
Collect. Math. 55, 1 (2004), 97–111

c© 2004 Universitat de Barcelona

Geometry of arithmetically Gorenstein curves in P
4

Robin Hartshorne

Department of Mathematics, University of California, Berkeley, CA 94720-3840

E-mail: robin@math.berkeley.edu

Received June 25, 2003

Abstract

We characterize the postulation character of arithmetically Gorenstein curves in P
4.

We give conditions under which the curve can be realized in the form mH −
K on some ACM surface. Finally, we complement a theorem of Watanabe by
showing that any general arithmetically Gorenstein curve in P

4 with arbitrary fixed
postulation character can be obtained from a line by a series of ascending complete-
intersection biliaisons.

Introduction

In this paper we illustrate some general results about arithmetically Gorenstein (AG)
schemes in codimension 3 by a closer analysis of the geometry of AG curves in P

4. We
give a numerical criterion for when an AG curve Y in P

4 can be obtained in the form
mH−K on an ACM surface X whose postulation character is the expected “first half”
of the postulation character of Y . We also give examples of AG curves that cannot be
obtained in this form on any ACM surface. Then we prove a theorem showing that a
general AG curve with a given postulation character γ can be obtained by ascending
CI-biliaison from a line, complementing the result of Watanabe that any codimension
3 AG scheme is licci.

Section 1 contains a review of the structure of codimension 2 ACM schemes in P
N .

Section 2 contains a review of known results about codimension 3 AG schemes in P
N .

Section 3 contains the study of AG curves of the form mH − K on an ACM surface,
together with examples. Section 4 contains the theorem about ascending CI-biliaisons.

I would like to thank the University of Barcelona whose invitation to speak there
provided the impetus for writing this paper.
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1. ACM codimension 2 subschemes of P
N

There are in the literature many ways of recording the numerical information associ-
ated with a subscheme of projective space. Ellingsrud [4] uses a numerical type (nij)
associated with a resolution of the ideal. Gruson and Peskine [5] use a numerical char-
acter associated with the projection on a hyperplane. Then there is the Hilbert function
H(n) = h0(OX(n)) of X ⊆ P

N . If r = dim X, the difference function ∂r+1H(n) is
called the h-vector of X [15, §1.4]. Finally, there is the postulation character, also
called γ-character of [14]. The numerical information in each of these is more or less
equivalent, but unfortunately the terminology varies from one place to another. We
find it most convenient, following [14] and [18] to use the postulation character.

Definition. Let X be a closed subscheme of P
N
k with ideal sheaf IX . Let

ϕ(n) = h0(OPN (n)) − h0(IX(n)) be the postulation function of X. We then define
the postulation character or γ-character of X to be γX(n) = −∂Nϕ(n), the N -th
difference function.

Proposition 1.1 [14], [18]

For any proper closed subscheme X ⊆ P
N , the γ-character has the following

properties

a) γ(n) = 0 for n < 0.

b) γ(n) = −1 for 0 ≤ n < s, where s = min{n | h0(IX(n)) 
= 0}, namely, the least

degree of a hypersurface containing X.

c) γ(s) ≥ 0.

d)
∑

n∈Z
γ(n) = 0.

Note that the function ϕ(n), and hence the Hilbert polynomial of X, can be
recovered by numerical integration so that, for example, the degree and genus of a
curve can be expressed in terms of its γ-character.

For an ACM subscheme of P
N of dimension ≥ 1 we have H1(IX(n)) = 0 for all n,

so to know the γ-character is equivalent to knowing the Hilbert function h0(OX(n)).
For ACM subschemes in codimension 2 one has precise information about the

possible γ-characters. We call a numerical function γ(n) admissible if it satisfies the
four conditions of (1.1) for some positive integer s.

Theorem 1.2

a) Let X be a codimension 2 ACM subscheme of P
N . Then its γ-character is positive

in the sense that γ(n) ≥ 0 for all n ≥ s.

b) Conversely, given an admissible numerical function γ(n) that is positive, as defined

in a), there exists a codimension 2 ACM subscheme X in P
N with that γ-character.

c) If, furthermore, X is integral, then γX is connected in the sense that {n | γ(n) > 0}
is a connected set of integers.

d) If γ is a positive connected numerical function, then there exists an integral ACM

codimension 2 subscheme X ⊆ P
N with that γ-character for all N ≥ 3. If N = 3

or 4, X can be taken to be a smooth curve or surface, respectively.
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Proof. These results are due to Gruson and Peskine [5]; see also [14, pp. 34,111], [15],
and [18]. �

Remark. The condition “γ connected” is equivalent to the condition that the numerical
character of [5] should have no gaps, and the condition that the h-vector should be
of decreasing type [15, pp. 32,97]. It is also equivalent to the condition m(X) ≥ 3 of
Sauer (see [18, p. 452]).

