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Abstract

A unified approach to prove isoperimetric inequalities for moments and basic in-
equalities of interpolation spaces L(p, q) is developed. Instead symmetrization
methods we use a monotonicity property of special Stiltjes’ means

1. Introduction

We consider q-moments as Lebesgue integral over a compact set Ω ⊂ R
n(n ≥ 1)

In(q) =
∫

Ω

|x|q−nf(x)dx (q > 0).

We also study Stiltjes integral from the theory of multinomial distributions (see [10])

Pn(q) =
∫ x1

0

dψq
1(y1)

∫ x2

0

dψq
2(y2)...

∫ xn

0

h(y)ϕq(y)dψq
n(yn),

where xk > 0(k = 1, 2, ..., n), y = (y1, y2, ..., yn) and ψk are absolutely continuous and
strictly increasing functions with the condition ψk(0) = 0.

The q-moments play an important role in different branches of mathematics and
physics (see [1], [3], [7], [9], [14]).
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The aim of this paper is to compare In(q1) with In(q2), and Pn(q1) with Pn(q2)
if 0 < q1 < q2 < ∞. There are several results of this kind. The first one is the
isoperimetric inequality

( ∫
Ω

dx
)1+2/n

∫
Ω

|x|2dx
≤

( ∫
|x|≤1

dx
)1+2/n

∫
|x|≤1

|x|2dx
, (1)

which is proved by Pólya and Szegö [13] for n = 2. For n = 3 Bandle [2] established a
generalization of (1) for I3(5) with bounded f(x) ≥ 0.

The second result is an inequality by Stein ([15], [16]) for norms in the interpolation
spaces L(p, q): If ϕ(t) ≥ 0 and ϕ(t) is nonincreasing in (0,∞), p > 0 and 0 < q1 ≤
q2 ≤ ∞ then the following sharp inequality holds

(
q1
p

∫ ∞

0

[t1/pϕ(t)]q1
dt

t

)1/q1

≥
(
q2
p

∫ ∞

0

[t1/pϕ(t)]q2
dt

t

)1/q2

. (2)

We present here a new unified approach to prove inequalities (1) and (2) and their
nontrivial generalizations. Namely, we prove two generalizations of (2) for Pn(q) (see
Theorem 1 and Theorem 3, below). In contrast with (2) we obtain

(
q1
p

∫ ∞

0

[t1/pϕ(t)]q1h(t)
dt

t

)1/q1

≤
(
q2
p

∫ ∞

0

[t1/pϕ(t)]q2h(t)
dt

t

)1/q2

(3)

provided 0 ≤ h(t) ≤ 1, ϕ(t) ≥ 0, ϕ(t) is nondecreasing in (0,∞), p > 0 and 0 < q1 ≤
q2 ≤ ∞.

We also show that the integral means

m(q) =
(

q

ωn−1

∫
Ω

|x|q−nf(x)dx
)1/q

is nondecreasing as function in q ∈ (0,∞) if 0 ≤ f(x) ≤ 1 (see Theorem 2 below).
Here ωn−1 = 2πn/2/Γ(n/2) is the (n− 1)-dimensional area of the unit sphere |x| = 1.
Note that m(q) does not depend on q if Ω is a ball B(0, ρ) and f(x) = 1 in B(0, ρ).

The monotonicity of m(q) generates (1) and some new isoperimetric inequalities
for the quantity

V =
∫

Ω

f(x)dx.

In particular, we obtain the following isoperimetric inequalities:

(
V

cn

)(n+2)/n

≤ 1 + 2/n
cn

∫
Ω

|x|2f(x)dx, (4)

V log
V

cn
≤ V + n

∫
Ω

f(x) log |x|dx, (5)
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F.p.

∫
Ω

|x− a|−nf(x)dx ≤ f(a)cn log
V

f(a)cn
(6)

where F.p. means “Finite part” of the singular integral [8], and cn = ωn−1/n is the
volume of the unit ball |x| ≤ 1 in R

n. For (6) we suppose that f is a nonnegative
function which satisfies the Hölder condition |f(x) − f(y)| ≤ C|x− y|α (x, y ∈ Ω) for
some α > 0 and a ∈ Ω \ ∂Ω such that f(a) = maxx∈Ω f(x) > 0.

2. Main results and their applications

Theorem 1

Suppose that h(y) is nondecreasing with respect to yk ∈ [0, xk] for k = 2, ..., n and

ϕ(y) is nondecreasing with respect to yk ∈ [0, xk] for k = 1, 2, ..., n. If 0 < q1 < q2 ≤ ∞,

0 ≤ h(y) ≤ 1, ϕ ≥ 0 then the sharp inequality

P 1/q1
n (q1) ≤ P 1/q2

n (q2) (7)

is valid.

