Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 55, 2 (2004), 151-162
(C) 2004 Universitat de Barcelona

The space $b v(p)$, its β-dual and matrix transformations

Abdullah M. Jarrah
Department of Mathematics, Qatar University, Doha, Qatar
Department of Mathematics, Yarmouk University, Irbid, Jordan
E-mail: jarrahahed@hotmail.com
Eberhard Malkowsky
Department of Mathematics, University of Giessen
Arndtstrasse 2, D-35392 Giessen, Germany

clo Department of Mathematics, Faculty of Science and Mathematics University of Niš, Višegradska 33, 18000 Niš, Serbia and Montenegro

E-mail: eberhard.malkowsky@math.uni-giessen.de ema@BankerInter.net

Received May 18, 2003. Revised December 19, 2003

Abstract

Let $p=\left(p_{k}\right)_{k=0}^{\infty}$ be a sequence with $p_{k}>0$ for all k. We consider the space $b v(p)=\left\{x \in \omega: \sum_{k=0}^{\infty}\left|x_{k}-x_{k-1}\right|^{p_{k}}<\infty\right\}$, study its β-dual and characterize some matrix transformations on $b v(p)$ which yield the results in [16] and [13] as special cases.

1. Introduction

We write ω for the set of all complex sequences $x=\left(x_{k}\right)_{k=0}^{\infty}$. Let ϕ, ℓ_{∞} and c_{0} denote the set of all finite, bounded and null sequences. We write

$$
\ell_{p}=\left\{x \in \omega: \sum_{k=0}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}
$$

for $0<p<\infty$.

Keywords: Sequence spaces, β-dual space, matrix transformations.
MSC2000: 40H05, 46A45.
Research of the second author supported by the DAAD foundation (German Academic Exchange Service), grant 911103102 8, and the Serbian Ministry of Science and Technology, research project \# 1232.

By e and $e^{(n)}\left(n \in \mathbb{N}_{0}\right)$, we denote the sequences with $e_{k}=1(k=0,1, \ldots)$, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. For any sequence $x=\left(x_{k}\right)_{k=0}^{\infty}$, let $x^{[n]}=\sum_{k=0}^{n} x_{k} e^{(k)}$ be its n-section.

Let $p=\left(p_{k}\right)_{k=0}^{\infty}$ be a sequence of strictly positive reals throughout. The sets

$$
\begin{aligned}
\ell(p) & =\left\{x \in \omega: \sum_{k=0}^{\infty}\left|x_{k}\right|^{p_{k}}<\infty\right\}, \\
\ell_{\infty}(p) & =\left\{x \in \omega: \sup _{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}, \\
c_{0}(p) & =\left\{x \in \omega: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\} \text { and } \\
c(p) & =\left\{x \in \omega: x-l e \in c_{0}(p) \text { for some } l \in \mathbb{C}\right\},
\end{aligned}
$$

were first introduced and studied by Nakano, [14], Simons [15] and Maddox [4]. If $p_{k}=p(k=0,1, \ldots)$ for constant $p>0$ then these sets reduce to $l_{p}, \ell_{\infty}, c_{0}$ and c.

Given any sequence x, we write Δx for the sequence with $\Delta x_{k}=x_{k}-x_{k-1}$ for $k=0,1, \ldots$, and use the convention that any term with a negative subscript is equal to zero. We consider the set

$$
b v(p)=\{x \in \omega: \Delta x \in \ell(p)\}=\left\{x \in \omega: \sum_{k=0}^{\infty}\left|x_{k}-x_{k-1}\right|^{p_{k}}<\infty\right\} ;
$$

if $p_{k}=p>1$ for all $k=0,1, \ldots$ where p is a constant, then $b v(p)$ reduces to the set $b v^{p}$ studied in [13], and $b v(e)=b v$, the well-known set of sequences of bounded variation.

Let x and y be sequences, X and Y be subsets of ω and $A=\left(a_{n k}\right)_{n, k=0}^{\infty}$ be an infinite matrix of complex numbers. We write

$$
x y=\left(x_{k} y_{k}\right)_{k=0}^{\infty}, \quad x^{-1} * Y=\{a \in \omega: a x \in Y\}
$$

and

$$
M(X, Y)=\cap_{x \in X} x^{-1} * Y=\{a \in \omega: a x \in Y \text { for all } x \in X\}
$$

for the multiplier space of X and Y. In the special case of $Y=c s, X^{\beta}=M(X, c s)$ is the β-dual of X. By A_{n} we denote the sequence in the n-th row of A, and we write $A_{n}(x)=\sum_{k=0}^{\infty} a_{n k} x_{k}(n=0,1, \ldots)$ and $A(x)=\left(A_{n}(x)\right)_{n=0}^{\infty}$, provided $A_{n} \in x^{\beta}$ for all n. Furthermore (X, Y) denotes the class of all matrices that map X into Y, that is $A \in(X, Y)$ if and only if $A_{n} \in X^{\beta}$ for all n and $A(x) \in Y$ for all $x \in X$.