We have also the results of Ellingsrud about the Hilbert scheme and the theorem
of Gaeta.

Theorem 1.3 [4]

For any positive admissible γ-character, the set of all ACM codimension 2 sub-

schemes of P
N is a smooth, irreducible, open subset of the Hilbert scheme of all closed

subschemes of P
N . (There is also an explicit formula for its dimension.)

Theorem 1.4 (Gaeta: see [19])

A codimension 2 subscheme X ⊆ P
N is ACM if and only if it is in the liaison

equivalence class of a complete intersection.

2. AG codimension 3 subschemes of P
N

Here we review the analogous results for arithmetically Gorenstein subschemes of codi-
mension 3 of P

N . See also [15, §4.3] for a summary of these results.
A closed subscheme X ⊆ P

N
k is arithmetically Gorenstein (AG) if its homogeneous

coordinate ring is a Gorenstein ring. If dim X ≥ 1, this is equivalent to saying X is
ACM and its canonical sheaf ωX is isomorphic to OX(m) for some m ∈ Z.

Watanabe [21] showed that the homogeneous ideal of a codimension 3 AG scheme
is minimally generated by an odd number of elements. His method of proof also allows
one to deduce the following result, neither stated nor proved in his paper, but usually
attributed to him.

Proposition 2.1 (Watanabe)

Any AG codimension 3 subscheme of P
N is in the CI-liaison class of a complete

intersection.

Buchsbaum and Eisenbud [1] explained the theorems of Watanabe by giving a
structure theorem for Gorenstein codimension 3 algebras from which all further results
about AG codimension 3 schemes are deduced.

Theorem 2.2 [1]

The homogeneous ideal of any AG codimension 3 subscheme of P
N is generated

by the Pfaffians of the (n − 1)× (n − 1) minors of a certain skew symmetric matrix of

homogeneous polynomials, of odd rank n.
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Stanley [20], drawing on old results of Macaulay, and applying the theorem of
Buchsbaum and Eisenbud, characterized the possible h-vectors of AG codimension 3
subschemes. Translated into the language of the γ-character, his result is this.

Proposition 2.3 [20]

An admissible numerical function γ is the γ-character of an AG codimension 3
subscheme of P

N if and only if

a) it is symmetric, meaning there exists an integer q such that γ(n) = γ(q − n) for

all n ∈ Z (which implies that q = max{n | γ(n) 
= 0}), and

b) if we define the δ-character to be the “first half” of γ, namely

δ(n) =




γ(n) for n < q/2
1
2

γ(n) for n = q/2 if q is even

0 otherwise,

then δ is a positive admissible function, as in (1.1).

Proof. For a codimension 3 subscheme of P
N , the γ-character is the negative of the

second difference function of the h-vector. So the symmetry of the h-vector in Stanley’s
theorem [20, 4.2] is equivalent to the symmetry of γ. For the second condition, Stanley
says the first half of the first difference function of the h-vector should be an O-
sequence. This says it is the h-vector of a codimension 2 zero-dimensional scheme
[20, 2.2]. But we know these by (1.2), namely δ should be admissible and positive.
We must take δ(n) = 1

2γ(n) for n = q/2 to make δ be the negative second difference
function of the first half of the h-vector corresponding to γ. �

Proposition 2.4 [16]

AG codimension 3 subschemes of P
N , for N ≥ 4, are parametrized by a smooth,

open subset of the Hilbert scheme.

Proposition 2.5 [3]

The AG codimension 3 subschemes of P
N with a fixed Hilbert function (i.e., with

a fixed γ-character as in (2.3)) form an irreducible subset of the Hilbert scheme. (And

Kleppe and Miró–Roig [13] have given a formula for the dimension of this Hilbert

scheme.)

For the existence of integral AG codimension 3 schemes in P
N , Herzog, Trung, and

Valla gave a condition in terms of the degree matrix of the defining skew symmetric
matrix of (2.2). Then De Negri and Valla translated this condition in terms of the
h-vector. Combining their results and stating them with the γ-character, we have the
following.
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Theorem 2.6 [11], [2]

a) If X is an integral AG codimension 3 subscheme of P
N , then its δ-character is

connected (1.2c).
b) Conversely, if γ is a numerical function satisfying the conditions of (2.3) with δ

connected, then there exists a normal integral AG codimension 3 subscheme of

P
N with that γ-character (for N ≥ 4). In particular, if N = 4, we may take X to

be a smooth curve.

3. Arithmetically Gorenstein curves in P
4

Now we will look in more detail at the situation of curves in P
4. If Y is an AG curve

in P
4 with postulation character γY , we know from (2.3) that its “first half” δY is the

postulation character of an ACM surface X in P
4. So our first task will be to explore

the relationship between the ACM surfaces X with postulation character δY and the
AG curve Y . There is a well-known method of obtaining an AG curve on an ACM
surface.

