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ABSTRACT

Letp = (pr)3>, be a sequence with; > 0 for all k. We consider the
spacebu(p) = {z € w: Y o, |xk — xk—1|P* < oo}, study itsf—dual and
characterize some matrix transformationsterip) which yield the results in
[16] and[13] as special cases.

1. Introduction

We write w for the set of all complex sequences = = (z)72,. Let ¢, £ and ¢ denote
the set of all finite, bounded and null sequences. We write

€p:{x€w22|xk|p<oo}

k=0
for 0 < p < oo.
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152 JARRAH AND MALKOWSKY

By e and e(™ (n € Ny), we denote the sequences with e, = 1 (k= 0,1,...), and
e™ =1 and e,(j) =0 (k # n). For any sequence = = (1), let =l = S°7_ zpe)
be its n—section.

Let p = (pr)72, be a sequence of strictly positive reals throughout. The sets

l(p) = {:L'Gw : Z]mk\p’f < oo},

k=0

lo(p) = {x € w:sup |zk|PF < oo} ,
k

co(p) = {a: cw: klim |z [PF = 0} and
c(p) ={x €ew:a —le € cy(p) for some [ € C},

were first introduced and studied by Nakano, [14], Simons [15] and Maddox [4]. If
pr=p (k=0,1,...) for constant p > 0 then these sets reduce to [,, {, co and c.

Given any sequence x, we write Az for the sequence with Az = x — xp_q for
k=0,1,..., and use the convention that any term with a negative subscript is equal
to zero. We consider the set

o0
bu(p)={x ew:Ax e l(lp)} = {Jc Ew: Z]wk — 1 |PF < oo} ;
k=0
ifpp =p>1forallk=0,1,... where p is a constant, then bv(p) reduces to the set bvP
studied in [13], and bv(e) = bv, the well-known set of sequences of bounded variation.
Let = and y be sequences, X and Y be subsets of w and A = (ank)5%_, be an
infinite matrix of complex numbers. We write 7

Yy = (Tryr)izg, * *Y ={ac€w:azr €Y}

and
M(X,Y)=Ngexz 'Y ={a€w:ar €Y forall z € X}

for the multiplier space of X and Y. In the special case of Y = ¢s, X% = M (X, cs) is
the S—dual of X. By A, we denote the sequence in the n—th row of A, and we write
An(z) =Yg ankrr (n=0,1,...) and A(x) = (An(z))%, provided A, € 2 for all
n. Furthermore (X,Y) denotes the class of all matrices that map X into Y, that is
A€ (X,Y) if and only if A, € X? for all n and A(x) € Y for all z € X.

An F K space is a complete linear metric space with the property that convergence
implies coordinatewise convergence; a BK space is a normed FK space. An FK
space X D ¢ is said to have AK if every sequence x = (x1)}2, € X has a unique
representation x = > oo xxe) that is x = lim, . 2[". The space £(p) is an FK
space with AK if and only if p € f,, with its metric given by the paranorm g(z) =
(52 |k [P)Y M where M = max{1,sup, pi} ([14], [5] and [6]). Thus if p € /s
then, by [17, Theorem 4.3.12, p. 63], bv(p) is an FK space with g(z) = (332, |2k —
Zp_1|[P*)YM . Further results on the topological structures of the spaces fo(p), co(p)
and c(p) can be found in [1]; they are not needed here.

In this paper, we study the S-dual of the set bv(p), and determine (bv(p))? when
p € Lo, thus extending the result given in [13]. Furthermore, we characterize the classes
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(bv(p),£(s)), (bv(p),Lxs(s)), (bv(p),co(s)), (bv(p),c(s)) for bounded positive sequences
s = (sk)52g, (bu(p),£1), (bu(p),€s), (bu(p), co) and (bu(p),c) and obtain the results in
[16] and [13] as special cases.

2. The p—dual of bu(p)

In this section, we study the f—dual of bu(p) and some special cases.