An $F K$ space is a complete linear metric space with the property that convergence implies coordinatewise convergence; a $B K$ space is a normed $F K$ space. An $F K$ space $X \supset \phi$ is said to have $A K$ if every sequence $x=\left(x_{k}\right)_{k=0}^{\infty} \in X$ has a unique representation $x=\sum_{k=0}^{\infty} x_{k} e^{(k)}$, that is $x=\lim _{n \rightarrow \infty} x^{[n]}$. The space $\ell(p)$ is an $F K$ space with $A K$ if and only if $p \in \ell_{\infty}$, with its metric given by the paranorm $g(x)=$ $\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p_{k}}\right)^{1 / M}$ where $M=\max \left\{1, \sup _{k} p_{k}\right\}$ ([14], [5] and [6]). Thus if $p \in \ell_{\infty}$ then, by [17, Theorem 4.3.12, p. 63], $b v(p)$ is an $F K$ space with $g(x)=\left(\sum_{k=0}^{\infty} \mid x_{k}-\right.$ $\left.\left.x_{k-1}\right|^{p_{k}}\right)^{1 / M}$. Further results on the topological structures of the spaces $\ell_{\infty}(p), c_{0}(p)$ and $c(p)$ can be found in [1]; they are not needed here.

In this paper, we study the β-dual of the set $b v(p)$, and determine $(b v(p))^{\beta}$ when $p \in \ell_{\infty}$, thus extending the result given in [13]. Furthermore, we characterize the classes
$(b v(p), \ell(s)),\left(b v(p), \ell_{\infty}(s)\right),\left(b v(p), c_{0}(s)\right),(b v(p), c(s))$ for bounded positive sequences $s=\left(s_{k}\right)_{k=0}^{\infty},\left(b v(p), \ell_{1}\right),\left(b v(p), \ell_{\infty}\right),\left(b v(p), c_{0}\right)$ and $(b v(p), c)$ and obtain the results in [16] and [13] as special cases.

2. The β-dual of $b v(p)$

In this section, we study the β-dual of $b v(p)$ and some special cases.

2.1. The case $p_{k}>1$.

Throughout this subsection, let p be a sequence with $p_{k}>1$ and $q_{k}=p_{k} /\left(p_{k}-1\right)$ for $k=0,1, \ldots$. We write $\ell_{1}^{+}=\left\{x \in \ell_{1}: x_{k} \geq 0\right.$ for all $\left.k\right\}$. If $a \in c s$, then we define the sequence R by $R_{k}=\sum_{j=k}^{\infty} a_{j}$ for $k=0,1, \ldots$

We need the following results.

Lemma 2.1

We put

$$
\begin{aligned}
& M_{1}(p)=\bigcup_{N \in \mathbb{N} \backslash\{1\}}\left\{a \in \omega: \sum_{k=0}^{\infty}\left|R_{k}\right|^{q_{k}} N^{-q_{k}}<\infty\right\}, \\
& M_{2}(p)=\bigcap_{v \in \ell_{1}^{+}}\left\{a \in \omega: \sum_{k=0}^{\infty} a_{k} \sum_{j=0}^{k} v_{j}^{1 / p_{j}} \text { converges }\right\}
\end{aligned}
$$

and $M(p)=M_{1}(p) \cap M_{2}(p)$. Then we have $(b v(p))^{\beta}=M(p)$.
Proof. First we assume $a \in M(p)$. Since $e^{(0)} \in \ell_{1}^{+}, a \in M_{2}(p)$ implies $a \in c s$, and so the sequence R is defined. Abel's summation by parts yields

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n+1} R_{k} \Delta x_{k}-R_{n+1} x_{n+1} \quad(n=0,1, \ldots) \text { for all } x \tag{2.1}
\end{equation*}
$$

By [7, Theorem 1], $a \in M_{1}(p)$ implies $R \in(\ell(p))^{\beta}$. Since $x \in b v(p)$ if and only if $\Delta x \in \ell(p)$, we conclude

$$
\begin{equation*}
R \Delta x \in c s \text { for all } x \in b v(p) \tag{2.2}
\end{equation*}
$$

Let $x \in b v(p)$ be given. We put $v_{k}=\left|\Delta x_{k}\right|^{p_{k}}$ for $k=0,1, \ldots$ Then $v \in \ell_{1}^{+}$and

$$
\left|R_{n+1} x_{n+1}\right| \leq\left|R_{n+1}\right| \sum_{k=0}^{n+1}\left|x_{k}-x_{k-1}\right| \leq\left|R_{n+1}\right| \sum_{k=0}^{n+1} v_{k}^{1 / p_{k}} \text { for all } n
$$

By [10, Corollary 1], $a \in M_{2}(p)$ implies

$$
\begin{equation*}
R_{n+1} \sum_{k=0}^{n+1} v_{k}^{1 / p_{k}} \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.3}
\end{equation*}
$$

hence

$$
\begin{equation*}
R x \in c_{0} \tag{2.4}
\end{equation*}
$$

Now (2.1), (2.2) and (2.4) imply $a x \in c s$ for all $x \in b v(p)$, that is $a \in(b v(p))^{\beta}$.