Proposition 3.1

Let X be an ACM surface in P
4 satisfying the additional condition G1, Gorenstein

in codimension 1. Let K be the canonical divisor, and let Y be an effective divisor

linearly equivalent to mH − K for some m ∈ Z. Then Y is an AG curve with ωY
∼=

OY (m). If X satisfies only G0, then the canonical divisor K may not be defined,

but there is an anticanonical divisor M , and the same is true for an effective divisor

Y ∼ mH + M .

Proof. This construction was given in [12, 5.4]. See also [15, 4.2.8]. The extension to
the case where X satisfies only G0 is in [10]. �

Lemma 3.2

Let X be an ACM surface in P
4 with postulation character γX , and let r =

max{n | γX(n) 
= 0}. Then

1) H2(OX(n)) = 0 for all n ≥ r − 3.

2) IX is r-regular.

3) IX(r) is generated by global sections.

4) IX has a resolution

0 → ⊕OP4(−bj) → ⊕OP4(−ai) → IX → 0

with max {bj} = r + 1.
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Proof. Since X is ACM, we have H1(OX(n)) = 0 for all n. Hence the Euler characte-
ristic χ(OX(n)) = h0(OX(n))+h2(OX(n)), and this is equal to the Hilbert polynomial
of X. When we take difference functions of h0(OX(n)), the third and fourth differences
will be 0 if and only if the corresponding shift of h0(OX(n)) is equal to the polynomial
χ(OX(n)). We conclude that γX(n) = 0 for n ≥ r + 1 is equivalent to h2(OX(n)) = 0
for n ≥ r − 3.

Since IX has no H1 or H2, because of X being ACM, and H3(IX(n)) ∼=
H2(OX(n)), we find IX is r-regular. This implies I(r) generated by global sections,
by the theorem of Castelnuovo–Mumford.

Finally, take a minimal resolution of IX over the homogeneous coordinate ring,
and sheafify. This gives an exact sequence of cohomology

0 → H3(IX(n)) → ⊕H4(OP4(n − bj))
α→⊕ H4(OP4(n − ai)).

Because of the minimality of the resolution, max {bj} > max {ai}. Hence the largest n
for which H3(IX(n)) 
= 0 is equal to the largest n for which some H4(OP4(n−bj)) 
= 0.
We conclude n ≥ r−3 if and only if n−bj > 5 for all j, and hence max {bj} = r +1. �

Lemma 3.3
Let X be a locally complete intersection surface in P

4, with ideal sheaf I. Then
Λ2(I/I2) ∼= ω∨

X(−5).

Proof. [6, III.7.11]. �

Lemma 3.4
Let Y be an AG curve in P

4 with ωY
∼= OY (m). Then for all n ∈ Z, γY (n) =

γY (m + 4 − n). In other words γY is symmetric with the q of (2.3a) equal to m + 4.

Proof. By duality on Y we have H2(OY (n)) dual to H0(OY (m − n)) for all n. Hence
by Riemann–Roch,

h0(OY (n)) = dn + 1 − g + h0(OY (m − n)).

When we take the fourth difference function, this gives

γY (n) = γY (m + 4 − n).

Hence γY is symmetric with q = m + 4. �

Now we can state our main result about the AG curves of the form mH − K on
an ACM surface X.

Theorem 3.5
Let X be an ACM surface in P

4 that is locally a complete intersection, and let
r = max {n | γX(n) 
= 0}.
a) If m ≥ 2r − 5, the linear system |mH − K| is effective and without base points.
b) If m ≥ 2r − 4, then mH − K is very ample, and for any Y ∈ |mH − K|, with

postulation character γY , its first half δY is equal to γX .
c) If m ≥ 2r−2, the set of curves Y ∈ |mH −K| as X also varies in its family, forms

an open subset of the Hilbert scheme of AG curves with postulation character γY .
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Proof. We have assumed that X is a local complete intersection so that ωX will be an
invertible sheaf and K a Cartier divisor.

a) By (3.2), IX(r) is generated by global sections. Hence the same is true of (I/I2)(r)
and also of Λ2(I/I2(r)). Using (3.3) this shows that ω∨

X(2r − 5) is generated by
global sections, so the corresponding linear system is effective and without base
points.

b) It follows [6, II. Ex. 7.5] for m ≥ 2r − 4, that mH − K will be very ample. To
show that δY = γX , we proceed as follows. First suppose m ≥ 2r − 3. I claim
that γX(n) = γY (n) for n ≤ r. There is an exact sequence

0 → H0(IY,X(n)) → H0(OX(n)) → H0(OY (n)) → H1(IY,X(n)) → . . . .