2.1. The case p; > 1.

Throughout this subsection, let p be a sequence with px, > 1 and gx = px/(pr — 1)
for k =0,1,.... We write ¢{ = {x € {1 : 2 > 0 for all k}. If a € cs, then we define
the sequence R by Ry = Z;’;k aj for k=0,1,....

We need the following results.

Lemma 2.1
We put

M (p) = U {aew:Z]Rk|qu_qk<oo},

NeN\{1} k=0
00 k
Ms(p) = m acw: Zak Zvjl-/pj converges
velf k=0  j=0

and M (p) = My(p) N Mx(p). Then we have (bv(p))® = M (p).

Proof. First we assume a € M(p). Since e ¢ (1, a € Ms(p) implies a € cs, and so
the sequence R is defined. Abel’s summation by parts yields
n+1

Z aRTy = Z RpAxp — Rpt1xpy1 (n=0,1,...) for all . (2.1)
k=0 k=0

By [7, Theorem 1], a € M;(p) implies R € ({(p))®. Since z € bu(p) if and only if
Az € {(p), we conclude

RAz € ¢s for all z € bu(p). (2.2)
Let x € bu(p) be given. We put vy = |Azy|P* for k = 0,1,.... Then v € £ and
n+1 n+1
|Rn+1%n+1| < |Rnt1] Z |z — k1| < |Rpt1] Zv;/pk for all n.
k=0 k=0
By [10, Corollary 1], a € Ms(p) implies
n+1
Rot1 Zv;/pk -0 (n— o0), (2.3)
k=0
hence
Rz € cp. (2.4)

Now (2.1), (2.2) and (2.4) imply az € cs for all = € bu(p), that is a € (bv(p))®.
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Conversely, we assume a € (bv(p))®. Then az € es for all 2 € bu(p), and e € bv(p)
implies a € c¢s. Therefore the sequence R is defined. Let v € Zf be given. We define
the sequence = by x = Z?:o vl/Pi for k= 0,1,.... Then we obtain Y 3 |Azy [Pk =
Y reo lvk] < oo, that is 2 € bu(p), and consequently ax € cs, that is a € Ma(p). Now
[10, Corollary 1] implies (2.3), and thus (2.4) holds for all x € bv(p). Finally, from
(2.1), we obtain (2.2). Since z € bu(p) if and only if Az € £(p), this implies R € (¢£(p))?
and (£(p))? = My(p) by [7, Theorem 1]. O

Lemma 2.2
We have a € (bv(p))? if and only if R € (£(p))? N M (bv(p), co).

Proof. If R € (£(p))® N M (bv(p), o) then a € (bu(p))? by (2.1).

Conversely, if a € (bu(p))? then R € (£(p))? and S 32, ay Z?:o vjl-/pj converges
for all v € Ef by Lemma 2.1. This implies Rx € ¢y for all = € bv(p), as in the first
part of the proof of Lemma 2.1. O

As an immediate consequence of (2.1) and Lemma 2.2, we obtain

Corollary 2.1
If a € (bu(p))? then we have

Zakxk = Z Ry Axy, for all x € bu(p). (2.5)
k=0 k=0
Lemma 2.3
We put

Ms(p) = U {a € w: lim Z ‘an’qu_Qk/pk — 0}
NeN\{1} "0
and

My(p) = U {a cEw: supz |an|qu*qk/pk < oo} '

Nen\{1} " k=0

(a) Then we have Ms(p) Nco C M (bv(p), o).
(b) If h = infipr > 1 then we have M (bv(p),co) C Ma(p) N co.