Conversely, we assume $a \in(b v(p))^{\beta}$. Then $a x \in c s$ for all $x \in b v(p)$, and $e \in b v(p)$ implies $a \in c s$. Therefore the sequence R is defined. Let $v \in \ell_{1}^{+}$be given. We define the sequence x by $x_{k}=\sum_{j=0}^{k} v^{1 / p_{j}}$ for $k=0,1, \ldots$. Then we obtain $\sum_{k=0}^{\infty}\left|\Delta x_{k}\right|^{p_{k}}=$ $\sum_{k=0}^{\infty}\left|v_{k}\right|<\infty$, that is $x \in b v(p)$, and consequently $a x \in c s$, that is $a \in M_{2}(p)$. Now [10, Corollary 1] implies (2.3), and thus (2.4) holds for all $x \in \operatorname{bv}(p)$. Finally, from (2.1), we obtain (2.2). Since $x \in b v(p)$ if and only if $\Delta x \in \ell(p)$, this implies $R \in(\ell(p))^{\beta}$ and $(\ell(p))^{\beta}=M_{1}(p)$ by [7, Theorem 1].

Lemma 2.2

We have $a \in(b v(p))^{\beta}$ if and only if $R \in(\ell(p))^{\beta} \cap M\left(b v(p), c_{0}\right)$.
Proof. If $R \in(\ell(p))^{\beta} \cap M\left(b v(p), c_{0}\right)$ then $a \in(b v(p))^{\beta}$ by (2.1).
Conversely, if $a \in(b v(p))^{\beta}$ then $R \in(\ell(p))^{\beta}$ and $\sum_{k=0}^{\infty} a_{k} \sum_{j=0}^{k} v_{j}^{1 / p_{j}}$ converges for all $v \in \ell_{1}^{+}$by Lemma 2.1. This implies $R x \in c_{0}$ for all $x \in \operatorname{bv}(p)$, as in the first part of the proof of Lemma 2.1.

As an immediate consequence of (2.1) and Lemma 2.2, we obtain

Corollary 2.1

If $a \in(b v(p))^{\beta}$ then we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} x_{k}=\sum_{k=0}^{\infty} R_{k} \Delta x_{k} \text { for all } x \in b v(p) . \tag{2.5}
\end{equation*}
$$

Lemma 2.3

We put

$$
M_{3}(p)=\bigcup_{N \in \mathbb{N} \backslash\{1\}}\left\{a \in \omega: \lim _{n \rightarrow \infty} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k} / p_{k}}=0\right\}
$$

and

$$
M_{4}(p)=\bigcup_{N \in \mathbb{N} \backslash\{1\}}\left\{a \in \omega: \sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k} / p_{k}}<\infty\right\} .
$$

(a) Then we have $M_{3}(p) \cap c_{0} \subset M\left(b v(p), c_{0}\right)$.
(b) If $h=\inf f_{k} p_{k}>1$ then we have $M\left(b v(p), c_{0}\right) \subset M_{4}(p) \cap c_{0}$.

Proof. (a) First we assume $a \in M_{3}(p) \cap c_{0}$. Let $\varepsilon>0$ and $x \in b v(p)$ be given. We put $y=\Delta x \in \ell(p)$ and choose $m_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k=m}^{\infty}\left|y_{k}\right|^{p_{k}}<\varepsilon \text { for all } m \geq m_{0} \tag{2.6}
\end{equation*}
$$

Since $a \in c_{0}$ and $a \in M_{3}(p)$, we can choose $n_{0} \in \mathbb{N}$ and $N \in \mathbb{N} \backslash\{1\}$ such that

$$
\begin{equation*}
\sum_{k=0}^{m_{0}}\left|a_{n}\right|\left|y_{k}\right|<\varepsilon \text { for all } n \geq n_{0} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k} / p_{k}}<\varepsilon \text { for all } n \geq n_{0} \tag{2.8}
\end{equation*}
$$

Let $n \geq n_{0}$ be given. By (2.7), [3, (2)], (2.6) and (2.8), we have

$$
\begin{aligned}
\left|a_{n} x_{n}\right| & \leq \sum_{k=0}^{m_{0}}\left|a_{n} y_{k}\right|+\sum_{k=m_{0}+1}^{n}\left|a_{n} y_{k}\right| \\
& <\varepsilon+N\left(\sum_{k=m_{0}+1}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k}}+\sum_{k=m_{0}+1}^{n}\left|y_{k}\right|^{p_{k}}\right) \\
& <\varepsilon(1+N)+\sum_{k=m_{0}+1}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k} / p_{k}}<\varepsilon(2+N)
\end{aligned}
$$

that is $a \in M\left(b v(p), c_{0}\right)$.
(b) Now let $\inf _{k} p_{k}=h>1$. We assume $a \in M\left(b v(p), c_{0}\right)$. First $e \in b v(p)$ implies $a \in c_{0}$. We assume $a \notin M_{4}(p)$. Then

$$
\begin{equation*}
\sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k} / p_{k}}=\infty \text { for all } N \in \mathbb{N} \backslash\{1\} \tag{2.9}
\end{equation*}
$$

We put $n(0)=-1$. First, by (2.9), we can choose $n(1) \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{k=n(0)+1}^{n(1)}\left|a_{n(1)}\right|^{q_{k}} 2^{-q_{k} / p_{k}}>3 \tag{2.10}
\end{equation*}
$$

