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Via Vetoio - Loc. Coppito, 67010 L’Aquila - Italy

E-mail: flamini@mat.uniroma3.it

Received March 4, 2003. Revised June 30, 2003

Abstract

The main purpose of this paper is twofold. We first analyze in detail the mean-
ingful geometric aspect of the method introduced in [12], concerning families of
irreducible, nodal “curves” on a smooth, projective threefold X . This analysis
gives some geometric interpretations not investigated in [12] and highlights several
interesting connections with families of other singular geometric “objects” related
to X and to other varieties.

Then, we use this method to study analogous problems for families of singular
divisors on ruled fourfolds suitably related toX . This enables us to show that Severi
varieties of vector bundles on X can be rephrased in terms of “classical” Severi
varieties of divisors on such fourfolds.

Introduction

The theory of families of singular curves with fixed invariants (e.g. geometric genus,
singularity type, number of irreducible components, etc.) and contained in a projective
variety X has been extensively studied from the beginning of Algebraic Geometry and
it actually receives a lot of attention, partially due to its connections with several fields
in Geometry and Physics.

Nodal curves play a central role in the subject of singular curves. Families of
irreducible and δ-nodal curves on a given projective variety X are usually called Severi
varieties of irreducible, δ-nodal curves in X. The terminology “Severi variety” is due
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to the classical case of families of nodal curves on X = P
2, which was first studied by

Severi (see [23]).
The case in which X is a smooth projective surface has recently given rise to a

huge amount of literature (see, for example, [4], [5], [6], [7], [11], [14], [15], [21], [22] just
to mention a few. For a chronological overview, the reader is referred for example to
Section 2.3 in [10] and to its bibliography). This depends not only on the great interest
in the subject, but also because for a Severi variety V on an arbitrary projective
variety X there are several problems concerning V like non-emptiness, smoothness,
irreducibility, dimensional computation as well as enumerative and moduli properties
of the family of curves it parametrizes.

On the contrary, in higher dimension only a few results are known. Therefore, in
[12] we focused on the next relevant case, from the point of view of Algebraic Geometry:
families of nodal curves on smooth, projective threefolds.

In this paper, we show that the correspondence considered in [12], which was
introduced as an auxiliary tool for some related problems, reflects deep geometric
properties of global sections of rank-two vector bundles on a smooth threefold. We
also study some of its intriguing consequences, which were not explored in [12].

To be more precise, let X be a smooth projective threefold and let F be a rank-
two vector bundle on X, which is assumed to be globally generated with general global
section s whose zero-locus V (s) is a smooth, irreducible curve D = Ds in X, of
geometric genus g(D) = pa(D).

Take now P(H0(X,F)); from our assumptions on F , its general point parametrizes
a global section whose zero-locus is a smooth, irreducible curve. This projective space
somehow gives a scheme dominating a subvariety in which the curves move.

Given a positive integer δ ≤ pa(D), it makes sense to consider the locally closed
subscheme:

Vδ(F) :={[s] ∈ P(H0(X,F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities};

(cf. formula (1.3)). These are usually called Severi varieties of global sections of F
whose zero-loci are irreducible, δ-nodal curves in X, of arithmetic genus pa(D) and
geometric genus g = pa(D) − δ (cf. [2], for X = P

3, and [12] in general). This is
because such schemes are the natural generalization of the (classical) Severi varieties
on smooth, projective surfaces recalled before.

When Vδ(F) is not empty then its expected codimension in P(H0(X,F)) is δ (see
e.g. Proposition 1.4). Thus, one says that a point [s] ∈ Vδ(F) is a regular point if it is
smooth and such that dim[s](Vδ(F)) equals the expected one (cf. Definition 1.5). In
order to find regularity conditions, we introduced in [12] a cohomological description
of the tangent space T[s](Vδ(F)) (cf. Theorem 3.4 in [12]). In Section 2, we shall
briefly recall this main result, as well as some of its corollaries, not only for the reader
convenience but mainly because it is useful for the present paper. Precisely, we recall:

Theorem 1 (see Theorem 2.1 and Proposition 2.3)
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Let X be a smooth projective threefold. Let F be a globally generated rank-two

vector bundle on X and δ a positive integer. Consider [s] ∈ Vδ(F) and let C = V (s) ⊂
X. Denote by Σ the set of nodes of C. Let

P := PX(F) π−→ X

be the projective space bundle together with its natural projection π on X and denote

by OP(1) its tautological line bundle. Then:

(i) [s] ∈ Vδ(F) corresponds to a divisor Gs ∈ |OP(1)| which contains the δ fibres

Lpi = π−1(pi) ⊂ P, where pi ∈ Σ for 1 ≤ i ≤ δ.

Furthermore, there exists a zero-dimensional subscheme Σ1 ⊂ Gs of length δ,

which is a set of δ rational double points of Gs and each fibre Lpi contains only one of

the points of Σ1, for 1 ≤ i ≤ δ.

(ii) Denote by JΣ1/P the ideal sheaf of Σ1 in P. The subsheaf of F defined by

(0.1) FΣ := π∗
(
JΣ1/P ⊗OP(1)

)
is such that

H0(X,FΣ)
〈s〉

∼= T[s](Vδ(F)) ⊂ T[s]

(
P(H0(F))

) ∼= H0(X,F)
〈s〉

i.e. global sections of FΣ (modulo the one-dimensional subspace 〈s〉) parametrize

equisingular first-order deformations of [s]. Thus, for ε ∈ C[T ]/(T 2) s.t. ε2 = 0,

we have:

s + εs′ ∈ T[s](Vδ(F)) ⇔ s′ ∈ H0(X,FΣ) ⇔ Gs′ ∈ |JΣ1/P ⊗OP(1)|,

where Gs′ is the divisor in P corresponding to s′.

For brevity sake, if Λ :=
⋃δ
i=1 Lpi = π−1(Σ), we shall say that the elements

[s] ∈ Vδ(F) and Gs ∈ |JΛ/P⊗OP(1)| as above form a (s,Gs)-Severi correspondence (cf.
Definition 2.2). The terminology of Severi correspondence will be further motivated
by other results in the last sections (cf. Definition 4.1, Theorems 3.1 and 5.1 and
Corollary 4.19).

The aim of this paper is twofold: first we study in details the geometric meaning
of T[s](Vδ(F)) as well as of the (s,Gs)-Severi correspondence. We determine some
interesting consequences of this approach, which have not been explored in [12]. We
also describe several interesting connections with families of other singular geometric
“objects” related to X. In particular, we show that the local analytical computations
introduced in [2] are equivalent, via the (s,Gs)-correspondence, to those using the
divisorial approach of [12] (cf. Remarks 3.11, 3.21 and Propositions 3.14, 3.19).

On the other hand, we also show that the (s,Gs)-Severi correspondence resides in
other deep geometric reasons (cf. Theorems 4.5 and 5.1). We believe that this could
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be a useful approach for several related problems on higher dimensional varieties; this
will be the subject of a future research.

The following first result of the paper gives a converse to the procedure introduced
in [12]. Indeed, we show:

Theorem 2 (cf. Theorem 3.1)

Let X be a smooth projective threefold. Let F be a globally generated rank-two

vector bundle on X.

Let P := PX(F) be the projective space bundle, OP(1) its tautological line bundle

and π the natural projection onto X. Let Gs ∈ |OP(1)| be a divisor and let s ∈
H0(X,F) be the global section corresponding to Gs. Let C := V (s) and assume that

C is a curve (not necessarily irreducible) on X. Thus:

(i) Gs is singular at a point p1 ∈ P if, and only if, C is singular at the point p ∈ C,

which is uniquely determined by the fact that p1 ∈ Lp = π−1(p).
(ii) In particular, p is a node for C if, and only if, p1 is a rational double point for Gs.