We will show that the two outside terms are zero, hence the middle ones isomor-
phic. Since Y ∼ mH−K, IY,X(n) ∼= ωX(n−m). By duality on X, h1(IY,X(n)) =
h1(OX(m − n)) = 0, since X is ACM. Also h0(IY,X(n)) = h2(OX(m − n)). Now
our assumptions m ≥ 2r−3 and n ≤ r imply m−n ≥ r−3, so the h2 is 0 by (3.2).
Thus h0(OX(n)) = h0(OY (n)) and taking difference function γX(n) = γY (n) for
n ≤ r.

Now q = m + 4 by (3.4), hence q ≤ 2r + 1, so r < q
2 . So we see that the entire

non-zero portion of γX is equal to the portion of δY for n ≤ r. Since both are
positive admissible characters, they are equal.

The same argument works for m ≥ 2r − 4 except for the case m = 2r − 4 and
n = r. In this case r = q

2 , and since the characters γX and δY are equal for n < r,
and 0 for n > r, it follows that they are also equal for n = r by (1.1d).

c) We follow the method of [9, 3.3]. The proof given there already shows the desired
result for m � 0. Note that in [9] the surface X is supposed smooth, but the
same holds for X a locally complete intersection, in which case K will be a Cartier
divisor.

The first step is that, since X is ACM, the dimension of the linear system |Y | on
X is equal to h0(Y,NY/X). To see this, we note first that since Y is a Cartier
divisor on X, there is an exact sequence

0 → OX → OX(Y ) → NY/X → 0.

Now X is ACM, so h0(OX) = 1 and h1(OX) = 0. Thus h0(OX(Y )) = 1 +
h0(NY/X) and dim |Y | = h0(O(Y )) − 1 = h0(NY/X).

The second step is by the theorem of Ellingsrud (1.3) to note that the irreducible
component of the Hilbert scheme of ACM surfaces containing X is smooth, and
therefore by Grothendieck’s differential study of the Hilbert scheme has dimension
equal to h0(NX/P4). The third step is to notice that for m ≥ 2r − 3, each such
curve Y is contained in a unique such surface X. Indeed, we have seen in the proof
of b) above that for m ≥ 2r − 3 we have γX(n) = γY (n) for n ≤ r, and hence
H0(IX(n)) → H0(IY (n)) is an isomorphism for n ≤ r. Since IX is generated in
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degrees ≤ r (3.2), we see that the homogeneous ideal of X is uniquely determined
by Y . It follows now that the dimension of the family of curves Y ∼ mH − K as
X and Y vary is equal to h0(Y,NY/X) + h0(X,NX/P4).

The next step is to show that for m ≥ 2r−2 we have h0(X,NX/P4) = h0(Y,NX/P4⊗
OY ). To prove this, we need to show the vanishing of hi(X,NX/P4(−Y )) for i =
0, 1. Since Y ∼ mH−K, these are equal, using duality on X, to hi(X, IX/I2

X(m))
for i = 1, 2.

Take a minimal resolution of IX , as in (3.2),

0 → ⊕OP4(−bj) → ⊕OP4(−ai) → IX → 0.

Tensoring with OX(m) we get an exact sequence

⊕OX(m − bj) → ⊕OX(m − ai) → IX/I2
X(m) → 0.

From (3.2) we know that ai, bj ≤ r + 1 for all i, j. So the hypothesis m ≥ 2r − 2
implies that m − ai, m − bj ≥ r − 3 for all i, j. So again by (3.2) it follows that
H2(OX(m − ai)) = H2(OX(m − bj)) = 0 for all i, j. Since X is ACM, we have
H1(OX(n)) = 0 for all n, and now it follows easily that Hi(IX/I2

X(m)) = 0 for
i = 1, 2.

Now as in the proof of [9, 3.3] we find that

h0(NY/P4) ≤ h0(NY/X) + h0(NX/P4).

The other inequality comes from the fact that the dimension of the family of all
AG curves with the same γ-character is less than or equal to h0(NY/P4), by the
differential study of the Hilbert scheme. We conclude equality, so the two families
have the same dimension, and the curves of the form Y ∼ mH − K with Y, X

varying form an open subset of the Hilbert scheme of AG curves containing Y , as
required. �

Corollary 3.6

a) For each numerical function γ satisfying the numerical conditions of (2.3), there

is an AG curve Y with postulation character γ, lying on an ACM surface X with

postulation character γX = δY .

b) If, furthermore, the first half δ of γ is connected, we may take both X and Y to

be smooth.

c) If the integers m and r associated with γ satisfy m ≥ 2r − 2, then there is an

open subset V of the Hilbert scheme Hγ of AG curves with character γ, such that

every Y ∈ V is of the form Y ∼ mH − K on an ACM surface X with character

δ, the first half of γ.
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Proof. Note that this corollary gives an independent proof of the existence results for
AG curves quoted in (2.3) and (2.6). To prove the corollary, given γ, let δ be its first
half. Then there exists a reduced, locally complete intersection ACM surface in P

4

with postulation character δ [18, 3.2]. Let q = max {n | γ(n) 
= 0} and take m = q− 4.
If r = max {n | δ(n) 
= 0}, then r ≤ q/2 by definition of the “first half” function, so
m ≥ 2r− 4. Then by the theorem, mH −K is very ample, and any curve in the linear
system will be AG with postulation character having its first half equal to γX . By
symmetry, γ is uniquely determined by δ and m, which shows that γY is equal to the
γ we started with.