Proof. (a) First we assume a € M3(p) Ncy. Let e > 0 and = € bu(p) be given. We put
y = Az € {(p) and choose mg € N such that

o0
Z lyr|PF < e for all m > my. (2.6)
k=m
Since a € ¢g and a € M3(p), we can choose ng € N and N € N\ {1} such that

mo

Z lan||lyx| < € for all n > ng (2.7)
k=0
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and

n
Z |a,|% N~9%/Pk < ¢ for all n > ng. (2.8)
k=0
Let n > ng be given. By (2.7), [3, (2)], (2.6) and (2.8), we have
mo n
|anxn| < Z |anyk| + Z |anyk|
k=0 k=mo+1
n n
<e+ N Z |an | N~ 4+ Z |yl P
k=mo+1 k=mo+1
n
<e(I+N)+ > lan|"N"%/Pk < £(24 N),
k=mo+1
that is a € M (bv(p), co).
(b) Now let infy pr, = h > 1. We assume a € M (bv(p), ¢p). First e € bv(p) implies
a € cg. We assume a £ My(p). Then

sup Y |ap|% N~%/Ph = oo for all N € N\ {1}. (2.9)
" k=0
We put n(0) = —1. First, by (2.9), we can choose n(1) € N such that
n(1)
D7 Jany|m2mw/re > 3, (2.10)
k=n(0)+1

Since a € ¢p, we can choose m(1) > n(1) such that

n(1)

D Jam|%37%/PE < 1 for all m > m(1) (2.11)
k=0
and )
lam| < g\an(l)\ for all m > m(1) (note |a, )| > 0 by (2.10)). (2.12)
Now, by (2.9), we choose n(2) > m(1) such that
n(2)
> lapge)|®37w/Pr > 4, (2.13)
k=n(0)+1
Then, by (2.13) and (2.11)
n(2) n(2) n(1)
Z |an(2)|‘1k3—fﬂc/pk — Z ’an(2)|Qk3—Qk/pk _ Z |an(2)‘Qk3_Qk/pk > 3.
k=n(1)+1 k=n(0)+1 k=n(0)+1

Continuing in this way, we can define an increasing sequence (n(j))72, of integers such
that
n(j)
Mj= > app|®G+1) %P >5+1 (j=1,2,...) (2.14)
k=n(j—1)+1
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and .
lan)] < glang-nl (G =12,...). (2.15)
We put @« = h — 1 > 0 and define the sequences y and = by
Yk = $80(an () lan() % (G + 1)/ M
forn(j—1)+1<k<n(j) (G=12...)

and zj, = Y F_ gy for k= 0,1,.... Then, since M; > j+1 for all j, py > 1+« for all
k, a > 0 and qx/pr — qx = —1 for all k, we have

D el = Z Z )| (G + 1) M
k=0

J=1k=n(j—1)+1

0 n(j)
1
< E G+1)e M]fl E ’an(j)|t;{k G+ 1)—%/1% G+ 1)—%4—%/%
Jj=0 k=n(j—1)+1

1 1
= 71\4.—11\4. =y - <
— (j +1)l+e ’ ;0 G+ e =%

that is y € (p), and so x € bv( ) But, on the other hand,

n(j)
|an()Tn()| n(j) Zyk > Z |an )™ (5 + 1)~k /Px Mjfl
k=n(j—1)+1
j—1 n(l)
— |an Z Z |an(l)\qk*1 (I+ 1)*Qk/Pk Ml—l
=1 k=n(I-1)+1

n(l)

j—1
1 _ _
Zl_E:gMz VST a4 1)
=1 k=n(l—1)+1

1 1
>1— 213421—2:2forallj:1,2,...,
that is ax & cg. O

Remark 1. In the case of Lemma 2.3 (b), we may have

My(p) Neo # M (bv(p), co)-

Proof. We put py =k+2, 2, = (k+1)/2and a, = 1/(k+ 1) for k =0,1,... Then it

follows that
o0 oo
D olap—wpa Pt = 27 F ) < og
k=0 k=0

that is x € bv(p),

Z |ty | % 9—4k/Pr — Z(n + 1)—(k+2)/(k+1) 9—1/(k+1) <
= k=0 k=0
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for all n, and trivially a € ¢g, thus a € My(p) N ¢y, but apz, = 1/2 for all n, that is
a & M(bv(p),co). O

Now we give the S—dual of the set bv(p) when the sequence p is bounded.