This is a basic tool for the results contained in Sections 4 and 5.

A related important aspect of the (s,Gs)-Severi correspondence is that we can
determine several equivalent geometric interpretations of first-order deformations given
by sections in H0(X,FΣ) via Theorems 1 and 2. Indeed, by using our divisorial
approach, we prove:

Proposition 1 (cf. Proposition 3.14 and Proposition 3.19)

Let X be a smooth projective threefold, F a globally generated rank-two vector

bundle on X and L = c1(F). Let δ be a positive integer, [s] ∈ Vδ(F) and C = V (s)
be the corresponding irreducible, nodal curve in X. Denote by Σ the set of nodes of

C. Let FΣ be as in (0.1). Then, the following conditions are equivalent:

(i) s′ ∈ H0(X,FΣ) \ 〈s〉;
(ii) V (s ∧ s′) ⊂ X is a surface which contains C and which is singular along Σ;

(iii) the divisor Gs′ passes through Σ1;

(iv) the surface Ss,s′ := Gs ∩Gs′ ⊂ P is singular along Σ1.

Interpretation (ii) above of T[s](Vδ(F)) has already been considered for X = P
3

and via a different approach in Proposition 2.3 in [2]. This in particular shows that the
local computations introduced in [2] are equivalent, via the (s,Gs)-Severi correspon-
dence, to the local computations on P. Furthermore, the several distinct characteri-
zations of tangent vectors to Vδ(F) at [s] given by Proposition 1 are consistent with
the equivalent conditions of regularity for Vδ(F) determined in [12] (cf. Corollary 2.15
and Remarks 3.22, 3.25).

What stated up to now suggests that the equivalence given by Theorems 1, 2 and
by Proposition 1 more deeply resides in the fact that the theory of Severi varieties of
nodal sections Vδ(F) on X can be rephrased in terms of “classical” Severi varieties of
irreducible, singular divisors on PX(F). Indeed, denote by

Rδ(OP(1)) := {Gs ∈ |OP(1)| s.t. [s] ∈ Vδ(F)}
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the schemes parametrizing families of expected codimension δ in |OP(1)|, whose ele-
ments are irreducible divisors with only δ rational double points as singularities and
which correspond to irreducible, nodal curves on X given by zero-loci of global sections
of F . For brevity sake, these are called Pδ(F)-Severi varieties (cf. Definition 4.1 and
formula (4.3)).

We remark that, by the (s,Gs)-Severi correspondence, if [s] ∈ Vδ(F) then the
corresponding divisor Gs is irreducible. Conversely, given an arbitrary irreducible
divisor Gs ⊂ P with δ-rational double points as the only singularities, take s the
corresponding global section of F ; even if we assume that C = V (s) is of codimension
two in X and with only δ nodes as singularities, it does not follow that C is necessarily
irreducible. We discuss some examples in Remark 3.12 which show that the (s,Gs)-
Severi correspondence is not one-to-one and which motivate the above definition of
Pδ(F)-Severi varieties.

We first prove:

Theorem 3 (cf. Theorem 4.5 and Corollary 4.19)

Let [Gs] ∈ Rδ(OP(1)) on P and let Σ1 be the zero-dimensional scheme of the

δ-rational double points of Gs ⊂ P. Then

T[Gs]

(
Rδ

(
OP(1))

) ∼=
H0(JΣ1/P ⊗OP(1))

〈Gs〉
.

In particular,

[Gs] ∈ Rδ(OP(1)) is a regular point ⇔ [s] ∈ Vδ(F) is a regular point.

Finally, we deduce regularity results for Pδ(F)-Severi varieties Rδ(OP(1)) on P;
indeed, thanks to the (s,Gs)-Severi correspondence and to regularity results of Vδ(F)
in [12], we state:

Theorem 4 (cf. Theorem 5.1)

Let X be a smooth projective threefold, E be a globally generated rank-two vector

bundle on X, M be a very ample line bundle on X and k ≥ 0 and δ > 0 be integers.

Let P := PX(E ⊗M⊗k) and OP(1) be its tautological line bundle. If

(∗) δ ≤ k + 1,

then Rδ(OP(1)) on P are regular at each point.

The upper-bounds in (∗) are shown to be almost sharp (cf. Remark 5.3).
The above result highlights once more the fundamental role of the (s,GS)-Severi

correspondence. Indeed, if one considers the Pδ(F)-Severi varieties independently
from the corresponding varieties Vδ(F) on X, the regularity condition for a point of
Rδ(OP(1)) is equivalent to the separation of suitable zero-dimensional schemes by the
linear system |OP(1)| on the fourfold P (cf. Corollary 4.19). In general, it is well-
known how difficult is to establish when a linear system separates points in projective
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varieties of dimension greater than or equal to three (cf. e.g. [1], [9] and [17]). In some
cases, some separation results can be found by using technical tools like multiplier
ideals as well as the Nadel and the Kawamata-Viehweg vanishing theorems (see, e.g.
[8], for an overview). In our situation, thanks to the correspondence between Vδ(F)
on X and Rδ(OP(1)) on P, we deduce regularity conditions for Rδ(OP(1)) from those
already obtained for Vδ(F) in [12].

The paper consists of five sections. Section 1 contains some general terminology
and notation.

In Section 2 we briefly remind some fundamental definitions and results of [12],
not only for the reader convenience but mainly because some tools are frequently used
in the whole paper. The aim of Section 3 is to study in more details the (s,Gs)-Severi
correspondence. We consider several important geometric consequences of this corre-
spondence (cf. e.g. Theorem 3.1, Propositions 3.14, 3.19) as well as the equivalence of
some of these consequences with the approach used in [2].

In Section 4 we focus on Pδ(F)-Severi varieties; we give a description of tangent
spaces at points of such schemes as well as we find conditions for their regularity (cf.
Theorem 4.5 and Corollary 4.19). Section 5 contains some almost-sharp upper-bounds
on δ which imply the regularity of Rδ(OP(1)) on P.
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1. Notation and Preliminaries

We work in the category of algebraic C-schemes. Y is a m-fold if it is a reduced,
irreducible and non-singular scheme of finite type and of dimension m. If m = 1, then
Y is a (smooth) curve; m = 2, 3 and 4 are the cases of a (non-singular) surface, threefold
and fourfold, respectively. If Z is a closed subscheme of a scheme Y , JZ/Y denotes the
ideal sheaf of Z in Y , NZ/Y the normal sheaf of Z in Y whereas N∨

Z/Y
∼= JZ/Y /J 2

Z/Y

is the conormal sheaf of Z in Y . As usual, hi(Y, −) := dim Hi(Y, −).
Given Y a projective scheme, ωY denotes its dualizing sheaf. When Y is a smooth

variety, then ωY coincides with its canonical bundle and KY denotes a canonical divisor
s.t. ωY ∼= OY (KY ); furthermore, TY denotes its tangent bundle.
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If D is a reduced, irreducible curve, pa(D) = h1(OD) denotes its arithmetic genus,
whereas g(D) = pg(D) denotes its geometric genus, the arithmetic genus of its nor-
malization.

Let Y be a projective m-fold and E be a rank-r vector bundle on Y ; ci(E) denotes
the ith-Chern class of E , 1 ≤ i ≤ r. As in [16] - Section II.7 - PY (E) denotes the
projective space bundle on Y , defined as Proj(Sym(E)). There is a surjection π∗(E) →
OPY (E)(1), where OPY (E)(1) is the tautological line bundle on PY (E) and where π :
PY (E) → Y is the natural projection morphism.

