞∑
k=m

|yk|pk < ε for all m ≥ m0. (2.6)

Since a ∈ c0 and a ∈ M3(p), we can choose n0 ∈ N and N ∈ N \ {1} such that
m0∑
k=0

|an||yk| < ε for all n ≥ n0 (2.7)
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and
n∑

k=0

|an|qkN−qk/pk < ε for all n ≥ n0. (2.8)

Let n ≥ n0 be given. By (2.7), [3, (2)], (2.6) and (2.8), we have

|anxn| ≤
m0∑
k=0

|anyk|+
n∑

k=m0+1

|anyk|

< ε + N

 n∑
k=m0+1

|an|qkN−qk +
n∑

k=m0+1

|yk|pk


< ε(1 + N) +

n∑
k=m0+1

|an|qkN−qk/pk < ε(2 + N),

that is a ∈ M(bv(p), c0).
(b) Now let infk pk = h > 1. We assume a ∈ M(bv(p), c0). First e ∈ bv(p) implies

a ∈ c0. We assume a /∈ M4(p). Then

sup
n

n∑
k=0

|an|qkN−qk/pk = ∞ for all N ∈ N \ {1}. (2.9)

We put n(0) = −1. First, by (2.9), we can choose n(1) ∈ N such that

n(1)∑
k=n(0)+1

|an(1)|qk2−qk/pk > 3. (2.10)

Since a ∈ c0, we can choose m(1) > n(1) such that

n(1)∑
k=0

|am|qk3−qk/pk < 1 for all m ≥ m(1) (2.11)

and

|am| <
1
3
|an(1)| for all m ≥ m(1) (note |an(1)| > 0 by (2.10)). (2.12)

Now, by (2.9), we choose n(2) > m(1) such that

n(2)∑
k=n(0)+1

|an(2)|qk3−qk/pk > 4. (2.13)

Then, by (2.13) and (2.11)

n(2)∑
k=n(1)+1

|an(2)|qk3−qk/pk =
n(2)∑

k=n(0)+1

|an(2)|qk3−qk/pk −
n(1)∑

k=n(0)+1

|an(2)|qk3−qk/pk > 3.

Continuing in this way, we can define an increasing sequence (n(j))∞j=0 of integers such
that

Mj =
n(j)∑

k=n(j−1)+1

|an(j)|qk(j + 1)−qk/pk > j + 1 (j = 1, 2, . . . ) (2.14)
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and

|an(j)| <
1
3
|an(j−1)| (j = 1, 2, . . . ). (2.15)

We put α = h− 1 > 0 and define the sequences y and x by

yk = sgn(an(j)) |an(j)|qk−1(j + 1)−qk/pk M−1
j

for n(j − 1) + 1 ≤ k ≤ n(j) (j = 1, 2, . . . )

and xk =
∑k

j=0 yk for k = 0, 1, . . . . Then, since Mj > j + 1 for all j, pk ≥ 1 + α for all
k, α > 0 and qk/pk − qk = −1 for all k, we have

∞∑
k=0

|yk|pk =
∞∑

j=1

n(j)∑
k=n(j−1)+1

|an(j)|qk(j + 1)−qkM−pk
j

≤
∞∑

j=0

1
(j + 1)α

M−1
j

n(j)∑
k=n(j−1)+1

|an(j)|qk(j + 1)−qk/pk (j + 1)−qk+qk/pk

=
∞∑

j=0

1
(j + 1)1+α

M−1
j Mj =

∞∑
j=0

1
(j + 1)1+α

< ∞,

that is y ∈ `(p), and so x ∈ bv(p). But, on the other hand,

|an(j)xn(j)| =

∣∣∣∣∣∣an(j)

n(j)∑
k=0

yk

∣∣∣∣∣∣ ≥
n(j)∑

k=n(j−1)+1

|an(j)|qk (j + 1)−qk/pk M−1
j

− |an(j)|
j−1∑
l=1

n(l)∑
k=n(l−1)+1

|an(l)|qk−1 (l + 1)−qk/pk M−1
l

≥ 1−
j−1∑
l=1

1
3l

M−1
l

n(l)∑
k=n(l−1)+1

|an(l)|qk(l + 1)−qk/pk

≥ 1−
j−1∑
l=1

3−l ≥ 1− 1
2

=
1
2

for all j = 1, 2, . . . ,

that is ax 6∈ c0. �

Remark 1. In the case of Lemma 2.3 (b), we may have

M4(p) ∩ c0 6= M(bv(p), c0).