Since $a \in c_{0}$, we can choose $m(1)>n(1)$ such that

$$
\begin{equation*}
\sum_{k=0}^{n(1)}\left|a_{m}\right|^{q_{k}} 3^{-q_{k} / p_{k}}<1 \text { for all } m \geq m(1) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{m}\right|<\frac{1}{3}\left|a_{n(1)}\right| \text { for all } m \geq m(1)\left(\text { note }\left|a_{n(1)}\right|>0 \text { by }(2.10)\right) \tag{2.12}
\end{equation*}
$$

Now, by (2.9), we choose $n(2)>m(1)$ such that

$$
\begin{equation*}
\sum_{k=n(0)+1}^{n(2)}\left|a_{n(2)}\right|^{q_{k}} 3^{-q_{k} / p_{k}}>4 \tag{2.13}
\end{equation*}
$$

Then, by (2.13) and (2.11)

$$
\sum_{k=n(1)+1}^{n(2)}\left|a_{n(2)}\right|^{q_{k}} 3^{-q_{k} / p_{k}}=\sum_{k=n(0)+1}^{n(2)}\left|a_{n(2)}\right|^{q_{k}} 3^{-q_{k} / p_{k}}-\sum_{k=n(0)+1}^{n(1)}\left|a_{n(2)}\right|^{q_{k}} 3^{-q_{k} / p_{k}}>3
$$

Continuing in this way, we can define an increasing sequence $(n(j))_{j=0}^{\infty}$ of integers such that

$$
\begin{equation*}
M_{j}=\sum_{k=n(j-1)+1}^{n(j)}\left|a_{n(j)}\right|^{q_{k}}(j+1)^{-q_{k} / p_{k}}>j+1 \quad(j=1,2, \ldots) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{n(j)}\right|<\frac{1}{3}\left|a_{n(j-1)}\right| \quad(j=1,2, \ldots) \tag{2.15}
\end{equation*}
$$

We put $\alpha=h-1>0$ and define the sequences y and x by

$$
\begin{aligned}
y_{k}=\operatorname{sgn}\left(a_{n(j)}\right)\left|a_{n(j)}\right|^{q_{k}-1}(j+1)^{-q_{k} / p_{k}} & M_{j}^{-1} \\
& \text { for } n(j-1)+1 \leq k \leq n(j) \quad(j=1,2, \ldots)
\end{aligned}
$$

and $x_{k}=\sum_{j=0}^{k} y_{k}$ for $k=0,1, \ldots$ Then, since $M_{j}>j+1$ for all $j, p_{k} \geq 1+\alpha$ for all $k, \alpha>0$ and $q_{k} / p_{k}-q_{k}=-1$ for all k, we have

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|y_{k}\right|^{p_{k}} & =\sum_{j=1}^{\infty} \sum_{k=n(j-1)+1}^{n(j)}\left|a_{n(j)}\right|^{q_{k}}(j+1)^{-q_{k}} M_{j}^{-p_{k}} \\
& \leq \sum_{j=0}^{\infty} \frac{1}{(j+1)^{\alpha}} M_{j}^{-1} \sum_{k=n(j-1)+1}^{n(j)}\left|a_{n(j)}\right|^{q_{k}}(j+1)^{-q_{k} / p_{k}}(j+1)^{-q_{k}+q_{k} / p_{k}} \\
& =\sum_{j=0}^{\infty} \frac{1}{(j+1)^{1+\alpha}} M_{j}^{-1} M_{j}=\sum_{j=0}^{\infty} \frac{1}{(j+1)^{1+\alpha}}<\infty,
\end{aligned}
$$

that is $y \in \ell(p)$, and so $x \in b v(p)$. But, on the other hand,

$$
\begin{aligned}
\left|a_{n(j)} x_{n(j)}\right|= & \left|a_{n(j)} \sum_{k=0}^{n(j)} y_{k}\right| \geq \sum_{k=n(j-1)+1}^{n(j)}\left|a_{n(j)}\right|^{q_{k}}(j+1)^{-q_{k} / p_{k}} M_{j}^{-1} \\
& -\left|a_{n(j)}\right| \sum_{l=1}^{j-1} \sum_{k=n(l-1)+1}^{n(l)}\left|a_{n(l)}\right|^{q_{k}-1}(l+1)^{-q_{k} / p_{k}} M_{l}^{-1} \\
\geq & 1-\sum_{l=1}^{j-1} \frac{1}{3^{l}} M_{l}^{-1} \sum_{k=n(l-1)+1}^{n(l)}\left|a_{n(l)}\right|^{q_{k}}(l+1)^{-q_{k} / p_{k}} \\
\geq & 1-\sum_{l=1}^{j-1} 3^{-l} \geq 1-\frac{1}{2}=\frac{1}{2} \text { for all } j=1,2, \ldots
\end{aligned}
$$

that is $a x \notin c_{0}$.
Remark 1. In the case of Lemma 2.3 (b), we may have

$$
M_{4}(p) \cap c_{0} \neq M\left(b v(p), c_{0}\right)
$$

Proof. We put $p_{k}=k+2, x_{k}=(k+1) / 2$ and $a_{k}=1 /(k+1)$ for $k=0,1, \ldots$ Then it follows that

$$
\sum_{k=0}^{\infty}\left|x_{k}-x_{k-1}\right|^{p_{k}}=\sum_{k=0}^{\infty} 2^{-(k+2)}<\infty
$$

that is $x \in b v(p)$,

$$
\sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} 2^{-q_{k} / p_{k}}=\sum_{k=0}^{n}(n+1)^{-(k+2) /(k+1)} 2^{-1 /(k+1)} \leq \sum_{k=0}^{n} \frac{1}{n+1}=1
$$

for all n, and trivially $a \in c_{0}$, thus $a \in M_{4}(p) \cap c_{0}$, but $a_{n} x_{n}=1 / 2$ for all n, that is $a \notin M\left(b v(p), c_{0}\right)$.