For non reminded terminology, the reader is referred to [3], [13] and [16]. We now
briefly recall some definitions and results which will be frequently used in what follows.

Let X be a smooth projective threefold and F a rank-two vector bundle on X. If
F is globally generated on X, it is not restrictive if from now on we assume that the
zero-locus V (s) of its general global section s is a smooth, irreducible curve D = Ds in
X (for details, see [12]; for general motivations and backgrounds, the reader is referred
to e.g. [19] and to [24], Chapter IV).

From now on, denote by L ∈ Pic(X) the line bundle given by c1(F). Thus, by
the Koszul sequence of (F , s):

(1.1) 0 → OX → F → JD ⊗ L → 0,

we compute the geometric genus of D = V (s) in terms of the invariants of F and of
X. Precisely

(1.2) 2g(D) − 2 = 2pa(D) − 2 = deg(L ⊗ ωX ⊗OD).

Thus, if e.g. X = P
3 and if we put ci = ci(F) ∈ Z, we have

deg(D) = c2 and g(D) = pa(D) =
1
2
(c2(c1 − 4)) + 1,

i.e. D is subcanonical of level (c1 − 4).
Take now P(H0(X,F)); from our assumptions on F , the general point of this

projective space parametrizes a global section whose zero-locus is a smooth, irreducible
curve in X. Given a positive integer δ ≤ pa(D), one consider the subset

Vδ(F) :={[s] ∈ P(H0(X,F)) | Cs := V (s) ⊂ X is irreducible

with only δ nodes as singularities} ;(1.3)

therefore, any element of Vδ(F) determines a curve in X whose arithmetic genus pa(Cs)
is given by (1.2) and whose geometric genus is g = pa(Cs)− δ. We recall that Vδ(F) is
a locally closed subscheme of the projective space P(H0(X,F)); it is usually called the
Severi variety of global sections of F whose zero-loci are irreducible, δ-nodal curves
in X (cf. [2], for X = P

3, and [12] in general). This is because such schemes are
the natural generalization of the (classical) Severi varieties of irreducible and δ-nodal
curves in linear systems on smooth, projective surfaces (see [5], [4], [7], [11], [14], [15],
[21], [22] and [23], just to mention a few).
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For brevity sake, we shall usually refer to Vδ(F) as the Severi variety of irreducible,
δ-nodal sections of F on X.

First possible questions on such Severi varieties are about their dimensions as well
as their smoothness properties. A preliminary estimate is given by the following result:

Proposition 1.4

Let X be a smooth projective threefold, F a globally generated rank-two vector

bundle on X and δ a positive integer. Then

expdim(Vδ(F)) =

{
h0(X,F) − 1 − δ, if δ ≤ h0(X,F) − 1 = dim

(
P(H0(F))

)
,

−1, if δ ≥ h0(X,F).

Proof. See Proposition 2.10 in [12]. �

Assumption 1. From now on, given X and F as in Proposition 1.4, we shall always
assume Vδ(F) �= ∅. We write [s] ∈ Vδ(F) to intend that the global section s ∈
H0(X,F) determines the corresponding point [s] of the scheme Vδ(F). We simply
denote by C (instead of Cs) its zero-locus, when it is clear from the context that we
focus on s. We finally consider δ ≤ min{h0(X,F) − 1, pa(C)}, the latter is because
we want C = V (s) to be irreducible, for any [s] ∈ Vδ(F).

By Proposition 1.4, it is natural to state the following:

Definition 1.5. Let [s] ∈ Vδ(F), with δ ≤ min{h0(X,F) − 1, pa(C)}. Then [s] is
said to be a regular point of Vδ(F) if:

(i) [s] ∈ Vδ(F) is a smooth point, and
(ii) dim[s](Vδ(F)) = expdim(Vδ(F)) = dim

(
P(H0(X,F))

)
− δ.

Vδ(F) is said to be regular if it is regular at each point.

In [12] we presented a cohomological description of the tangent space T[s](Vδ(F))
which allowed us to find several sufficient conditions for the regularity of Severi varieties
Vδ(F) on X (cf. Theorems 4.5, 5.9, 5.25, 5.28 and 5.36 in [12]).

One of the aim of this paper is to study in more details the deep geometric
meaning of this cohomological description of T[s](Vδ(F)) and its several connections
(not investigated in [12]) with families of other singular geometric objects related to
X and to F .

To do this, we first have to recall some results which are the starting point of our
analysis.

2. The (s,Gs)-Severi correspondence

In this section we want to briefly recall the correspondence given in [12] between
elements of Vδ(F) on X and suitable singular divisors on the projective space bundle
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P := PX(F), which is a fourfold ruled over X. This will be called the (s,Gs)-Severi
correspondence, as in Definition 2.2.

From now on, with conditions as in Assumption 1, let [s] ∈ Vδ(F). Then, in [12]
we proved:

Theorem 2.1 (cf. Theorem 3.4 (i) in [12])
Let X be a smooth projective threefold. Let F be a globally generated rank-two

vector bundle on X and δ a positive integer. Consider [s] ∈ Vδ(F) and let C = V (s) ⊂
X. Denote by Σ the set of nodes of C.
Let

P := PX(F) π−→ X

be the projective space bundle together with its natural projection π on X and denote
by OP(1) its tautological line bundle.

Then, [s] ∈ Vδ(F) corresponds to a divisor Gs ∈ |OP(1)| which contains the δ
fibres Lpi = π−1(pi) ⊂ P, where pi ∈ Σ for 1 ≤ i ≤ δ.

Furthermore, there exists a zero-dimensional subscheme Σ1 ⊂ Gs of length δ,
which is a set of δ rational double points of Gs and each fibre Lpi contains only one of
the points of Σ1, for 1 ≤ i ≤ δ.

Proof. For complete details, the reader is referred to the proof of Theorem 3.4 (i) in
[12]. �

For brevity sake, we give the following:

Definition 2.2. With notation and assumptions as in Theorem 2.1, let Λ = π−1(Σ) =⋃δ
i=1 Lpi . Then, the elements [s] ∈ Vδ(F) and Gs ∈ |JΛ/P ⊗ OP(1)| are said to form

a (s,Gs)-Severi correspondence.

The terminology of “Severi correspondence” will be further motivated by Defini-
tion 4.1, Theorems 3.1 and 5.1 and Corollary 4.19.

Another result of [12] which is useful to remind is the following:

Proposition 2.3 (cf. Theorem 3.4 (ii) in [12])
With assumptions and notation as in Theorem 2.1, denote by JΣ1/P the ideal

sheaf of Σ1 in P. Consider the subsheaf of F defined by

(2.4) FΣ := π∗(JΣ1/P ⊗OP(1)).

Then,

(2.5)
H0(X,FΣ)

〈s〉
∼= T[s](Vδ(F)) ⊂ T[s]

(
P(H0(F))

) ∼= H0(X,F)
〈s〉 ,

i.e. global sections of FΣ (modulo the one-dimensional subspace 〈s〉) parametrize
equisingular first-order deformations of [s]. In particular, for ε ∈ C[T ]/(T 2) s.t. ε2 = 0,
we have:

(2.6) s + εs′ ∈ T[s](Vδ(F)) ⇔ s′ ∈ H0(X,FΣ) ⇔ Gs′ ∈ |JΣ1/P ⊗OP(1)|,

where Gs′ is the divisor in P corresponding to s′.
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Proof. The reader is referred to the proof of Theorem 3.4 (ii) in [12]. �

Remark 2.7. As in [12], one can show that FΣ fits in the exact diagram:

(2.8)

0 0

↓ ↓

0 → JC/X ⊗F ∼=→ JC/X ⊗F → 0

↓ ↓ ↓

0 → FΣ → F → OΣ → 0

↓ ↓ ↓∼=

0 → N ′
C → F|C → T 1

C → 0

↓ ↓ ↓

0 0 0

where T 1
C is the first cotangent sheaf of C (for details, see [20]) and where N ′

C is the
equisingular sheaf defined as the kernel of the natural surjection

(2.9) 0 → N ′
C → NC/X → T 1

C → 0,

(see, for example, [22]). Recall also that, since C = V (s) and since it is nodal, then
NC/X ∼= F|C and T 1

C
∼= OΣ.