Proof. We put pk = k + 2, xk = (k + 1)/2 and ak = 1/(k + 1) for k = 0, 1, . . . Then it
follows that

∞∑
k=0

|xk − xk−1|pk =
∞∑

k=0

2−(k+2) < ∞,

that is x ∈ bv(p),
n∑

k=0

|an|qk 2−qk/pk =
n∑

k=0

(n + 1)−(k+2)/(k+1) 2−1/(k+1) ≤
n∑

k=0

1
n + 1

= 1
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for all n, and trivially a ∈ c0, thus a ∈ M4(p) ∩ c0, but anxn = 1/2 for all n, that is
a 6∈ M(bv(p), c0). �

Now we give the β–dual of the set bv(p) when the sequence p is bounded.

Theorem 2.1

Let p ∈ `∞ and pk > 1 for all k = 0, 1, . . . . Then a ∈ (bv(p))β if and only if

for some N ∈ N \ {1}
∞∑

k=0

|Rk|qk N−qk < ∞ (2.16)

and

sup
n

n∑
k=0

|Rn|qkN−qk < ∞. (2.17)

Proof. We have a ∈ (bv(p))β by Lemma 2.2 if and only if R ∈ (`(p))β , that is if and only
if (2.16) holds by [7, Theorem 1], and R ∈ M(bv(p), c0). We show that R ∈ M(bv(p), c0)
if and only if (2.17) holds. To do this, we define the matrix C = (cnk)∞n,k=0 by cnk = Rn

for 0 ≤ k ≤ n and cnk = 0 for k > n (n = 0, 1, . . . ). Since x ∈ bv(p) if and only if
y = ∆x ∈ `(p), we have R ∈ M(bv(p), c0) if and only if C ∈ (`(p), c0) which by [3,
Corollary] is the case if and only if

lim
n→∞

cnk = lim
n→∞

Rn = 0,

which trivially holds since Rn =
∑∞

k=n an, and

sup
n

∞∑
k=0

|cnk|qk N−qk/pk = sup
n

n∑
k=0

|Rn|qk N−qk/pk < ∞

for some N ∈ N \ {1}, and the last condition obviously is equivalent with (2.17). �

There is an alternative proof of Theorem 2.1 in which Lemma 2.2 is not needed.

Remark 2. When p ∈ `∞ then `(p) is an FK space with AK with respect to the
paranorm g defined by g(x) = (

∑∞
k=0 |xk|pk)1/H where H = supk pk, and we would

conclude that a ∈ (bv(p))β if and only if R ∈ `(p) ∩M(bv(p), c) by [12, Theorem 2.5].
Furthermore, as in the proof of Theorem 2.1, we would be able to show R ∈ (bv(p), c)
if and only if condition (2.17) holds.

Now we consider a few special cases. Part (b) of the following remark is [13,
Theorem 2.1]

Remark 3. Let p ∈ `∞ and pk > 1 for all k.
(a) If h = infk pk > 1 and M(bv(p)) = {a ∈ ω : supn

∑n
k=0 |an|qk < ∞} then

a ∈ (bv(p))β if and only if R ∈ `(q) ∩M(bv(p)). (2.18)

Moreover

a ∈ M(bv(p), c0) if and only if sup
n

n∑
k=0

|an|qk < ∞. (2.19)
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(b) Let pk = p > 1 for all k and M(bvp) = ((n + 1)1/q)−1 ∗ `∞. Then we have

a ∈ bvp if and only if R ∈ `q ∩M(bvp). (2.20)

Furthermore neither `q ⊂ M(bvp) nor M(bvp) ⊂ `q (cf. [13, Remark 1]).

Proof. (a) Let h > 1 and H = supk pk < ∞. Then it follows that (`(p))β = `(q) by [7,
Theorem 4]. We show condition (2.19). First we assume a ∈ M(bv(p), c0). Then there
is N ∈ N \ {1} such that

sup
n

n∑
k=0

|an|qkN−qk < ∞, (2.21)

as we have seen in the proof of Theorem 2.1, and this implies

sup
n

n∑
k=0

|an|qk ≤ NH/(h−1) sup
n

n∑
k=0

|ak|qkN−qk < ∞.

Conversely, we assume

sup
n

n∑
k=0

|an|qk < ∞. (2.22)

Then obviously condition (2.21) is satisfied for all N ∈ N \ {1}. Furthermore it follows
that a ∈ c0. For otherwise, if a 6∈ c0 there would be a real c with 0 < c < 1 and
a subsequence (an(j))∞j=0 of the sequence a such that |an(j)| ≥ c for all j, and so∑n(j)

k=0 |an(j)|qk ≥
∑n(j)

k=0 cqk ≥ cH/(h−1)(n(j) + 1) for all j, contrary to the assumption
that (2.22) is satisfied. Finally, (2.22) and a ∈ c0 together imply a ∈ M(bv(p), c0) by
[3, Corollary].

Now (2.18) is clear.
(b) The condition in (2.20) is an immediate consequence of Part (a). �

Concerning the proof of Remark 3 (a) we note.