Proof. First we consider the case n = 1. We have to prove that

(∫ x

0

h(t)ϕq1(t)dψq1(t)
)1/q1

≤
(∫ x

0

h(t)ϕq2(t)dψq2(t)
)1/q2

, (8)

if 0 ≤ h(t) ≤ 1 and 0 ≤ ϕ(t1) ≤ ϕ(t) for all t1 and t such that 0 ≤ t1 ≤ t ≤ x.
Let Φ(u) = uq2/q1(u > 0), and let

Fi(t) =
∫ t

0

h(τ)ϕqi(τ)dψqi(τ) (i = 1, 2, 0 ≤ t ≤ x).

We have

F1(t) ≤ ϕq1(t)
∫ t

0

dψq1(τ) = [ϕ(t)ψ(t)]q1 , 0 ≤ t ≤ x. (9)

Using (9) and the convexity of Φ(u) one has

Φ′(F1(t)) ≤ Φ′(ϕq1(t)ψq1(t)) =
q2
q1

[ϕ(t)ψ(t)]q2−q1 , 0 ≤ t ≤ x.

Thus,
Φ′(F1(t))F ′

1(t) ≤ F ′
2(t), 0 ≤ t ≤ x. (10)

Integrating (10) we get
Φ(F1(x)) ≤ F2(x),

which is the inequality (8).
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It is clear that equality in (8) holds if and only if equality holds in (10) for almost
all t ∈ [0, x]. We now suppose that F1(x) > 0. Therefore there exists α ∈ (0, x] such
that

α = inf
{
t ∈ (0, x] :

∫ x

t

h(τ)ϕq1(τ)dψq1(τ) = 0
}
. (11)

On the other hand, using (11) and the equality Φ′(F1(t))F ′
1(t) = F ′

2(t) a.e. in [0, x] we
obtain

[F1(t) − ϕ(t)q1ψq1(t)]h(t)ϕ(t) = 0 a.e. in [0, α]. (12)

Let us remark that ϕ(t) 
≡ 0 in (0, α). Consequently there are t ∈ (0, α) with
ϕ(t) > 0. If 0 ≤ ϕ(t1) < ϕ(t2) for some 0 < t1 < t2 < α, and t ∈ (t2, α), then
ϕ(t1) < ϕ(t) and

F1(t) ≤ ϕq1(t)ψq1(t1) + ϕq1(t)[ψq1(t) − ψq1(t1)] < [ϕ(t)ψ(t)]q1 . (13)

From (12) and (13) one has h(t) = 0 a.e. in [t2, α] in contradiction with (11). Thus,
ϕ(t) = c = const > 0, t ∈ (0, α). Consequently, (12) is equivalent to the equality

[∫ t

0

h(τ)dψq1(τ) − ψq1(t)
]
h(t) = 0 a.e. in [0, α]. (14)

If h(t) 
= 1 a.e. in [0, α] then there exists t3 ∈ (0, α) such that

∫ t

0

h(τ)dψq1(τ) < ψq1(t), t ∈ (t3, α).

So, h(t) = 0 a.e. in (t3, α) because (14). This contradicts (11). Thus, h(t) =
1 a.e. in [0, α]. Therefore equality in (8) holds if and only if h(t)ϕ(t) = 0 a.e. in
[0, x] or h(t)ϕ(t) = 0 a.e. in [α, x], ϕ(t) = const > 0 and h(t) = 1 a.e. in (0, α).

This completes the proof for n = 1.
To prove Theorem 1 for n ≥ 2 we apply mathematical induction on n. Suppose

that Theorem 1 is true for dimensions 1, 2, ..., n− 1. We can write

Pn(q) =
∫ xn

0

Pn−1(yn, q)dψq
n(yn),

where

Pn−1(yn, q) =
∫ xn−1

0

dψq
n−1(yn−1)...

∫ x1

0

h(y1, ..., yn)ϕq(y1, y2, ..., yn)dψq
1(y1).

For fixed yn ∈ [0, xn] by induction hypothesis

Pn−1(yn, q1) ≤ P
q1/q2
n−1 (yn, q2). (15)

The function ϕ∗(t) := P
1/q2
n−1 (t, q2) is nondecreasing for t ∈ [0, xn], and by (15)

Pn(q1) ≤
∫ xn

0

ϕq1
∗ (yn)dψq1

n (yn). (16)
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Applying to (16) the inequality (8) with h(t) = 1 we obtain

Pn(q1) ≤
(∫ xn

0

ϕq2
∗ (yn)dψq2

n (yn)
)q1/q2

=
(∫ xn

0

Pn−1(yn, q2)dψq2
n (yn)

)q1/q2

= P q1/q2
n (q2),

which is the desired inequality (7). �
Note that equality in (7) occurs if ϕ(y) = const > 0 and h(y) = 1 a.e. in

Iα = [0, α1] × ...× [0, αn] ⊂ Ix = [0, x1] × ...× [0, xn] and h(y) = 0 a.e. in Ix \ Iα.