Now we give the β-dual of the set $b v(p)$ when the sequence p is bounded.

Theorem 2.1

Let $p \in \ell_{\infty}$ and $p_{k}>1$ for all $k=0,1, \ldots$. Then $a \in(b v(p))^{\beta}$ if and only if for some $N \in \mathbb{N} \backslash\{1\}$

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|R_{k}\right|^{q_{k}} N^{-q_{k}}<\infty \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n} \sum_{k=0}^{n}\left|R_{n}\right|^{q_{k}} N^{-q_{k}}<\infty \tag{2.17}
\end{equation*}
$$

Proof. We have $a \in(b v(p))^{\beta}$ by Lemma 2.2 if and only if $R \in(\ell(p))^{\beta}$, that is if and only if (2.16) holds by [7, Theorem 1], and $R \in M\left(b v(p), c_{0}\right)$. We show that $R \in M\left(b v(p), c_{0}\right)$ if and only if (2.17) holds. To do this, we define the matrix $C=\left(c_{n k}\right)_{n, k=0}^{\infty}$ by $c_{n k}=R_{n}$ for $0 \leq k \leq n$ and $c_{n k}=0$ for $k>n(n=0,1, \ldots)$. Since $x \in b v(p)$ if and only if $y=\Delta x \in \ell(p)$, we have $R \in M\left(b v(p), c_{0}\right)$ if and only if $C \in\left(\ell(p), c_{0}\right)$ which by [3, Corollary] is the case if and only if

$$
\lim _{n \rightarrow \infty} c_{n k}=\lim _{n \rightarrow \infty} R_{n}=0
$$

which trivially holds since $R_{n}=\sum_{k=n}^{\infty} a_{n}$, and

$$
\sup _{n} \sum_{k=0}^{\infty}\left|c_{n k}\right|^{q_{k}} N^{-q_{k} / p_{k}}=\sup _{n} \sum_{k=0}^{n}\left|R_{n}\right|^{q_{k}} N^{-q_{k} / p_{k}}<\infty
$$

for some $N \in \mathbb{N} \backslash\{1\}$, and the last condition obviously is equivalent with (2.17).
There is an alternative proof of Theorem 2.1 in which Lemma 2.2 is not needed.
Remark 2. When $p \in \ell_{\infty}$ then $\ell(p)$ is an $F K$ space with $A K$ with respect to the paranorm g defined by $g(x)=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p_{k}}\right)^{1 / H}$ where $H=\sup _{k} p_{k}$, and we would conclude that $a \in(b v(p))^{\beta}$ if and only if $R \in \ell(p) \cap M(b v(p), c)$ by [12, Theorem 2.5]. Furthermore, as in the proof of Theorem 2.1, we would be able to show $R \in(b v(p), c)$ if and only if condition (2.17) holds.

Now we consider a few special cases. Part (b) of the following remark is [13, Theorem 2.1]
Remark 3. Let $p \in \ell_{\infty}$ and $p_{k}>1$ for all k.
(a) If $h=\inf _{k} p_{k}>1$ and $M(b v(p))=\left\{a \in \omega: \sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}}<\infty\right\}$ then

$$
\begin{equation*}
a \in(b v(p))^{\beta} \text { if and only if } R \in \ell(q) \cap M(b v(p)) . \tag{2.18}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
a \in M\left(b v(p), c_{0}\right) \text { if and only if } \sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}}<\infty . \tag{2.19}
\end{equation*}
$$

(b) Let $p_{k}=p>1$ for all k and $M\left(b v^{p}\right)=\left((n+1)^{1 / q}\right)^{-1} * \ell_{\infty}$. Then we have

$$
\begin{equation*}
a \in b v^{p} \text { if and only if } R \in \ell_{q} \cap M\left(b v^{p}\right) \tag{2.20}
\end{equation*}
$$

Furthermore neither $\ell_{q} \subset M\left(b v^{p}\right)$ nor $M\left(b v^{p}\right) \subset \ell_{q}(c f .[13$, Remark 1]).
Proof. (a) Let $h>1$ and $H=\sup _{k} p_{k}<\infty$. Then it follows that $(\ell(p))^{\beta}=\ell(q)$ by [7, Theorem 4]. We show condition (2.19). First we assume $a \in M\left(b v(p), c_{0}\right)$. Then there is $N \in \mathbb{N} \backslash\{1\}$ such that

$$
\begin{equation*}
\sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} N^{-q_{k}}<\infty \tag{2.21}
\end{equation*}
$$

as we have seen in the proof of Theorem 2.1, and this implies

$$
\sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} \leq N^{H /(h-1)} \sup _{n} \sum_{k=0}^{n}\left|a_{k}\right|^{q_{k}} N^{-q_{k}}<\infty .
$$

Conversely, we assume

$$
\begin{equation*}
\sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}}<\infty \tag{2.22}
\end{equation*}
$$