Theorem 2.1
Let p € Lo and p, > 1 for all k = 0,1,.... Then a € (bv(p))? if and only if
for some N € N\ {1}
> R N™% < o0 (2.16)
k=0
and
supz |Rp|%* N~ < oo. (2.17)
" k=0

Proof. We have a € (bv(p))” by Lemma 2.2 if and only if R € (¢(p))?, that is if and only
if (2.16) holds by [7, Theorem 1], and R € M (bv(p), co). We show that R € M (bv(p), co)
if and only if (2.17) holds. To do this, we define the matrix C' = (an)?szo by ¢ = Ry
for 0 <k <mandcy =0for k>n (n=0,1,...). Since z € bv(p) if and only if
y = Ax € {(p), we have R € M(bv(p),co) if and only if C' € (¢(p),cp) which by [3,
Corollary] is the case if and only if

lim ¢, = lim R, =0,
n—oo n—oo

which trivially holds since R, = > ;2 an, and

o0 n
sup Z |Cpe |2 N—/Prx — sup Z |R,,|% N—%/Pk < 5
" k=0 " k=0
for some N € N\ {1}, and the last condition obviously is equivalent with (2.17). O

There is an alternative proof of Theorem 2.1 in which Lemma 2.2 is not needed.

Remark 2. When p € { then {(p) is an F'K space with AK with respect to the
paranorm g defined by g(x) = (322, |z [P*)/H where H = supy px, and we would
conclude that a € (bv(p))? if and only if R € £(p) N M (bv(p), c) by [12, Theorem 2.5].
Furthermore, as in the proof of Theorem 2.1, we would be able to show R € (bv(p), ¢)
if and only if condition (2.17) holds.

Now we consider a few special cases. Part (b) of the following remark is [13,
Theorem 2.1]

Remark 3. Let p € ¢, and p; > 1 for all k.
(a) If h = infy pr > 1 and M (bv(p)) = {a € w : sup,, Y o |an|% < co} then

a € (bv(p))? if and only if R € £(q) N M (bu(p)). (2.18)
Moreover

a € M(bv(p), co) if and only if supz lan | < oo. (2.19)
" k=0



158 JARRAH AND MALKOWSKY

(b) Let pp, = p > 1 for all k and M (bv?) = ((n + 1)/9)~1 % £,. Then we have
a € bv? if and only if R € £, N M (bvP). (2.20)
Furthermore neither ¢, C M (bvP) nor M (bvP) C £, (cf. [13, Remark 1]).

Proof. (a) Let h > 1 and H = supj, px < co. Then it follows that (£(p))® = £(q) by [7,
Theorem 4]. We show condition (2.19). First we assume a € M (bv(p), cp). Then there
is N € N\ {1} such that

n
sup Z |an | N ™% < oo, (2.21)
" k=0
as we have seen in the proof of Theorem 2.1, and this implies

n n
supz |a,|% < NH/(h=1) Supz lag | N~ < oo.
" k=0 " k=0

Conversely, we assume
n
supz |an | < oo. (2.22)
" k=0

Then obviously condition (2.21) is satisfied for all N € N\ {1}. Furthermore it follows
that a € ¢g. For otherwise, if a € ¢y there would be a real ¢ with 0 < ¢ < 1 and
a subsequence (an(j));2, of the sequence a such that lan()l > ¢ for all j, and so
ZZ(:J()) | )| > Zzgg ¢ > H/(=1)(n(5) 4 1) for all j, contrary to the assumption
that (2.22) is satisfied. Finally, (2.22) and a € ¢g together imply a € M (bv(p), co) by
[3, Corollary].

Now (2.18) is clear.

(b) The condition in (2.20) is an immediate consequence of Part (a). O

Concerning the proof of Remark 3 (a) we note.
Remark 4. If h = 1 then condition (2.21) does not imply a € c.
Proof. We choose p, =1+ 1/(k+1) (k=0,1,...) and a, = (—1)" (n = 0,1,...).
Then a ¢ ¢, but sup, > r_g |an|%27% =sup, >.p_o 2~ < 0. O
2.2. The case p; < 1.
Now we determine the S—dual of bu(p) when pi, <1 for all k =0,1,....