Theorem 2
Let Ω be a compact set in R

n(n ≥ 1), mes(Ω) > 0. If 0 < f(x) ≤ 1 in Ω and
0 < q1 < q2 ≤ ∞ then

(
q1

ωn−1

∫
Ω

|x|q1−nf(x)dx
)1/q1

≤
(

q2
ωn−1

∫
Ω

|x|q2−nf(x)dx
)1/q2

. (17)

Equality in (17) occurs if and only if f(x) = 1 a.e. in Ω and Ω is a ball B(0, ρ) up to
a set of Lebesgue measure zero.

Proof. Let x = |x|ω, |x| = t, dx = tn−1dtdω. By Fubini theorem

m(q) :=
(

q

ωn−1

∫
Ω

|x|q−nf(x)dx
)1/q

=
(∫ ρ

0

h(t)dtq
)1/q

, (18)

where ρ = ||x||L∞(Ω) and

h(t) =
1

ωn−1

∫
|x|=t

f(x)χΩ(x)dω.

It is clear that (17) is a consequence of (8), and h(t) = 1 a.e. in [0, ρ] if and only if
χΩ(tω) = 1 for almost all t ∈ [0, ρ] and f(x) = 1 a.e. in Ω.

There is another way to investigate the case of equality in (17). If 0 < q1 < q2 ≤ ∞
and m(q1) = m(q2) then m(q) = m0 = const for q1 ≤ q ≤ q2. Since m(q) is analytic
with respect to q in some neighbourhood of {q : 0 < q < ∞} then, by the uniqueness
theorem for analytic functions, m(q) = m0 for each q ∈ (0,∞). Therefore,

m(1) =
1

ωn−1

∫
Ω

|x|1−nf(x)dx = lim
q→∞

m(q) = ||x||L∞(Ω) = ρ.

On the other hand, mes[Ω \ B(0, ρ)] = 0 and m(1) < ρ, if f(x) 
= 1 a.e. in Ω and
mes(Ω) > 0 or mes(B(0, ρ) \ Ω) > 0. This completes the proof of Theorem 2. �

Theorem 3
Suppose that h(y) is nonincreasing with respect to yk ∈ [0, xk] for k = 2, ..., n and

ϕ(y) is nonincreasing with respect to yk ∈ [0, xk] for k = 1, 2, ..., n. If 0 < q1 < q2 ≤ ∞,
h(y) ≥ 1, then the sharp inequality

P 1/q1
n (q1) ≥ P 1/q2

n (q2) (19)

is valid.
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Proof. Proof of Theorem 3 follows the proof of Theorem 1 with inequalities opposite
to (9), (10), (15) and (16).

It is clear that equality in (19) occurs if ϕ(y) = const > 0 and h(y) = 1 a.e. in
Iα ⊂ Ix and ϕ(y) = 0 in Ix \ Iα. �

The inequalities (7) and (19) can be used to get some entropy type inequalities.
Consider the case related to (19). Suppose that h and ϕ satisfy the assumptions of
Theorem 3. The inequality (19) implies that

dP 1/q
n (q)
dq

|q=1 ≤ 0.

Straightforward computations show that this is equivalent to the inequality

Pn(1) logPn(1) ≥ nPn(1)

+
∫ x1

0

dψ1(y1)
∫ x2

0

dψ2(y2)...
∫ xn

0

hϕ log(ϕψ1...ψn)dψn(yn),

where
Pn(1) =

∫ x1

0

dψ1(y1)
∫ x2

0

dψ2(y2)...
∫ xn

0

hϕdψn(yn).

The last inequality is well-defined by the entropy theory convention 0 log 0 = 0.
We now deduce the inequalities (2), (3), (4), (5) and (6). Inequality (2) is a

particular case of Theorem 3 for n = 1, h(t) = 1, x1 = ∞ and ψ(t) = t1/p.
We obtain inequality (3) as the case n = 1, x1 = ∞, ψ(t) = t1/p of Theorem 1.

Letting q1 = n and q2 = n+2 in Theorem 2 we have inequality (4). By straightforward
computations for the function m(q) from (18) we get

q2m′(q) = −[m(q)]q log[m(q)]q + [m(q)]q

+
q2

ωn−1

∫
Ω

|x|q−nf(x) log |x|dx.

The inequality (17) implies m′(q) ≥ 0 and (5) is equivalent to the inequality m′(q) ≥ 0
at the point q = n.