By the second row of (2.8) one can consider the map

(2.10) H0(X,F)
µX−→H0(X,OΣ),

which is not defined by evaluating the global sections of F at Σ (indeed FΣ has rank
one at each node). Its geometric meaning is given by the local description of the exact
sequence

(2.11) 0 → FΣ → F → OΣ → 0.

If p ∈ Σ, take Up ⊂ X an analytical neighbourhood of p with local coordinates x =
(x1, x2, x3) such that x(p) = (0, 0, 0). If s ∈ H0(X,F) is such that s|Up

= (f1, f2)
then, as in [2] for X = P

3, one can consider its Jacobian map

(2.12) TUp
|C
J(s|Up )
−→ NC/Up

→ T 1
C ,

which is given by:

(2.13) J(s|Up
) :=




∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3


 .
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Since in our case [s] ∈ Vδ(F), by (2.13) one easily sees that µX is the composition of
the evaluation at p of global sections of F followed by the projection

C
2
(p)

π1→ C(p),

where C
2
(p)

∼= F ⊗Op, C(p)
∼= T 1

C,p and π1((x, y)) = x (for more details, cf. § 3 in [12]).

On the other hand, by the (s,Gs)-Severi correspondence, one can also consider
the standard evaluation map at Σ1 of tautological divisors on P, which will be denoted
by

(2.14) H0(P,OP(1))
ρP−→ H0(P,OΣ1).

In [12], we deduced the following result which will play a fundamental role in § 5 (cf.
Corollary 4.19 and Theorem 5.1).

Corollary 2.15 (cf. Corollary 3.9 in [12])
From (2.8), it follows that

[s] ∈ Vδ(F) is regular ⇔ H0(X,F)
µX→→ H0(X,OΣ)

⇔ H0(P,OP(1))
ρP→→ H0(P,OΣ1).(2.16)

Proof. The equivalence of µX and ρP easily follows from the (s,Gs)-Severi corres-
pondence (see also § 3 in [12]). Formula (2.16) directly follows from Proposition 1.4,
Theorem 2.1 and Proposition 2.3. �

3. Connection among various singular subschemes of X and of P

The aim of this section is to study in more details the (s,Gs)-Severi correspondence of
Definition 2.2, introduced in [12] and briefly recalled in the previous section. We con-
sider several important geometric consequences of this correspondence. In particular,
we show that the local analytical computations introduced in [2] are equivalent via the
(s,Gs)-correspondence to those using the divisorial approach in [12] (cf. Remarks 3.11,
3.21 and Propositions 3.14, 3.19).

We start with the following result, which determines a converse of the approach
introduced in [12]. Indeed, we more generally prove:

Theorem 3.1

Let X be a smooth projective threefold. Let F be a globally generated rank-two

vector bundle on X.

Let P := PX(F) be the projective space bundle, OP(1) its tautological line bundle

and π the natural projection onto X. Let Gs ∈ |OP(1)| be a divisor and let s ∈
H0(X,F) be the global section corresponding to Gs. Let C := V (s) and assume that

C is a curve (not necessarily irreducible) on X. Thus:

(i) Gs is singular at a point p1 ∈ P if, and only if, C is singular at the point p ∈ C,

which is uniquely determined by the fact that p1 ∈ Lp = π−1(p).
(ii) In particular, p is a node for C if, and only if, p1 is a rational double point for Gs.
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Proof. (i) Let p1 ∈ Gs and let p ∈ X such that p1 ∈ Lp = π−1(p) ⊂ P. Let U = Up be
an analytical neighbourhood of p in X where F trivializes and whose local coordinates
are x = (x1, x2, x3). If s|U = (f1, f2), by definition of projective space bundle, the
local equation of Gs in π−1(U) is

(3.2) F (x1, x2, x3, u, v) := uf1 + vf2,

where [u, v] are local homogeneous coordinates on the fibres over U . Therefore, p1 ∈
π−1(U) is singular for Gs if, and only if, there exists a solution of

(3.3) F =
∂F

∂x1
=

∂F

∂x2
=

∂F

∂x3
=

∂F

∂u
=

∂F

∂v
= 0.

Observe that (3.3) gives:

uf1 + vf2 =
∂f1

∂x1
u +

∂f2

∂x1
v =

∂f1

∂x2
u +

∂f2

∂x2
v

=
∂f1

∂x3
u +

∂f2

∂x3
v = f1 = f2 = 0.(3.4)

The last two equations of (3.4) imply that a singular point of Gs must be on the π-fibre
over a point of the locus C = V (s) ⊂ X. This means that p ∈ U ∩ C; let L = Lp be
its fibre.

We can restrict the system (3.4) to L (by a little abuse of notation, we shall always
denote by [u, v] the homogeneous coordinates on L). We thus get:

(3.5)
∂f1

∂x1
(p)u +

∂f2

∂x1
(p)v =

∂f1

∂x2
(p)u +

∂f2

∂x2
(p)v =

∂f1

∂x3
(p)u +

∂f2

∂x3
(p)v = 0.

Therefore, there exists a solution [u, v] ∈ L ∼= P
1 if, and only if, the system (3.5) has

rank less than or equal to one. This is equivalent to saying that

(3.6)
( ∂f1

∂x1
(p),

∂f1

∂x2
(p),

∂f1

∂x3
(p)

)
= λ

( ∂f2

∂x1
(p),

∂f2

∂x2
(p),

∂f2

∂x3
(p)

)
,

for some λ ∈ C
∗, i.e.

(3.7) rank(J(s|U )(p)) ≤ 1,

with J(s|U ) as in (2.13). This is equivalent to the fact that p ∈ Sing(C). Furthermore,
by the above computations and by the definition of projective space bundle, one sees
that the point p1 ∈ Lp has homogeneous coordinates:

[u, v] =
[
− ∂f2

∂x1
(p),

∂f1

∂x1
(p)

]
=

[
− ∂f2

∂x2
(p),

∂f1

∂x2
(p)

]
=

[
− ∂f2

∂x3
(p),

∂f1

∂x3
(p)

]
= [−λ, 1](3.8)

(when they make sense).
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(ii) (⇒) As in Theorem 2.1 (cf. Theorem 3.4 (i) in [12]), the claim follows from the
fact that locally analytically s|U = (x1x2, x3), since a node is a planar singularity.
(⇐) One can use part (i) above and the fact that, in suitable local analytical coordi-
nates, a rational double point of a threefold is always locally given by {x1x2+x3t = 0},
where (x1, x2, x3, t) are coordinates in A

4. Thus, the local equation of Gs in π−1(U) =
U × P

1 is given by

(3.9) ux1x2 + vx3 = 0,

where [u, v] are the homogeneous coordinates of the fibres over U and t = v
u . Then s

is locally analytically given by

(3.10) s|Up = (x1x2, x3),

so one can conclude. �

Remark 3.11. Observe first that, from (3.2), it easily follows that the multiplicity of
Gs at the point p1 along the π-fibre Lp increases when C = V (s) has multiplicity worse
than two at p.