If δ is connected, then X can be taken to be smooth [18, 3.3], and since mH −K

is very ample, we can take Y to be smooth by the usual Bertini theorem.
The last statement c) is just a reformulation of (3.5c). �

Now we will give some examples to illustrate Theorem 3.5 and show that its results
are sharp.

Example 3.7: The linear system mH − K may be effective even for m < 2r − 5. Let
X be the Castelnuovo surface. Then γX = −1 − 1 0 2, r = 3, 2r − 5 = 1. Take
m = 0. Note that −K = (3; 18) in the usual notation for divisor classes on X (see,
for example, [8, 3.3]). This class is effective and is represented by plane cubic curves
Y ⊆ X. They all pass through a ninth point Q ∈ X. Thus the linear system |Y | is not
without base points.

Example 3.8: If m < 2r − 4, then δY may not be equal to γX . One example is
the plane cubic curve Y of the previous (3.7). In this case γY = −1 1 0 1 − 1, and
δY = −1 1 corresponding to a plane H. This is not surprising since the minimal degree
surface containing Y is a plane.

For a more interesting example let X be the Del Pezzo surface. Then γX =
−1 − 1 1 1, r = 3, 2r − 4 = 2. Take m = 1. Then Y ∼ H − K = 2H, and Y is the
complete intersection of three quadric hypersurfaces in P

4. It is the canonical curve of
degree 8 and genus 5, and γY = −1 −1 2 2 −1 −1, so δY = −1 −1 2, the γ-character
of a cubic scroll. Our curve Y is on its surface X of minimal degree, yet its δY belongs
to a surface of lower degree. There are curves Y ′ ∼ H −K on the cubic scroll X ′, also
canonical curves (8, 5), but these form a proper subfamily of all the AG (8, 5) curves:
they are the canonical embeddings of trigonal curves of genus 5.

In this example we see that while the family of AG curves Y with γY = −1 −
1 2 2 − 1 − 1 is irreducible, equal to the family of canonical curves of genus 5 in
P

4, there are two types: the general one being a complete intersection on the Del
Pezzo surface and the special one lying on a cubic scroll. In both cases the associated
character δY is that of a cubic scroll.

Example 3.9: We saw in the proof of (3.5c) that for m ≥ 2r−3, the curve Y ∼ mH−K

is contained in a unique ACM surface X with γX = δY . Here we show that for
m = 2r − 4, the surface X may not be unique.

Recall first that if X, X ′ are two ACM surfaces without common components,
whose union is a complete intersection Z of hypersurfaces of degrees a, b, then the
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intersection Y = X∩X ′ is an AG curve [15, 4.2.1]. In fact, I claim Y ∼ (a+b−5)H+M

on X where M is the anticanonical divisor. Indeed, since X ∪ X ′ = Z is a complete
intersection, and X and X ′ have no common components, the surface X satisfies G0, so
we can speak of the anticanonical divisor M [10]. From the theory of liaison it follows
that IX′,Z = Hom(OX ,OZ). But IX′,Z = IY,X , and Hom(OX ,OZ) = ωX⊗ω∨

Z . Thus
on X we have Y ∼ (a + b − 5)H + M , since ωZ = OZ(a + b − 5). So it follows from
(3.1) that Y is AG with m = a + b − 5.

Now for our example, let X again be a Castelnuovo surface. This surface is
contained in a unique quadric hypersurface F2, a cone over the nonsingular quadric
surface in P

3. The divisor class group of F2 is Z⊕Z, and X is in the class of bidegree
(2, 3). Let X ′ be another Castelnuovo surface of bidegree (3, 2). Then X ∪ X ′ = Z is
a complete intersection of F2 with a quintic hypersurface F5. Therefore Y = X ∩ X ′

is in the class of 2H − K, so this Y has m = 2, and is not contained in a unique
Castelnuovo surface X.

We observe also that X passes through the singular point of F2, since by Klein’s
theorem it cannot be a Cartier divisor on F2, and this point is none other than the
point Q mentioned above in (3.7). Indeed, the plane cubic curve of (3.7) is contained
in a plane Π. This plane intersects F2 in at least a plane cubic curve, so Π ⊆ F2, and
Π must also contain the singular point. As the plane cubic curve moves in a pencil,
so does Π, and the only point in common is Q, which must therefore be the singular
point of F2.