Lemma 2.4
Let py, <1 for all k. Then we have M (bv(p),c) = c.

Proof. First, we assume a € M (bv(p),c). Since e € bv(p), this implies a € c.

Conversely we assume a € c. This implies a € £, hence sup,, j, |a,[P* < oo, since
pr < 1 for all k. We define the matrix C' = (an)fszo by ¢pr = ap for 0 < k < n and
cak = 0 for k > n (n=0,1,...). From a € c and sup,,  |cnk|P* < oo, we conclude
C € ({(p),c) by [3, Corollary]. Now, since x € bv(p) if and only if y = Az € ¢(p), and
AnTn = Gn Y _p_o Yk, the fact that C' € (¢(p), c¢) implies a € M (bv(p),c). O
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Theorem 2.2
Let p, < 1 for all k. Then we have a € (bv(p))? if and only if

oo
D>
k=n
Proof. By [3, Theorem 1 (ii)], [12, Theorem 2.5] and [10, Corollary 1], we have a €

(bu(p))?, if and only if R € (£(p))” = £oo(p) and R € M (bv(p), c) = ¢, the last condition
being redundant, since R,, = Y o ai forn=0,1,.... O

Dn
< 0.

sup
n

Remark 5. If p = e, then by Theorem 2.2 bv” = {a € w : sup,, | Y32, ax| < oo}, and
so obviously bv” = cs, a well-known result (cf. [17, Theorem 7.3.5 (iii)]).

3. Matrix transformations on bv(p)

In this section, we characterize some matrix transformations on bv(p) and consider
some special cases.

Theorem 3.1

Let p, s € . We assume py < 1 and s > 1 in (1.), and s < 1 in (3.) and (4.)
below. Then the conditions for A € (bv(p),Y) for Y = £(s),l0(s),co(s),c(s) can be
read from the table

FrTcin U(s) | €oo(s) | co(s) | e(s)

bo(p) | (1) | (2) | 3) | (4)

where

(1.): forpp<landsp>1(k=0,1,...), (1.1) where
(1.1) supy, Y020 | > 5% ap; B™Y/Pr |5 < o0 for some B > 1;

(2.): forp,<1(k=0,1,...), (2.1) where
(2.1) sup,,(supy [ X272, anj|B~1/Pr)n < oo for some B > 1
forp, >1(k=0,1,...), (2.2) and (2.3) where
(2.2) sup, > 5o |2 50k anj|® B~%/5n < o0 for some B > 1
(2.3) { for each n there is N,, > 1 sgch that

SUP,, D i | Zjim ang| % Ny < o0;

(3.): forp,<1(k=0,1,...), (3.1) and (3.2) where
(3.1) limp oo | 3272 anj|* = 0 for each k
(3.2) limpr— oo limsup,, o (supy, | 3724 | M~ HPRYSn = ()
forpp >1(k=0,1,...), (2.3), (3.1) and (3.3) where

’ for all B > 1;
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(4.):

Proof. In each case, we apply [12, Theorem 2.7] and Theorem 2.2 for p; < 1 or
Theorem 2.1 for py > 1. Then (1.) follows from [2, Theorem 5.1.1], (2.) from [8,
Theorem 5(i)] for py < 1 and [8, Theorem 7] for p; > 1, (3.) from [8, Theorem 5 (ii)]
for pr, < 1 and [8, Theorem 8| for p; > 1, and (4.) follows from [8, Theorem 5 (iii)]