Then obviously condition (2.21) is satisfied for all $N \in \mathbb{N} \backslash\{1\}$. Furthermore it follows that $a \in c_{0}$. For otherwise, if $a \notin c_{0}$ there would be a real c with $0<c<1$ and a subsequence $\left(a_{n(j)}\right)_{j=0}^{\infty}$ of the sequence a such that $\left|a_{n(j)}\right| \geq c$ for all j, and so $\sum_{k=0}^{n(j)}\left|a_{n(j)}\right|^{q_{k}} \geq \sum_{k=0}^{n(j)} c^{q_{k}} \geq c^{H /(h-1)}(n(j)+1)$ for all j, contrary to the assumption that (2.22) is satisfied. Finally, (2.22) and $a \in c_{0}$ together imply $a \in M\left(b v(p), c_{0}\right)$ by [3, Corollary].

Now (2.18) is clear.
(b) The condition in (2.20) is an immediate consequence of Part (a).

Concerning the proof of Remark 3 (a) we note.
Remark 4. If $h=1$ then condition (2.21) does not imply $a \in c$.
Proof. We choose $p_{k}=1+1 /(k+1)(k=0,1, \ldots)$ and $a_{n}=(-1)^{n}(n=0,1, \ldots)$. Then $a \notin c$, but $\sup _{n} \sum_{k=0}^{n}\left|a_{n}\right|^{q_{k}} 2^{-q_{k}}=\sup _{n} \sum_{k=0}^{n} 2^{-(k+1)}<\infty$.

2.2. The case $p_{k} \leq 1$.

Now we determine the β-dual of $b v(p)$ when $p_{k} \leq 1$ for all $k=0,1, \ldots$.

Lemma 2.4

Let $p_{k} \leq 1$ for all k. Then we have $M(b v(p), c)=c$.
Proof. First, we assume $a \in M(b v(p), c)$. Since $e \in b v(p)$, this implies $a \in c$.
Conversely we assume $a \in c$. This implies $a \in \ell_{\infty}$, hence $\sup _{n, k}\left|a_{n}\right|^{p_{k}}<\infty$, since $p_{k} \leq 1$ for all k. We define the matrix $C=\left(c_{n k}\right)_{n, k=0}^{\infty}$ by $c_{n k}=a_{n}$ for $0 \leq k \leq n$ and $c_{n k}=0$ for $k>n(n=0,1, \ldots)$. From $a \in c$ and $\sup _{n, k}\left|c_{n k}\right|^{p_{k}}<\infty$, we conclude $C \in(\ell(p), c)$ by [3, Corollary]. Now, since $x \in b v(p)$ if and only if $y=\Delta x \in \ell(p)$, and $a_{n} x_{n}=a_{n} \sum_{k=0}^{n} y_{k}$, the fact that $C \in(\ell(p), c)$ implies $a \in M(b v(p), c)$.

Theorem 2.2

Let $p_{k} \leq 1$ for all k. Then we have $a \in(b v(p))^{\beta}$ if and only if

$$
\sup _{n}\left|\sum_{k=n}^{\infty} a_{k}\right|^{p_{n}}<\infty
$$

Proof. By [3, Theorem 1 (ii)], [12, Theorem 2.5] and [10, Corollary 1], we have $a \in$ $(b v(p))^{\beta}$, if and only if $R \in(\ell(p))^{\beta}=\ell_{\infty}(p)$ and $R \in M(b v(p), c)=c$, the last condition being redundant, since $R_{n}=\sum_{k=n}^{\infty} a_{k}$ for $n=0,1, \ldots$.

Remark 5. If $p=e$, then by Theorem $2.2 b v^{\beta}=\left\{a \in \omega: \sup _{n}\left|\sum_{k=n}^{\infty} a_{k}\right|<\infty\right\}$, and so obviously $b v^{\beta}=c s$, a well-known result (cf. [17, Theorem 7.3.5 (iii)]).

3. Matrix transformations on $b v(p)$

In this section, we characterize some matrix transformations on $b v(p)$ and consider some special cases.

Theorem 3.1

Let $p, s \in \ell_{\infty}$. We assume $p_{k} \leq 1$ and $s_{k} \geq 1$ in (1.), and $s_{k} \leq 1$ in (3.) and (4.) below. Then the conditions for $A \in(b v(p), Y)$ for $Y=\ell(s), \ell_{\infty}(s), c_{0}(s), c(s)$ can be read from the table

To From	$\ell(s)$	$\ell_{\infty}(s)$	$c_{0}(s)$	$c(s)$
$b v(p)$	(1).	(2).	(3).	(4).