When, in particular, p is a node one can give some geometrical characterizations
of the singular point p1 ∈ Lp in terms of s. Indeed, since p is a node then C = V (s) is
a local complete intersection so NC/X is locally free of rank two on C. By (2.12) and
(2.13), one observes that in this case Im(J(s|U )) does not generate the whole vector
space V := (OC,p/mp)⊕2 given by elements in NC/X,p not vanishing at p; in fact, if
s|U := (f1, f2), then Im(J(s|U )) generates the one-dimensional subspace:

W :=

{
v ∈ C

2 | v ∈
〈 ∂f1

∂x1
(p),

∂f2

∂x1
(p)

〉}
,

where 〈 ∂f1

∂x1
(p),

∂f2

∂x1
(p)

〉
=

〈 ∂f1

∂x2
(p),

∂f2

∂x2
(p)

〉
=

〈 ∂f1

∂x3
(p),

∂f2

∂x3
(p)

〉
.

By definition of PX(F), the points of the fibre Lp are in one-to-one correspondence
with the one-dimensional quotients of V . In our case, the singular point p1 corresponds
to the quotient V/W which exactly gives (3.8). The singularity of Gs depends on the
fact that the tangent planes at p to the (local) surfaces given by V (f1) and V (f2) in
U , respectively, are not transverse. In fact, these tangent planes coincide, as it follows
from (3.6), so that the curve section C = V (s) has not a unique tangent line.

To conclude, observe that the singular points of Gs move on P as [s] moves in
Vδ(F). When [s], [s′] ∈ Vδ(F) are such that C = V (s) and C ′ = V (s′) have a node at
the same point p ∈ X, then the singular points p1 and q1 of Gs and Gs′ , respectively,
are points on the same fibre Lp; in the other case, p1 and q1 belong to distinct π-fibres.

Remark 3.12. It is important to observe that the (s,Gs)-Severi correspondence is not
a one-to-one correspondence. Indeed, for a given [s] ∈ Vδ(F) the corresponding Gs is
irreducible. Conversely, given an arbitrary irreducible divisor Gs ⊂ P with δ-rational
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double points as the only singularities, take s the corresponding global section of F .
Even if we assume that C = V (s) is in codimension two in X and with only δ nodes
as singularities, it is not true that C is necessarily irreducible.

Indeed, take X = P
3 and F = OP3(2) ⊕ OP3(2). Take Q1, Q2 ⊂ P

3 two smooth
quadrics given by quadratic polynomials qi, 1 ≤ i ≤ 2, respectively. We can choose
the qi’s in such a way that Q1 ∩ Q2 is a divisor C = Γ + L on e.g. Q1, where
Γ is a twisted cubic of type (2, 1) on Q1 whereas L is of type (0, 1) on Q1. Since
s = (q1, q2) ∈ H0(P3,F) and since ΓL = 2, then C = V (s) is a 2-nodal curve in P

3

which is reducible. Thus, from (1.3), it follows that [s] ∈| V2(F).
On the other hand, if we take P = Proj(Sym(F)), the above section s ∈ H0(X,F)

comes from a divisor Gs ∈ |OP(1)| which is irreducible. To see this, we first observe
that from the exact sequence

0 → OP(−1) → OP → OGs
→ 0

it follows that Gs is connected. Since Gs is a divisor in P with only 2 rational double
points as singularities, by dimension count it is also irreducible.

The previous remark motivates Definition 4.1 given in Section 4, where we shall
consider the theory of Severi varieties of nodal sections Vδ(F) on X in terms of “clas-
sical” Severi varieties of irreducible divisors on PX(F) with δ-rational double points.

Another important consequence of the (s,Gs)-Severi correspondence is that we
can determine several interesting geometric interpretations of first-order deformations
given by sections in H0(X,FΣ) via the divisorial approach of Theorems 2.1 and 3.1. To
start with, let [s] ∈ Vδ(F), C = V (s), Σ = Sing(C). Denote by L := c1(F) ∈ Pic(X).

By (1.1), one has:

(3.13) T[s](Vδ(F)) ⊂ T[s]

(
P(H0(X,F))

) ∼= H0(X,F)
H0(X,OX)

↪→ H0(X,JC/X ⊗ L).

Therefore, as proved in Proposition 2.3 in [2] for the case X = P
3 and via another

approach, first-order deformations of [s] in the Severi variety Vδ(F) can be related to
suitable divisors of |L| on X and containing C.

Precisely, we have:

Proposition 3.14

Let X be a smooth projective threefold, F a globally generated rank-two vector

bundle on X and L = c1(F). Let δ be a positive integer, [s] ∈ Vδ(F) and C = V (s)
be the corresponding irreducible, nodal curve in X. Denote by Σ the set of nodes of

C. Let FΣ be as in (2.4). Then:

(i) s′ ∈ H0(X,FΣ) \ 〈s〉 if, and only if, V (s ∧ s′) is a divisor in |JC/X ⊗ L| which is

singular along Σ.

(ii) The singularities of V (s ∧ s′) are along Σ and along the (possibly empty) inter-

section scheme C ∩ V (s′).
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Proof. (i) This point has already been proved in [2] for X = P
3 and via another

approach. Here we give our proof which uses the (s,Gs)-Severi correspondence. Let
p ∈ Σ be a node of C and let U = Up be an analytical neighbourhood of X containing
p. Let s′ ∈ H0(X,FΣ) \ 〈s〉 and assume that

s|U = (f1, f2), s′|U = (g1, g2), fi, gi ∈ OX(U), 1 ≤ i ≤ 2,

are the local analytical expression of s and s′ in U .
⇒) Denote by mp the maximal ideal of the point p in the stalk OX,p. Since by
assumption [s] ∈ Vδ(F) and p ∈ Σ, we can assume that the reduction of s in F ⊗
(mp/m

2
p) is (1, 0). This means that if we consider homogeneous coordinates [u, v] on

the π-fibre Lp ∼= P
1 over p, the corresponding rational double point p1 for Gs on Lp has

coordinates [0, 1] on such a line. Since by assumption s′ ∈ H0(FΣ) \ 〈s〉, in particular
Gs′ is a divisor distinct from Gs and which passes through p1 = [0, 1]. Therefore,
we can assume that the reduction of s′ in F ⊗ (OX,p/mp) is (a, 0). If a = 0, this
means that Gs′ contains Lp; otherwise, as in (3.9), the local equation of Gs′ is given
by {au = 0}, so that the intersection point between Gs′ and Lp is indeed p1 = [0, 1].

In any case, we have that g2 ∈ mp and g1 = a + j1, where j1 ∈ mp. Analogously,
we have that f1 ∈ mp and f2 ∈ m2

p. Therefore,

(3.15) det
(

f1 f2

a + j1 g2

)
= f1g2 − f2(a + j1) ∈ m2

p.

On the other hand, since s′ ∈ H0(X,F) \ 〈s〉, then V (s ∧ s′) corresponds to a
divisor in |L| containing C = V (s) whose local equation in U is given by

(3.16) f1g2 − f2g1 = 0.

By (3.15), it follows that V (s ∧ s′) is singular at each node of C.
⇐) Fix (x1, x2, x3) local analytical coordinates in U . Since p ∈ C = V (s), then

(3.17)
∂

∂xi
(f1g2 − g1f2)(p) = g1(p)

∂f2

∂xi
(p) − g2(p)

∂f1

∂xi
(p), 1 ≤ i ≤ 3

holds. Since V (s ∧ s′) is a singular divisor along Σ by assumption, from (3.16) and
(3.17) it follows that either s′ passes through p or s′(p) is proportional to each pair:

(3.18)
(∂f1

∂xi
(p),

∂f2

∂xi
(p)

)
, 1 ≤ i ≤ 3.