The same argument shows that X ′ also contains Q, and so all the curves Y ∼
2H − K obtained by the construction X ∩ X ′ for various X ′ contain this same point
Q. On the other hand, the linear system |2H − K| is very ample by (3.5b), so we see
that the curves Y obtained as X ∩ X ′ for linked Castelnuovo surfaces X and X ′ are
not general among all curves in the linear system |2H − K|.

Example 3.10: We give an example to show that (3.5c) is sharp, namely an example
of curves with m = 2r − 3 on an ACM surface X that are not general in their Hilbert
scheme. Let X be a Castelnuovo surface, with γX = −1 − 1 0 2. Then r = 3. We
take m = 2r − 3 = 3, and consider curves Y ∼ 3H − K on X. These have character
γ = −1 − 1 0 2 2 0 − 1 − 1 and have degree 18 and genus 28. Each such curve Y

is contained in a unique quadric hypersurface F2, which is the same one that contains
the Castelnuovo surface X, and therefore is singular, by Klein’s theorem.

On the other hand, there are AG curves Y of degree 18 and genus 28 of the form
Y ∼ 3H − K on the sextic K3 surface X, which is a complete intersection of any
quadric and cubic hypersurfaces, X = F2 ∩ F3. In this case we can take F2 to be
smooth, so that the unique quadric hypersurface F2 containing Y is smooth, and so
Y is not on a Castelnuovo surface. Thus the family of Y ∼ 3H − K on Castelnuovo
surfaces is special in Hγ .

Example 3.11: For our last example we show that for certain γ, the general AG curve
with postulation character γ is not of the form mH − K on any ACM surface.

Take γ = −1 − 1 − 1 6 − 1 − 1 − 1. Then δ = −1 − 1 − 1 3 is the postulation
character of a Bordiga surface. There are curves Y ∼ 2H −K = (11; 310) on a Bordiga
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surface X. These curves have degree 14 and genus 15. The dimension of the family of
all such Y on Bordiga surfaces X is less than or equal to the dimension of the linear
system |Y | on X plus the dimension of the family {X} of all Bordiga surfaces. Now
dimX |Y | = h0(NY/X) = h0(OY (Y )). We calculate Y 2 = 31 from its divisor class
representation on X. Since 31 > 2gY − 2, the linear system OY (Y ) is nonspecial, and
h0(OY (Y )) = 31 + 1 − 15 = 17. The dimension of the family {X} is 36, by [4]. Thus
the family of all Y ∼ 2H − K on Bordiga surfaces has dimension ≤ 17 + 36 = 53.

On the other hand, from the general theory of the Hilbert scheme, we know that
the dimension of any irreducible component of the Hilbert scheme of curves of degree
d and genus g is ≥ 5d + 1 − g. In our case, this gives 56. (In fact, the dimension is
exactly 56 [13].) Thus the general AG curve Y with given γ cannot be of the form
2H − K on a Bordiga surface.

It remains to show that Y cannot be of the form mH − K on any other ACM
surface. If X is an ACM surface of degree δ and sectional genus π, and if Y ∼ mH−K,
then we can easily compute the degree d of Y as (Y.H) on the surface, and this gives
d = (m + 1)δ − 2π + 2. In our case, since γ = −1 − 1 − 1 6 − 1 − 1 − 1, we have
q = 6 and m = 2. So we must have d = 3δ − 2π + 2. Now looking at the possible pairs
(δ, π), which will be the degree and genus of a nondegenerate ACM curve in P

3, we see
(left to reader) that 3δ − 2π + 2 ≤ 14 always with equality only for (δ, π) = (6, 3). So
the only way to obtain the curve Y as mH − K on an ACM surface is as 2H − K on
a Bordiga surface.

R. Miró–Roig [17] has verified by a dimension count that there are similar examples
of AG curves of arbitrarily high degree that cannot be obtained in the form mH − K

on any ACM surface.

Problem 3.12. For those postulation characters γ of AG curves for which the asso-
ciated m and r satisfy m = 2r − 3 or m = 2r − 4, give a stratification of the Hilbert
scheme of AG curves with character γ, according to the least degree of an ACM surface
containing the curve, the gonality of the abstract curve, which ones are of the form
mH −K on an ACM surface, and the dimensions of the strata, so as to generalize and
complete the information illustrated in examples (3.8), (3.10), and (3.11) above.

4. Complete intersection biliaison

If C is a curve in P
4, recall that a complete intersection (CI) biliaison of C is obtained

by taking a complete intersection surface X ⊆ P
4, and taking a curve C ′ ∼ C + hH

on X, where H is the hyperplane class, and h ∈ Z. It is ascending if h ≥ 0. The
equivalence relation generated by these is called CI-biliaison and it is equivalent to
even CI-liaison [7, 4.4].

In this section we will show that a general AG curve in P
4 with an arbitrary

postulation character is obtained by ascending CI-biliaisons from a line. This provides
a new proof and strengthening of Watanabe’s result (2.1) for general AG curves.
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Lemma 4.1

Let Y be an AG curve in P
4 with postulation character γ. Let s = min {n > 0 |

γ(n) ≥ 0}, let q = max {n | γ(n) 
= 0}, and let m be the integer for which ωY
∼= OY (m).