Remark 4. If h = 1 then condition (2.21) does not imply a ∈ c.

Proof. We choose pk = 1 + 1/(k + 1) (k = 0, 1, . . . ) and an = (−1)n (n = 0, 1, . . . ).
Then a 6∈ c, but supn

∑n
k=0 |an|qk2−qk = supn

∑n
k=0 2−(k+1) < ∞. �

2.2. The case pk ≤ 1.

Now we determine the β–dual of bv(p) when pk ≤ 1 for all k = 0, 1, . . . .

Lemma 2.4

Let pk ≤ 1 for all k. Then we have M(bv(p), c) = c.

Proof. First, we assume a ∈ M(bv(p), c). Since e ∈ bv(p), this implies a ∈ c.
Conversely we assume a ∈ c. This implies a ∈ `∞, hence supn,k |an|pk < ∞, since

pk ≤ 1 for all k. We define the matrix C = (cnk)∞n,k=0 by cnk = an for 0 ≤ k ≤ n and
cnk = 0 for k > n (n = 0, 1, . . . ). From a ∈ c and supn,k |cnk|pk < ∞, we conclude
C ∈ (`(p), c) by [3, Corollary]. Now, since x ∈ bv(p) if and only if y = ∆x ∈ `(p), and
anxn = an

∑n
k=0 yk, the fact that C ∈ (`(p), c) implies a ∈ M(bv(p), c). �
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Theorem 2.2

Let pk ≤ 1 for all k. Then we have a ∈ (bv(p))β if and only if

sup
n

∣∣∣∣∣
∞∑

k=n

ak

∣∣∣∣∣
pn

< ∞.

Proof. By [3, Theorem 1 (ii)], [12, Theorem 2.5] and [10, Corollary 1], we have a ∈
(bv(p))β, if and only if R ∈ (`(p))β = `∞(p) and R ∈ M(bv(p), c) = c, the last condition
being redundant, since Rn =

∑∞
k=n ak for n = 0, 1, . . . . �

Remark 5. If p = e, then by Theorem 2.2 bvβ = {a ∈ ω : supn |
∑∞

k=n ak| < ∞}, and
so obviously bvβ = cs, a well–known result (cf. [17, Theorem 7.3.5 (iii)]).

3. Matrix transformations on bv(p)

In this section, we characterize some matrix transformations on bv(p) and consider
some special cases.

Theorem 3.1

Let p, s ∈ `∞. We assume pk ≤ 1 and sk ≥ 1 in (1.), and sk ≤ 1 in (3.) and (4.)
below. Then the conditions for A ∈ (bv(p), Y ) for Y = `(s), `∞(s), c0(s), c(s) can be

read from the table

To
From

`(s) `∞(s) c0(s) c(s)

bv(p) (1.) (2.) (3.) (4.)

where

(1.): for pk ≤ 1 and sk ≥ 1 (k = 0, 1, . . . ), (1.1) where

(1.1) supk

∑∞
n=0 |

∑∞
j=k anjB

−1/pk |sn < ∞ for some B > 1;

(2.): for pk ≤ 1 (k = 0, 1, . . . ), (2.1) where

(2.1) supn(supk |
∑∞

j=k anj |B−1/pk)sn < ∞ for some B > 1

for pk > 1 (k = 0, 1, . . . ), (2.2) and (2.3) where

(2.2) supn

∑∞
k=0 |

∑∞
j=k anj |qkB−qk/sn < ∞ for some B > 1

(2.3)

{
for each n there is Nn > 1 such that

supm

∑m
k=0 |

∑∞
j=m anj |qkN−qk

n < ∞;

(3.): for pk ≤ 1 (k = 0, 1, . . . ), (3.1) and (3.2) where

(3.1) limn→∞ |
∑∞

j=k anj |sn = 0 for each k

(3.2) limM→∞ lim supn→∞(supk |
∑∞

j=k anj |M−1/pk)sn = 0

for pk > 1 (k = 0, 1, . . . ), (2.3), (3.1) and (3.3) where

(3.3)

{
limM→∞ lim supn→∞(

∑∞
k=0 |

∑∞
j=k anj |qk Bqk/sn M−qk)sn = 0

for all B ≥ 1;
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(4.): for pk ≤ 1 (k = 0, 1, . . . ) (4.1) and

there exists a sequence (αk)∞k=0 such that (4.2) and (4.3)

where

(4.1) supn,k |
∑∞

j=k anj |B−1/pk < ∞ for some B > 1

(4.2) limn→∞ |
∑∞

j=k anj − αk|sn = 0 for each k

(4.3) limM→∞ lim supn→∞(supk |
∑∞

j=k anj − αk|M−1/pk)sn = 0;

for pk > 1 (k = 0, 1, . . . ), (2.3), (4.4) and

there exists a sequence (αk)∞k=0 such that (4.2) and (4.5)

where

(4.4) supn

∑∞
k=0 |

∑∞
j=k anj |qk B−qk < ∞ for some B > 1

(4.5)

{
limM→∞ lim supn→∞(

∑∞
k=0

∑∞
j=k |anj − αk|qk Bqk/sn M−qk)sn

= 0 for all B ≥ 1
.