In the former case, we have that Gs′ ∈ |JLp/P ⊗OP(1)|, where Lp is the π-fibre over
p ∈ Σ; in the latter case, by the very definition of FΣ and by (2.11), (2.12) we have
that Gs′ ∈ |Jp1 ⊗OP(1)|, where p1 ∈ Σ1 is the corresponding point to p ∈ Σ. In any
case, Gs′ passes through p1.

If we globalize this approach, in both cases, Gs′ passes through Σ1. By (2.4) and
by the fact that V (s ∧ s′) is a divisor, it follows that s′ ∈ H0(X,FΣ) \ 〈s〉.
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(ii) Assume that q ∈ C \ Σ and that s′(q) �= (0, 0); in this case, after part (i), if (3,17)
is equal to 0 at q, for each 1 ≤ i ≤ 3, we would have that (g1(q), g2(q)) is linear
dependent on each pair in (3.18). In particular, the three pairs in (3.18) would be
linearly dependent. This is a contradiction; indeed, since q ∈ C \Σ, the Jacobian map
in (2.12) is surjective at q, i.e. T 1

C,q = 0. On the other hand, since NC/X,q ∼= O⊕2
C,q,

then we must have that two of the three pairs in (3.18) are linearly independent at q.
This implies that V (s ∧ s′) cannot be singular outside Σ ∪ (C ∩ V (s′)). On the

other hand, in the other cases - i.e. either q ∈ Σ or q ∈ (C ∩ V (s′)) or both - it is easy
to observe that (3.17) always vanishes at q, so that V (s ∧ s′) is singular at each such
point. �

This shows that the local computations on X for divisors V (s∧ s′), introduced in
[2], are equivalent via the (s,Gs)-Severi correspondence to the local computations on
P introduced in Theorem 2.1 and Proposition 2.3.

Furthermore, we remark that surfaces in X given by V (s ∧ s′), with [s] ∈ Vδ(F)
and s′ ∈ H0(X,FΣ) \ 〈s〉, are certainly singular along Σ if the zero-locus V (s′) passes
there. However, they can be also singular along Σ even if V (s′) does not pass there; this
happens when each equation on the right-hand side of (3.17) vanishes, since C = V (s)
is singular along Σ.

To sum up, we have:

Proposition 3.19

By using notation and assumptions as in Theorem 2.1 and in Proposition 2.3, the

following conditions are equivalent:

(i) s′ ∈ H0(X,FΣ) \ 〈s〉;
(ii) V (s ∧ s′) ⊂ X is a surface which contains C and which is singular along Σ;

(iii) the divisor Gs′ passes through Σ1

(iv) the surface Ss,s′ := Gs ∩Gs′ ⊂ P is singular along Σ1;

Proof. Some of the implications are already proven:

(i) ⇔ (ii): see Proposition 3.14, (i).

(ii) ⇔ (iii): Let s′ ∈ H0(X,F)\〈s〉 and let p ∈ Σ. Take U an analytical neighbourhood
of p and assume that s′|U = (g1, g2), for some g1, g2 ∈ OX(U) so that the local equation
of Gs′ in π−1(U) is ug1 + vg2 = 0 (cf. e.g. (3.2)). Two cases can occur. If s′(p) = 0,
then also Gs′ contains the fibre Lp and there is nothing to prove. In the other case,
Gs′ passes through the singular point of Gs along L ( i.e. [−λ, 1] as in (3.8)) if, and
only if,

(3.20) [−g2(p), g1(p)] = [−λ, 1].

This means that [−g2(p), g1(p)] is a solution of the system (3.5), which is equivalent
to the fact that each equation on the right-hand side of (3.17) vanishes; by Proposi-
tion 3.14, this is equivalent to the fact that the surface V (s ∧ s′) is singular at p.

(iii) ⇔ (iv): trivial consequence of the fact that Gs is always singular at Σ1 by
Theorem 2.1. �
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We observe some differences between the approaches on X and on P given by the
(s,Gs)-Severi correspondence.

Remark 3.21. We observed above that V (s∧s′), with s′ ∈ H0(X,FΣ), is singular along
Σ if either V (s′) contains it or not. From the correspondence between V (s∧s′) and Ss,s′
we see that in the former case the surface Ss,s′ has to contain Λ = π−1(Σ) =

⋃δ
i=1 Lpi ,

whereas in the latter, Ss,s′ has to pass through the point p1
i ∈ Lpi , 1 ≤ i ≤ δ, which

is singular for Gs so - a fortiori - for Ss,s′ . In any case, differently from V (s ∧ s′), the
surface Ss,s′ always contains Σ1 and dominates V (s ∧ s′). In particular, if s′ is the
general section in H0(X,FΣ) \ 〈s〉 such that V (s′) ∩ C = ∅ then, by the Zariski Main
Theorem, Ss,s′ is isomorphic via π to the normal surface V (s ∧ s′).

Remark 3.22. By using the (s,Gs)-Severi correspondence, one can better understand
the fact that the inclusion JΣ/X ⊗F ⊆ FΣ is proper, as it follows from

(3.23) 0 → JΣ/X ⊗F → F → F ⊗OΣ
∼= O⊕2

Σ → 0

and from (2.11). Indeed, by (2.4), the general section s′ ∈ H0(X,FΣ) corresponds to a
divisor Gs′ in |OP(1)| which simply passes through the scheme Σ1 of δ rational double
points of the divisor Gs ∈ |OP(1)|. From (3.17), we observe that among elements
in H0(X,FΣ) there are global sections s∗ ∈ H0(X,JΣ/X ⊗ F). Any of this section
determines a divisor Gs∗ ∈ |JΛ/P ⊗ OP(1)|, where Λ =

⋃
pi∈Σ Lpi . In this case, we

have

(3.24) 0 → JΛ/P ⊗OP(1) → OP(1) → OP(1) ⊗OΛ
∼=

δ⊕
i=1

OLpi
(1) → 0,

where Σ = {p1, . . . , pδ}. Since OLpi
(1) ∼= OP1(1), for each 1 ≤ i ≤ δ, it is clear that

|JΛ/P ⊗OP(1)| is properly contained in |JΣ1/P ⊗OP(1)|. Therefore, |JΛ/P ⊗OP(1)|
has expected codimension equal to 2δ in |OP(1)|.

For completeness sake, we conclude by observing that the subsheaf JC/X⊗F ⊂ FΣ

gives global sections which are related in the (s,Gs)-Severi correspondence to divisors
in |JF/P ⊗ OP(1)|, where F := Proj(Sym(F|C)) = P

1
C is a singular, ruled surface

contained in P with π-fibres over the base curve C.

Remark 3.25. To conclude this section, we observe that Propositions 2.3 and 3.19 give
several distinct but equivalent characterizations of tangent vectors to Vδ(F) at [s].
These conditions are consistent with those of regularity in Corollary 2.15.

Recall that the map ρP in (2.16) is a standard restriction map. Therefore, |OP(1)|
does not separate Σ1 if, and only if, each divisor in |OP(1)| passing through all but one
point p1

j of Σ1 passes also through the point p1
j , for some 1 ≤ j ≤ δ. By Theorems 2.1

and 3.19 and by Proposition 2.3, this happens if, and only if, for each [s] ∈ Vδ(F) and
for each s′ ∈ H0(X,FΣ), the surface Ss,s′ = Gs ∩ Gs′ which is singular along all but
one point p1

j of Σ1 is singular also at the remaining point p1
j , for some 1 ≤ j ≤ δ. This

happens if, and only if, for each [s] ∈ Vδ(F) and for each s′ ∈ H0(X,FΣ), the surface
V (s ∧ s′) ⊂ X which is singular along all but one point pj of Σ is singular also at
the remaining point pj , for some 1 ≤ j ≤ δ; this is equivalent to the non-surjectivity
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of the map µX , since the section s′ ∈ H0(X,F) which vanishes in the composition
F →→ F|C →→ OΣ\{pj} also vanishes in the composition F →→ F|C →→ O{pj}.