JARRAH AND MALKOWSKY

forp, <1 (k=0,1,...) (4.1) and

there exists a sequence (o), such that (4.2) and (4.3)
where

(4.1) supy, 1| 372 anj|B™Y/Px < oo for some B > 1

(4.2) limp—co | D272 anj — agl™ = 0 for each k
(4.3) limps— 00 limsup,,_, . (supy | Z;";k (nj — ap|M~1/PR)sn =0

forpr, > 1 (k=0,1,...), (2.3), (4.4) and

there exists a sequence ()32, such that (4.2) and (4.5)
where

(4.4) supy, > 5o | 2252k ang|™ B~% < oo for some B > 1

(4.5) lim s o0 i sup,, oo (3520 D72k lang — | Bk/sn N[~k )sn
' =0 forall B>1

for p, <1 and [8, Theorem 9] for p;, > 1. O

Theorem 3.2
Let p € . Then the conditions for A € (bu(p),Y) for Y = £1,lx, o, c can be
read from the table
To
From b | oo | o ¢

(1.):

(2.):

(3.):

bo(p) | (1) ](2)[B)]|4)

where

forp, <1 (k=0,1,...), (1.1) where
(1.1) supy, 3020 | > 52 an;|B~Y/Pk < oo for some B > 1
forpp >1(k=0,1,...), (1.2) and (1.3) where

(1.2) SUP ncwg D opeo | DonenN 2o joi Gnjl® B™% < oo for some B > 1
N finite

(1.3) is (2.3) in Theorem 3.1;

for pp, <1 (k=0,1,...), (2.1) where

(2.1) supp k| 2252 anj|P* < 00

forpp > 1 (k=0,1,...), (1.3) and (2.2) where

(2.2) sup,, > x| 272y, anj|? B~ < oo or some B > 1;
forp, <1 (k=0,1,...), (2.1) and (3.1) where

(3.1) limp oo 3724 anj = 0 for each k

forpp, >1 (k=0,1,...), (1.3), (2.2) and (3.1)
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(4.): forp,<1(k=0,1,...), (2.1) and (4.1) where
(4.1) limy, 00 Z;’;k an; = ay, for each k

forp, >1(k=0,1,...), (1.3), (2.2) and (4.1).

Proof. For p, < 1, (1.) is an immediate consequence of Theorem 3.1 (1.). In the
other cases, we apply [12, Theorem 2.7] and Theorem 2.2 for p;, < 1 or Theorem 2.1.
Then the case py > 1 follows from [9, Satz 1]. Furthermore (2.), (3.) and (4.) follow
from [3, Theorem 1], [3, Theorem 1] and [17, 8.3.6, p. 123], and from [3, Corollary],
respectively. O

Now we apply Theorems 3.1 and 3.2 to obtain the mapping theorems in [16]
and [13].

Remark 6. Putting p = e in Theorem 3.1 (1.), (2.), (3.) and (4.), we obtain [16,
Theorems 1, 2, 3, and 4], respectively. Furthermore, [16, Corollaries 2° (ii), p. 58, 1°
(i), p. 59 and Corollaries 2%, p. 60 and p. 61] follow from Theorem 3.2 (1.), (2.)
(3.) and (4.), respectively. In fact, condition (3.1) is replaced in [16, Corollary 2%, p.
60] by the conditions lim, o @y, = 0 for each k and limy, oo Y oo g ank = 0, which
are obviously equivalent with condition (3.1), since ang = 3 72) anj — 3725 11 any for
all k, and also > 222 an; = > 20 anj — Z?;é an; for all k; a similar remark applies
to the conditions in [16, Corollary 2°, p. 61]. Finally, [13, Theorems 3.2 and 3.1 (a),
(b) and (c)] are an immediate consequence of Theorem 3.2 (1.), (2.), (3.) and (4.),
respectively.

Remark 7. In view of [11, Theorem 1], we obtain the characterizations of the classes
(X,Y) for X = bv(p) and Y = bv(s), Y = Z(A) ={y € w: Ay € Z} for Z =
lso(8),co(s),c(s), 41,4, co and c, if we replace the terms an; by cnj = anj — an—1
(n,7 =0,1,...) in the respective conditions of Theorems 3.1 and 3.2.
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