Proof. In each case, we apply [12, Theorem 2.7] and Theorem 2.2 for pk ≤ 1 or
Theorem 2.1 for pk > 1. Then (1.) follows from [2, Theorem 5.1.1], (2.) from [8,
Theorem 5(i)] for pk ≤ 1 and [8, Theorem 7] for pk > 1, (3.) from [8, Theorem 5 (ii)]
for pk < 1 and [8, Theorem 8] for pk > 1, and (4.) follows from [8, Theorem 5 (iii)]
for pk ≤ 1 and [8, Theorem 9] for pk > 1. �

Theorem 3.2

Let p ∈ `∞. Then the conditions for A ∈ (bv(p), Y ) for Y = `1, `∞, c0, c can be

read from the table

To
From

`1 `∞ c0 c

bv(p) (1.) (2.) (3.) (4.)

where

(1.): for pk ≤ 1 (k = 0, 1, . . . ), (1.1) where

(1.1) supk

∑∞
n=0 |

∑∞
j=k anj |B−1/pk < ∞ for some B > 1

for pk > 1 (k = 0, 1, . . . ), (1.2) and (1.3) where

(1.2) sup N⊂N0
Nfinite

∑∞
k=0 |

∑
n∈N

∑∞
j=k anj |qkB−qk < ∞ for some B > 1

(1.3) is (2.3) in Theorem 3.1;

(2.): for pk ≤ 1 (k = 0, 1, . . . ), (2.1) where

(2.1) supn,k |
∑∞

j=k anj |pk < ∞

for pk > 1 (k = 0, 1, . . . ), (1.3) and (2.2) where

(2.2) supn

∑∞
k=0 |

∑∞
j=k anj |qkB−qk < ∞ or some B > 1;

(3.): for pk ≤ 1 (k = 0, 1, . . . ), (2.1) and (3.1) where

(3.1) limn→∞
∑∞

j=k anj = 0 for each k

for pk > 1 (k = 0, 1, . . . ), (1.3), (2.2) and (3.1)
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(4.): for pk ≤ 1 (k = 0, 1, . . . ), (2.1) and (4.1) where

(4.1) limn→∞
∑∞

j=k anj = αk for each k

for pk > 1 (k = 0, 1, . . . ), (1.3), (2.2) and (4.1).

Proof. For pk ≤ 1, (1.) is an immediate consequence of Theorem 3.1 (1.). In the
other cases, we apply [12, Theorem 2.7] and Theorem 2.2 for pk ≤ 1 or Theorem 2.1.
Then the case pk > 1 follows from [9, Satz 1]. Furthermore (2.), (3.) and (4.) follow
from [3, Theorem 1], [3, Theorem 1] and [17, 8.3.6, p. 123], and from [3, Corollary],
respectively. �

Now we apply Theorems 3.1 and 3.2 to obtain the mapping theorems in [16]
and [13].

Remark 6. Putting p = e in Theorem 3.1 (1.), (2.), (3.) and (4.), we obtain [16,
Theorems 1, 2, 3, and 4], respectively. Furthermore, [16, Corollaries 26 (ii), p. 58, 16

(i), p. 59 and Corollaries 26, p. 60 and p. 61] follow from Theorem 3.2 (1.), (2.)
(3.) and (4.), respectively. In fact, condition (3.1) is replaced in [16, Corollary 26, p.
60] by the conditions limn→∞ ank = 0 for each k and limn→∞

∑∞
k=0 ank = 0, which

are obviously equivalent with condition (3.1), since ank =
∑∞

j=k anj −
∑∞

j=k+1 anj for
all k, and also

∑∞
j=k anj =

∑∞
j=0 anj −

∑k−1
j=0 anj for all k; a similar remark applies

to the conditions in [16, Corollary 26, p. 61]. Finally, [13, Theorems 3.2 and 3.1 (a),
(b) and (c)] are an immediate consequence of Theorem 3.2 (1.), (2.), (3.) and (4.),
respectively.

Remark 7. In view of [11, Theorem 1], we obtain the characterizations of the classes
(X, Y ) for X = bv(p) and Y = bv(s), Y = Z(∆) = {y ∈ ω : ∆y ∈ Z} for Z =
`∞(s), c0(s), c(s), `1, `∞, c0 and c, if we replace the terms anj by cnj = anj − an−1,j

(n, j = 0, 1, . . . ) in the respective conditions of Theorems 3.1 and 3.2.
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