4. Pδ(F)-Severi varieties of singular divisors on P

What showed up to now suggests that the equivalences given by Theorems 2.1, 3.1
for geometric singular loci, by Propositions 2.3, 3.19 for tangent vectors and by Corol-
lary 2.15 for vector space maps reside in a more deep geometric equivalence of families
of singular objects. Indeed, as we shall prove in Corollary 4.19 and Theorem 5.1, the
procedure introduced in [12] and recalled in § 2 rephrases Severi varieties of nodal
sections Vδ(F) on X in terms of “classical” Severi varieties of some singular divisors
on smooth ruled fourfolds. This, once more, motivates the terminology introduced
in Definition 2.2 and highlights the rich geometry which is behind the (s,Gs)-Severi
correspondence.

By taking into account Theorem 3.1 and Remark 3.12, we give the following:

Definition 4.1. With notation as in Assumption 1 and Theorem 2.1, consider the
scheme

(4.2) Rδ(OP(1)) := {Gs ∈ |OP(1)| s.t. [s] ∈ Vδ(F)}.

For any F and δ, these schemes parametrize families of divisors in the tautological
linear system |OP(1)| which are irreducible, with δ rational double points as the only
singularities and which are related to elements in Vδ(F). For brevity sake, these will
be called Pδ(F)-Severi varieties.

From now on, we shall always consider Rδ(OP(1)) �= ∅. It is clear that:

(4.3) expdim(Rδ(OP(1))) = dim(|OP(1)|) − δ;

indeed, imposing a rational double point gives at most 5 conditions on |OP(1)|; each
such point varies on any of the π-fibre over X.

As in Definition 1.5, from (4.3) it is natural to give the following:

Definition 4.4. Let [Gs] ∈ Rδ(OP(1)). Then [Gs] is said to be a regular point of
Rδ(OP(1)) if:

(i) [Gs] ∈ Rδ(OP(1)) is a smooth point, and
(ii) dim[Gs](Rδ(OP(1))) = expdim(Rδ(OP(1))) = dim(|OP(1)|) − δ.

The Pδ(F)-Severi variety Rδ(OP(1)) is said to be regular if it is regular at each
point.

As in Theorem 2.1, in order to find regularity conditions it is crucial to give a
description of the tangent space at a point [Gs] to the given Pδ(F)-Severi variety
Rδ(OP(1)).



Equivalence of families of singular schemes on threefolds and on ruled fourfolds 55

Theorem 4.5

Let [Gs] ∈ Rδ(OP(1)) on P and let Σ1 be the zero-dimensional scheme of the

δ-rational double points of Gs ⊂ P. Then:

(4.6) T[Gs]

(
Rδ(OP(1))

) ∼=
H0(JΣ1/P ⊗OP(1))

〈Gs〉
.

In particular, if ε ∈ C[T ]/(T 2) is such that ε2 = 0, then:

Gs + ε Gr ∈ T[Gs](Rδ(OP(1)) ⇔ Gr ∈ |JΣ1/P ⊗OP(1))|.

Proof. The divisor Gs ⊂ P, related to the point [Gs] ∈ Rδ(OP(1)), corresponds
to a section [s] ∈ Vδ(F) on X. Therefore, if p ∈ Σ = Sing(C) is a node and if
U ⊂ X is an analytical neighbourhood containing p, then the local equation of Gs in
π−1(U) ∼= U × P

1 is given by ux1x2 + vx3 = 0 (cf. formula (3.9) and the proof of
Theorem 3.4 (i) in [12]).

In the open chart where v �= 0, Gs is smooth whereas, in the open chart where
u �= 0, the local equation of Gs is

(4.7) Gs = V (x1x2 + x3t),

where t = v
u and (x1, x2, x3, t) coordinates in A

4.
We can consider the Jacobian map of Gs in this A

4. This is given by:

TA4|Gs

JGs−→ NGs/A4

∂/∂x1 −→ x2

∂/∂x2 −→ x1

∂/∂x3 −→ t

∂/∂t −→ x3,

where NGs/A4 is locally free of rank one on Gs. It is then clear that JGs
is surjective

except at the origin 0 ∈ A
4, i.e. at the singularity of Gs in U . By local analytical

computations, we get:

(4.8) coker(JGs) ∼=
C[[x1, x2, x3, t]]/(x1x2 + x3t)

(x1, x2, x3, t)
∼= C;

Globally speaking, given Gs ⊂ P whose singular scheme is Σ1, we have the exact
sequence of sheaves on Gs:

(4.9) TP|Gs

JGs→NGs/P → T 1
Gs

→ 0,

where T 1
Gs

is a sky-scraper sheaf supported on Σ1 and of rank one at each point of Σ1

by (4.8).
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As in (2.9) for nodal curves, denote by N ′
Gs

the image of JGs in (4.9). This
is the equisingular sheaf, whose global sections parametrize equisingular first-order
deformations of Gs in P. From (4.8) and from the fact that NGs/P is locally free of
rank-one, it follows that

(4.10) N ′
Gs

∼= mp1 , for all p1 ∈ Σ1,

where mp1 ⊂ OGs,p1 is the maximal ideal of p1 ∈ Gs.
On the other hand, one can consider the standard diagram:

(4.11)

0 0 0

↓ ↓ ↓

0 → OP
· Gs→ JΣ1/P ⊗OP(1) → JΣ1/Gs

⊗OGs
(1) → 0

|| ↓ ↓

0 → OP
· Gs→ OP(1) → OGs

(1) → 0

↓ ↓ ↓

0 → OΣ1
∼=→ OΣ1 → 0

↓ ↓

0 0

by (4.10) and (4.11), we get that there is an injection

(4.12)
H0(P,JΣ1/P ⊗OP(1))

H0(P,OP)
↪→ H0(Gs,N ′

Gs
),

which is an isomorphism when P (equivalently X) is regular, i.e. h1(P,OP) = 0.
Therefore, the vector space on the left-hand-side of (4.12) actually parametrizes equi-
singular first-order deformations of Gs in |OP(1)|. �
Remark 4.13. Recall that when one studies classical Severi varieties of irreducible,
δ-nodal curves on a smooth projective surface, there is also a parametric approach for
equisingular first-order deformations (cf., e.g [4] and [22]).

Precisely, let S be an arbitrary smooth, projective surface, |OS(D)| a complete
linear system on S, whose general element is assumed to be a smooth and irre-
ducible curve. One considers the Severi variety V|OS(D)|,δ, for any δ ≤ pa(D), which
parametrizes reduced, irreducible curves in |OS(D)| having δ-nodes as the only singu-
larities. If [C] ∈ V|OS(D)|,δ, this point corresponds to a curve C ∼ D on S, such that
N := Sing(C) ⊂ S is the 0-dimensional scheme of its δ nodes; one can consider:

(4.14)

C̃ ⊂ S̃

↓ ϕN ↓ µN

C ⊂ S
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where

• µN is the blow-up of S along N ,
• ϕN is the normalization of C,
• C̃ is a smooth, irreducible curve of (geometric) genus g = g(C̃) = pa(D) − δ.