where
(1.): for $p_{k} \leq 1$ and $s_{k} \geq 1(k=0,1, \ldots)$, (1.1) where (1.1) $\sup _{k} \sum_{n=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j} B^{-1 / p_{k}}\right|^{s_{n}}<\infty$ for some $B>1$;
(2.): for $p_{k} \leq 1(k=0,1, \ldots)$, (2.1) where
(2.1) $\sup _{n}\left(\sup _{k}\left|\sum_{j=k}^{\infty} a_{n j}\right| B^{-1 / p_{k}}\right)^{s_{n}}<\infty$ for some $B>1$
for $p_{k}>1(k=0,1, \ldots),(2.2)$ and (2.3) where
(2.2) $\sup _{n} \sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q_{k}} B^{-q_{k} / s_{n}}<\infty$ for some $B>1$
(2.3) $\left\{\begin{array}{l}\text { for each } n \text { there is } N_{n}>1 \text { such that } \\ \sup _{m} \sum_{k=0}^{m}\left|\sum_{j=m}^{\infty} a_{n j}\right|^{q_{k}} N_{n}^{-q_{k}}<\infty ;\end{array}\right.$
(3.): for $p_{k} \leq 1(k=0,1, \ldots)$, (3.1) and (3.2) where
(3.1) $\lim _{n \rightarrow \infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{s_{n}}=0$ for each k
(3.2) $\lim _{M \rightarrow \infty} \lim \sup _{n \rightarrow \infty}\left(\sup _{k}\left|\sum_{j=k}^{\infty} a_{n j}\right| M^{-1 / p_{k}}\right)^{s_{n}}=0$
for $p_{k}>1(k=0,1, \ldots)$, (2.3), (3.1) and (3.3) where
(3.3) $\left\{\begin{array}{r}\lim _{M \rightarrow \infty} \lim \sup _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q_{k}} B^{q_{k} / s_{n}} M^{-q_{k}}\right)^{s_{n}}=0 \\ \text { for all } B \geq 1 ;\end{array}\right.$
(4.): for $p_{k} \leq 1(k=0,1, \ldots)$ (4.1) and there exists a sequence $\left(\alpha_{k}\right)_{k=0}^{\infty}$ such that (4.2) and (4.3)
where
(4.1) $\sup _{n, k}\left|\sum_{j=k}^{\infty} a_{n j}\right| B^{-1 / p_{k}}<\infty$ for some $B>1$
(4.2) $\lim _{n \rightarrow \infty}\left|\sum_{j=k}^{\infty} a_{n j}-\alpha_{k}\right|^{s_{n}}=0$ for each k
(4.3) $\lim _{M \rightarrow \infty} \lim \sup _{n \rightarrow \infty}\left(\sup _{k}\left|\sum_{j=k}^{\infty} a_{n j}-\alpha_{k}\right| M^{-1 / p_{k}}\right)^{s_{n}}=0$;
for $p_{k}>1(k=0,1, \ldots),(2.3),(4.4)$ and
there exists a sequence $\left(\alpha_{k}\right)_{k=0}^{\infty}$ such that (4.2) and (4.5)
where
(4.4) $\sup _{n} \sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q_{k}} B^{-q_{k}}<\infty$ for some $B>1$
(4.5) $\left\{\begin{array}{lr}\lim _{M \rightarrow \infty} \lim \sup _{n \rightarrow \infty}\left(\sum_{k=0}^{\infty} \sum_{j=k}^{\infty}\left|a_{n j}-\alpha_{k}\right|^{q_{k}} B^{q_{k} / s_{n}} M^{-q_{k}}\right)^{s_{n}} \\ =0 & \text { for all } B \geq 1\end{array}\right.$.

Proof. In each case, we apply [12, Theorem 2.7] and Theorem 2.2 for $p_{k} \leq 1$ or Theorem 2.1 for $p_{k}>1$. Then (1.) follows from [2, Theorem 5.1.1], (2.) from [8, Theorem 5(i)] for $p_{k} \leq 1$ and [8, Theorem 7] for $p_{k}>1$, (3.) from [8, Theorem 5 (ii)] for $p_{k}<1$ and [8, Theorem 8] for $p_{k}>1$, and (4.) follows from [8, Theorem 5 (iii)] for $p_{k} \leq 1$ and [8, Theorem 9] for $p_{k}>1$.

Theorem 3.2

Let $p \in \ell_{\infty}$. Then the conditions for $A \in(b v(p), Y)$ for $Y=\ell_{1}, \ell_{\infty}, c_{0}, c$ can be read from the table

To From	ℓ_{1}	ℓ_{∞}	c_{0}	c
$b v(p)$	(1).	(2).	(3).	(4).

where
(1.): for $p_{k} \leq 1(k=0,1, \ldots)$, (1.1) where
(1.1) $\sup _{k} \sum_{n=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right| B^{-1 / p_{k}}<\infty$ for some $B>1$
for $p_{k}>1(k=0,1, \ldots)$, (1.2) and (1.3) where
(1.2) $\sup _{\substack{N \subset \mathbb{N}_{0} \\ N \text { finite }}} \sum_{k=0}^{\infty}\left|\sum_{n \in N} \sum_{j=k}^{\infty} a_{n j}\right|^{q_{k}} B^{-q_{k}}<\infty$ for some $B>1$
(1.3) is (2.3) in Theorem 3.1;
(2.): for $p_{k} \leq 1(k=0,1, \ldots)$, (2.1) where
(2.1) $\sup _{n, k}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{p_{k}}<\infty$
for $p_{k}>1(k=0,1, \ldots),(1.3)$ and (2.2) where
(2.2) $\sup _{n} \sum_{k=0}^{\infty}\left|\sum_{j=k}^{\infty} a_{n j}\right|^{q_{k}} B^{-q_{k}}<\infty$ or some $B>1$;
(3.): for $p_{k} \leq 1(k=0,1, \ldots)$, (2.1) and (3.1) where
(3.1) $\lim _{n \rightarrow \infty} \sum_{j=k}^{\infty} a_{n j}=0$ for each k
for $p_{k}>1(k=0,1, \ldots),(1.3),(2.2)$ and (3.1)
(4.): for $p_{k} \leq 1(k=0,1, \ldots)$, (2.1) and (4.1) where
(4.1) $\lim _{n \rightarrow \infty} \sum_{j=k}^{\infty} a_{n j}=\alpha_{k}$ for each k
for $p_{k}>1(k=0,1, \ldots),(1.3),(2.2)$ and (4.1).
Proof. For $p_{k} \leq 1,(1$.$) is an immediate consequence of Theorem 3.1$ (1.). In the other cases, we apply [12, Theorem 2.7] and Theorem 2.2 for $p_{k} \leq 1$ or Theorem 2.1. Then the case $p_{k}>1$ follows from [9, Satz 1]. Furthermore (2.), (3.) and (4.) follow from [3, Theorem 1], [3, Theorem 1] and [17, 8.3.6, p. 123], and from [3, Corollary], respectively.