To prove inequality (6) without loss of generality we can assume that a = 0
and f(a) = 1. First of all, let us remark that Theorem 2 implies that there exists
limq→0+ m(q).

Since Ω is a compact set then there exists ρ > 0 such that Ω ⊂ B(0, ρ). Hence

q

ωn−1

∫
Ω

|x|q−nf(x)dx ≤ q

ωn−1

∫
Ω

|x|q−ndx

≤ q

ωn−1

∫
B(0,ρ)

|x|q−ndx = ρq.

Thus,

lim sup
q→0

q

ωn−1

∫
Ω

|x|q−nf(x)dx ≤ 1.



Comparison theorems of isoperimetric type for moments of compact sets 7

Analogously it is easy to show that

lim inf
q→0

q

ωn−1

∫
Ω

|x|q−nf(x)dx ≥ 1.

Therefore,
q

ωn−1

∫
Ω

|x|q−nf(x)dx → 1 as q → 0,

which implies

lim
q→0

(
q

ωn−1

∫
Ω

|x|q−nf(x)dx
)1/q

= exp lim
q→0

[
1

ωn−1

∫
Ω

|x|q−nf(x)dx− 1
q

]
.

Since 0 ∈ Ω \ ∂Ω then there exists r > 0 such that B(0, r) ⊂ Ω. Further, we have

1
ωn−1

∫
Ω

|x|q−nf(x)dx− 1
q

=
1

ωn−1

∫
Ω\B(0,r)

|x|q−nf(x)dx

+
1

ωn−1

∫
B(0,r)

|x|q−n(f(x) − 1)dx +
rq − 1

q
.

Since f is an α-Hölder function then there exists

lim
q→0

1
ωn−1

∫
B(0,r)

|x|q−n(f(x) − 1)dx

=
1

ωn−1

∫
B(0,r)

|x|−n(f(x) − 1)dx → 0 as r → 0.

Therefore,

lim
q→0

[
1

ωn−1

∫
Ω

|x|q−nf(x)dx− 1
q

]
=

1
ωn−1

∫
Ω\B(0,r)

|x|−nf(x)dx

+
1

ωn−1

∫
B(0,r)

|x|−n(f(x) − 1)dx− log
1
r

= lim
r→0

1
ωn−1

∫
Ω\B(0,r)

|x|−nf(x)dx− log
1
r

= F.p.

∫
Ω

|x|−nf(x)dx .

The last equality is a definition of F.p. (see [8]). Consequently, the inequality (6)
follows from Theorem 2 for q1 = 0+ and q2 = n.

If n ≥ 2 then Theorem 1 implies that the quantity

zn(q) =
(
qn

∫ x1

0

...

∫ xn

0

yq−1
1 ...yq−1

n h(y1, ..., yn)dy1...dyn

)1/q
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is nondecreasing provided 0 ≤ h ≤ 1 and h is nondecreasing as function of yk for all k
except one. It is surprising that the only condition 0 ≤ h ≤ 1 is not sufficient for the
monotonicity of zn(q) in the case n ≥ 2. For example, the function

z2(q) =
(
q2

∫ 1

0

∫ 1

0

(xy)q−1h(x, y)dxdy
)1/q

is not monotone for q > 0 if h(x, y) = π
4χ{x2+y2≤1}(x, y), where χΩ denotes the

characteristic function of Ω, or h(x, y) = 1 − xy.

Nevertheless, (7) is valid without assumptions on monotonicity of h if h(y) =
Πhk(yk). Namely, using twice the one-dimensional case of (7) in mathematical induc-
tion on n, we easily obtain:

Proposition 1

Suppose that and ϕ is nondecreasing with respect to yk ∈ [0, xk] for all k =
1, 2, ..., n. If h(y) =

∏n
k=1 hk(yk) and 0 ≤ hk(yk) ≤ 1 for yk ∈ [0, xk] (k = 1, 2, ..., n),

then the inequality (7) holds.

The following generalization of (2) is a particular case of Theorem 3.

Proposition 2

Suppose that h(t) ≥ 1, ϕ(t) ≥ 0 and ϕ(t) is nonincreasing in (0,∞). If p > 0,

0 < q1 ≤ q2 ≤ ∞ then the following sharp inequality holds

(
q1
p

∫ ∞

0

[t1/pϕ(t)]q1h(t)
dt

t

)1/q1

≥
(
q2
p

∫ ∞

0

[t1/pϕ(t)]q2h(t)
dt

t

)1/q2

.

Other generalizations of (2) were established by Bergh [4], Bergh, Burenkov and
Persson [5], [6], Persson and Peĉarić [12], Myasnikov, Persson and Stepanov [11].
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