It is a standard result that T[C](V|OS(D)|, δ) ∼= H0(S, JN/S(D))

〈C〉 is isomorphic to a
(proper) subspace of H0(NϕN

), where NϕN
is the normal bundle to the map ϕN which

is the line bundle on C̃ defined by:

0 → TC̃ → ϕ∗(TS) → NϕN
→ 0.

It is well-known that H0(C̃,NϕN
) parametrizes equisingular first-order deformations

of C in S and that the subspace T[C](V|OS(D)|, δ), parametrizing equisingular first-order
deformations of C in |OS(D)|, coincides with the whole vector space when e.g. S is a
regular surface.

On the other hand, for irreducible nodal curves on surfaces, the parametric ap-
proach coincides with the Cartesian approach, which makes use of the equisingular
sheaf N ′

C defined as in (2.9). Indeed, in the surface case, one has N ′
C
∼= ϕ∗(NϕN

) (cf.
e.g. [22]).

Therefore, if in particular S is e.g. regular one has

(4.15) T[C](V|OS(D)|, δ) ∼= H0(C,N ′
C) ∼= H0(C̃,NϕN

).

The same does not occur for divisors in P which are elements of Rδ(OP(1)), even if
we assume for simplicity that X (and so P) is regular, i.e. h1(X,OX) = 0.

Indeed, let
µΣ1 : P̃ → P and ϕΣ1 : G̃s → Gs

be the blow-up of P along Σ1 and the desingularization of Gs, respectively. The map
ϕΣ1 is induced by µΣ1 as it follows by using a diagram similar to (4.14) and by the
fact that Σ1 is a scheme of ordinary double points for Gs. Let B := Σδi=1Ei be the
µΣ1-exceptional divisor. Thus,

µ∗
Σ1(Gs) = G̃s + 2B, µ∗

Σ1(KP) = KP̃ − 3B.

By the exact sequence:

0 → TG̃s
→ ϕ∗

Σ1(TP) → NϕΣ1 → 0

and by the adjunction formula on P̃, we get that:

(4.16) NϕΣ1
∼= OG̃s

(µ∗
Σ1(Gs) + B).

Tensoring by OG̃s
(µ∗

Σ1(Gs) + B) the exact sequence

0 → OP̃(−µ∗
Σ1(Gs) + 2B) → OP̃ → OG̃s

→ 0,
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we get
0 → OP̃(3B) → OP̃(µ∗

Σ1(Gs) + B) → NϕΣ1 → 0.

By Fujita’s Lemma (see e.g. [18], Lemma 1-3-2) and by the fact that B is effective and
µΣ1-exceptional, we get:

H0(OP̃(µ∗
Σ1(Gs) + B)) ∼= H0(OP(1)) and Hi(OP̃(3B)) ∼= Hi(OP), ∀ i ≥ 0.

By the regularity of X, we have H1(P,OP) = (0). Therefore, we have

(4.17) H0(NϕΣ1 ) ∼= H0(P,OP(1))
H0(P,OP)

= H0(Gs,OGs
(1)).

On the other hand, from the regularity assumption of X, (4.12) is an isomorphism,
so H0(N ′

Gs
) ∼= H0(JΣ1/Gs

⊗ OGs
(1)). Thus, by (4.6) and by (4.17), differently from

(4.15) in this case we have:

(4.18) T[Gs]

(
Rδ(OP(1))

) ∼= H0(Gs,N ′
Gs

) ⊂ H0(G̃s,NϕΣ1 ).

In particular, first-order deformations given by general vectors in H0(NϕΣ1 ) are not
equisingular.

To conclude the section, let ρP be as in (2.14). Then, from Theorem 4.5, it
immediately follows:

Corollary 4.19

With assumptions and notation as in Theorem 4.5, we have:

[Gs] ∈ Rδ(OP(1)) is a regular point ⇔ ρP is surjective

⇔ [s] ∈ Vδ(F) is a regular point

(in the sense of Definition 1.5).

Proof. The first equivalence is a direct consequence of (4.3) and Theorem 4.5. The
other follows from Corollary 2.15. �

5. Some uniform regularity results for Vδ(F) and Rδ(OP(1))

In this section we deduce regularity results for Pδ(F)-Severi varieties Rδ(OP(1)) of
irreducible divisors in |OP(1)| on P. By using a similar approach for regularity results
in [12] for Severi varieties Vδ(F) on X, we find upper-bounds on the number δ which
ensure the regularity of Rδ(OP(1)); these upper-bounds are shown to be almost sharp
(cf. Remark 5.3).

This approach highlights once more the importance of the (s,GS)-Severi corre-
spondence. Indeed, if one considers the Pδ(F)-Severi varieties independently from the
corresponding varieties Vδ(F) on X, the regularity condition for a point of Rδ(OP(1))
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is equivalent to the separation of suitable zero-dimensional schemes by the linear sys-
tem |OP(1)| on the fourfold P (cf. Corollary 4.19). In general, it is well-known how
difficult is to establish when a linear system separates points in projective varieties of
dimension greater than or equal to three (cf. e.g. [1], [9] and [17]). In some cases,
some separation results can be found by using technical tools like multiplier ideals as
well as the Nadel and the Kawamata-Viehweg vanishing theorems (see, e.g. [8], for an
overview). In our situation, thanks to the correspondence between Vδ(F) on X and
Rδ(OP(1)) on P, we deduce regularity conditions for Rδ(OP(1)) from those already
obtained for Vδ(F) in [12].

From now on, let X be a smooth projective threefold, E a globally generated
rank-two vector bundle and M a very ample line bundle on X; let k ≥ 0 and δ > 0 be
integers. With notation and assumptions as in Section 1, we shall always take

F = E ⊗M⊗k

and consider the scheme Vδ(E ⊗M⊗k) on X.
One can use for Rδ(OP(1)) the same approach of Theorem 4.5 in [12], where

we considered the more particular case of X ⊂ P
r and M = OX(1) and where we

determined conditions on E and on k and uniform upper-bounds on the number of
nodes δ implying that each point of Vδ(E ⊗M⊗k) is regular.

Theorem 5.1

Let X be a smooth projective threefold, E a globally generated rank-two vector

bundle on X, M a very ample line bundle on X and k ≥ 0 and δ > 0 integers.

Let P := PX(E ⊗M⊗k) and let OP(1) be its tautological line bundle. Let Rδ(OP(1))
be the Pδ(F)-Severi variety of irreducible divisors having δ-rational double points on

P. Then, if:

(5.2) δ ≤ k + 1,

Rδ(OP(1)) is regular.

Proof. One observes that (5.2) is a sufficient condition for the regularity of Vδ(E⊗M⊗k)
on X; the proof is analogous to that of Theorem 4.5 in [12], where the case X ⊂ P

r and
M = OX(1) has been considered. Then, one can conclude by using Corollary 4.19. �

Remark 5.3. Observe that the bound (5.2) is uniform, i.e. it does not depend on the
postulation of either the rational double points of divisors in Rδ(OP(1)) or the nodes
of the curves which are zero-loci of sections parametrized by Vδ(E ⊗M⊗k).

Furthermore, in [12] we observed that the bound δ ≤ k + 1 is effective and almost
sharp. Indeed, as introduced in [2] for the asymptotic case, one can easily construct
examples of non-regular points [s] ∈ Vk+4(OP3(k + 1) ⊕ OP3(k + 4)), for any k ≥ 3,
whose corresponding curve C has its (k + 4) nodes lying on a line L ⊂ P

3; anyhow,
one can also show that Vk+4(OP3(k + 1) ⊕OP3(k + 4)) is generically regular.
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