Then

a) m = q − 4.

b) IY (q − s) is generated by global sections.

c) IY is (q − 1)-regular.

Proof. Part a) we recall for memory (3.4). For parts b), c) we use the theorem of
Buchsbaum–Eisenbud [1] in the notation of [11, §5, pp. 62-63]. Let S be the homoge-
neous coordinate ring of P

4. Then the homogeneous ideal IY of Y has a resolution of
the form

0 → S(−c) → ⊕S(−bi) → ⊕S(−ai) → IY → 0

with i = 1, 2, . . . , 2r + 1 for some positive integer r. Moreover, this resolution is
symmetric in the sense that if we order a1 ≤ a2 ≤ . . . ≤ a2r+1 and b1 ≥ b2 ≥ . . . ≥
b2r+1, then bi = c−ai for each i. Furthermore, if we let uij = bi−aj be the associated
degree matrix, then uij > 0 for i + j = 2r + 3.

To relate this to the invariants s and q of the γ-character, first note that the ai

are the degrees of a minimum set of generators of IY . Hence a1 = s, which is the
least degree of a generator. By symmetry, b1 = c− s. Computing ωY

∼= Ext3(OY , ωP4)
using this resolution, we find ωY

∼= OY (c − 5). Hence m = c − 5 and q = c − 1. From
the inequality u2,2r+1 > 0 we find b2 > a2r+1 = max {ai}. But b1 = c − s ≥ b2, so we
find max {ai} < c − s. Hence max {ai} ≤ q − s, and IY (q − s) is generated by global
sections.

Finally, to show that IY is (q−1)-regular, we use this resolution to show h2(IY (q−
3)) = 0 by climbing up the resolution and using the fact that h4(OP(−c + q − 3)) =
h4(OP(−4)) = 0. �

Theorem 4.2

For any postulation character γ corresponding to an AG curve in P
4 (as in (2.3)),

there is a nonempty open subset Vγ of the corresponding Hilbert scheme Hγ of these

curves, such that any curve Y ∈ Vγ can be obtained by strictly ascending CI-biliaisons

from a line in P
4.

Proof. We will prove by induction on the degree, the following slightly more precise
statement. For each γ, there is a nonempty open set Vγ ⊆ Hγ such that for any Y ∈ Vγ

(i) There is a complete intersection surface X = Fs ∩ Fq−s containing Y that is
reduced, and such that for each irreducible component Ui of X\Sing X, the in-
tersection Y ∩ Ui 
= ∅, and

(ii) There is an AG curve Y ′ ∼ Y −H on X, with postulation character γ′, such that
Y ′ ∈ Vγ′ .

To begin with, by definition of s, Y is contained in a hypersurface Fs of degree s.
Since IY (q−s) is generated by global sections, there is a hypersurface Fq−s containing
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Y , whose intersection with Fs is a surface X. Thus every Y ∈ Hγ is contained in
a complete intersection surface Xs(q−s), and so the property (i) is an open (possibly
empty) condition on Hγ . The fact that Vγ is nonempty will appear in the induction
step below.

We start the induction with AG curves Y having s = 1. These are contained in a
P

3, so they are complete intersection curves, and for these the theorem is immediate.
We descend by the biliaison of (ii) unless Y is a plane curve, in which case we do
biliaisons in the plane containing Y .

So now we assume s ≥ 2. Suppose for a moment that Y ⊆ X satisfies condition
(i). We will show that the linear system |Y − H| is nonempty and contains a unique
AG curve Y ′. We use the exact sequence of [7, 2.10], twisted by −H:

0 → OX(−H) → L(Y − H) → ωY ⊗ ω∨
X(−H) → 0.

Now ωX
∼= OX(s + q − s − 5) = OX(q − 5), and ωY = OY (m) = OY (q − 4), so

the sheaf on the right is just OY . Since h0(OX(−H)) = h1(OX(−H)) = 0, we find
h0(L(Y − H)) = h0(OY ) = 1, so it has a unique section t whose restriction to Y is
1. From the condition that Y meets every irreducible component of X\Sing X, and
X being reduced, we conclude that t is nondegenerate, and defines an effective divisor
Y ′ ∼ Y − H [7, 2.9]. The support of the divisor Y ′ consists of the set of points of X

where t does not generate the stalk of the sheaf L(Y − H). Since t restricted to Y is
1, we find that Y ∩ Y ′ = ∅ as subsets of X.

Now consider the sequence of [7, 2.10] for Y ′:

0 → OX → L(Y ′) → ωY ′ ⊗ ω∨
X → 0.