Now we apply Theorems 3.1 and 3.2 to obtain the mapping theorems in [16] and [13].

Remark 6. Putting $p=e$ in Theorem 3.1 (1.), (2.), (3.) and (4.), we obtain [16, Theorems 1, 2, 3, and 4], respectively. Furthermore, $\left[16\right.$, Corollaries 2^{6} (ii), p. 58, 1^{6} (i), p. 59 and Corollaries 2^{6}, p. 60 and p. 61] follow from Theorem 3.2 (1.), (2.) (3.) and (4.), respectively. In fact, condition (3.1) is replaced in [16, Corollary 2^{6}, p. 60] by the conditions $\lim _{n \rightarrow \infty} a_{n k}=0$ for each k and $\lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} a_{n k}=0$, which are obviously equivalent with condition (3.1), since $a_{n k}=\sum_{j=k}^{\infty} a_{n j}-\sum_{j=k+1}^{\infty} a_{n j}$ for all k, and also $\sum_{j=k}^{\infty} a_{n j}=\sum_{j=0}^{\infty} a_{n j}-\sum_{j=0}^{k-1} a_{n j}$ for all k; a similar remark applies to the conditions in $\left[16\right.$, Corollary 2^{6}, p. 61]. Finally, [13, Theorems 3.2 and 3.1 (a), (b) and (c)] are an immediate consequence of Theorem 3.2 (1.), (2.), (3.) and (4.), respectively.

Remark 7. In view of [11, Theorem 1], we obtain the characterizations of the classes (X, Y) for $X=b v(p)$ and $Y=b v(s), Y=Z(\Delta)=\{y \in \omega: \Delta y \in Z\}$ for $Z=$ $\ell_{\infty}(s), c_{0}(s), c(s), \ell_{1}, \ell_{\infty}, c_{0}$ and c, if we replace the terms $a_{n j}$ by $c_{n j}=a_{n j}-a_{n-1, j}$ $(n, j=0,1, \ldots)$ in the respective conditions of Theorems 3.1 and 3.2.

References

1. K.-G. Grosse-Erdmann, The structure of the sequence spaces of Maddox, Canad. J. Math. 44 (1992), 298-302.
2. K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223-238.
3. C.G. Lascarides and I.J. Maddox, Matrix transformations between some classes of sequences, Proc. Cambridge Philos. Soc. 68 (1970), 99-104.
4. I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. 18 (1967), 345-355.
5. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
6. I.J. Maddox, Some properties of paranormed sequence spaces, J. London Math. Soc. 1 (1969), 316-322.
7. I.J. Maddox, Continuous and Köthe Toeplitz duals of certain sequence spaces, Proc. Cambridge Philos. Soc. 65 (1969), 431-435.
8. I.J. Maddox and M.A.L. Willey, Continuous operators on paranormed spaces and matrix transformations, Pacific J. Math. 53 (1974), 217-228.
9. E. Malkowsky, Klassen von Matrixabbildungen in paranormierten $F K$ Räumen, Analysis 7 (1987), 275-292.
10. E. Malkowsky, A note on the Köthe-Toeplitz duals of generalized sets of bounded and convergent difference sequences, J. Anal. 4 (1996), 81-91.
11. E. Malkowsky, Linear operators in certain BK spaces, Bolyai Soc. Math. Stud. 5 (1996), 241-250.
12. E. Malkowsky, Linear operators between some matrix domains, Rend. Circ. Mat. Palermo (2) Suppl. 68 (2002), 641-655.
13. E. Malkowsky, V. Rakočević, and S. Živković, Matrix transformations between the sequence spaces $b v^{p}$ and certain BK spaces, Appl. Math. Comput. 147 (2004), 377-396.
14. H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
15. S. Simons, The sequence spaces $\ell\left(p_{\nu}\right)$ and $m\left(p_{\nu}\right)$, Proc. London Math. Soc. (3) 15 (1965), 422-436.
16. S.M. Sirajudeen, Matrix transformations of $b v$ into $\ell(p), \ell(q), c_{0}(q)$ and $c(q)$, Indian J. Pure Appl. Math. 23 (1992), 55-61.
17. A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, $\mathbf{8 5}$ 1984.