Since Y ′ ∼ Y −H and Y ∩ Y ′ = ∅, the sheaf L(Y ′) is invertible isomorphic to L(−H)
on X\Y , which is a neighborhood of Y ′. Thus ωY ′ ⊗ ω∨

X
∼= OY ′(−H). From this

we find ωY ′ ∼= OY ′(q − 6) = OY ′(m − 2). Hence Y ′, which is ACM by virtue of the
biliaison from Y to Y ′, is arithmetically Gorenstein. We can compute its γ-character

γ′(n) =




−1 for 0 ≤ n ≤ s − 2

γ(s) − 1 for n = s − 1, q − s − 1

γ(n + 1) for s ≤ n ≤ q − s − 2

−1 for q − s ≤ n ≤ q − 2.

Now we explain the induction step of the proof. We will construct, and fix, the
open sets Vγ ⊆ Hγ inductively during the course of the proof. For s = 1 we take
Vγ = Hγ . Given γ with s ≥ 2, define a character γ′ by the recipe just given. By
the induction hypothesis we have already constructed an open set Vγ′ ⊆ Hγ′ of curves
satisfying (i) and (ii). Let Y ′ be such a curve, and let Y ′ ⊆ X ′ = Fs′ ∩ Fq′−s′

satisfy (i). Note that q′ = q − 2 and s′ is either s or s − 1. So define a surface
X = (Fs′ + H1) ∩ (Fq′−s′ + H2) or X = Fs′ ∩ (Fq′−s′ + H1 + H2), where H1, H2 are
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hyperplanes in general position. Then X is a reduced complete intersection surface of
degree s(q − s).

On this surface X, we will show, by an argument analogous to the one above, that
a general curve Y in the linear system Y ′ + H on X is an AG curve. First we write
the sequence of [7, 2.10] for Y ′, twisted by H:

0 → OX(H) → L(Y ′ + H) → ωY ′ ⊗ ω∨
X(H) → 0.

Knowing that ωY ′ ∼= OY ′(m − 2) we see as above that the right-hand sheaf is OY ′ .
Since X is a complete intersection, H1(OX(H)) = 0, so the map H0(L(Y ′ + H)) →
H0(OY ′) → 0 is surjective. Since the sheaf L(Y ′ + H) has nondegenerate sections (for
example corresponding to the trivial biliaison Y ′ + H), there exists a nondegenerate
section s ∈ H0(L(Y ′ + H)) whose image in H0(OY ′) is 1. Let Y be the associated
divisor. Then Y ∩ Y ′ = ∅, and the sequence of [7, 2.10] for Y shows as above, that
ωY

∼= OY (m). Hence Y is an AG curve. Since the trivial biliaison Y ′ + H satisfies (i),
and this is an open condition, we can choose Y also so that it satisfies (i).

Thus there exists a nonempty open subset of curves Y ∈ Hγ satisfying (i). Since
the procedures of constructing Y ′ from Y and Y from Y ′ are reversible, we can define
the open subset Vγ ⊆ Hγ to be the set of AG curves Y satisfying (i) with the associated
curve Y ′ lying in Vγ′ .

This completes the inductive proof of (i) and (ii). To prove the theorem, we take
a Y ∈ Vγ , and by (ii) find a Y ′ ∈ Vγ′ with smaller degree. We continue this process
until either the degree is 1 or s = 1, which we have discussed above. �

Remark 4.3. If we restrict our attention to nonsingular AG curves Y , the curve will lie
on a nonsingular complete intersection surface Xs(q−s), and if Y is sufficiently general,
the associated curve Y ′ ∼ Y −H will also be nonsingular. Note that if Y has connected
δ-character (2.6) then Y ′ also has connected δ-character. Thus for sufficiently general
nonsingular curves Y we can carry out the CI-biliaisons using only nonsingular AG
curves lying on nonsingular complete intersection surfaces.

Example 4.4: We have seen (3.11) that the general AG curve Y with γ = −1 −
1 − 1 6 − 1 − 1 − 1, a curve of degree 14 and genus 15, cannot be obtained in the
form mH − K on any ACM surface. But applying our theorem, we see that it can be
obtained in the form Y ′ + H on a complete intersection surface X3.3, where Y ′ has
γ′ = −1 − 1 4 − 1 − 1. This is an AG curve of degree 5 and genus 1, which we may
take to be nonsingular when Y is sufficiently general.

The curve Y ′ in turn lies on a complete intersection X ′
2.2, a Del Pezzo surface,

and Y ′′ = Y ′ − H ′ on X ′ is a line. Thus Y is obtained by two ascending CI-biliaisons
from a line.
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13. J.O. Kleppe and R.M. Miró–Roig, The dimension of the Hilbert scheme of Gorenstein codimension
3 subschemes, J. Pure Appl. Algebra 127 (1998), 73–82.

14. M. Martin–Deschamps and D. Perrin, Sur la Classification des Courbes Gauches, Astérisque 184–
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