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Abstract

Let X be a compact Riemann surface and associated to each point pi of a finite
subset S of X is a positive integer mi. Fix an elliptic curve C . To this data
we associate a smooth elliptic surface Z fibered over X . The group C acts on
Z with X as the quotient. It is shown that the space of all vector bundles over
Z equipped with a lift of the action of C is in bijective correspondence with the
space of all parabolic bundles over X with parabolic structure over S and the
parabolic weights at any pi being integral multiples of 1/mi. A vector bundle V
over Z equipped with an action of C is semistable (respectively, polystable) if and
only if the parabolic bundle on X corresponding to V is semistable (respectively,
polystable). This bijective correspondence is extended to the context of principal
bundles.

1. Introduction

Fix an elliptic curve C over C. Given a h-pointed Riemann surface (X, {p1, p2, · · · , ph})
with a positive integer mi for each marked point pi, we construct an elliptic surface Z

fibered over X. For any marked point pi, the inverse image f−1(pi), where f denotes
the projection of Z to X, is C/(Z/miZ). For any nonmarked point, the fiber is a copy
of C. The surface Z is constructed using logarithmic transformation on X × C.

The group C acts on Z with X as the quotient. We consider vector bundles over
Z equipped with a lift of the action of C, and call them orbifold bundles. We note
that the terminology orbifold or orbifold bundle is usually used in the context of finite
group actions. Here the role of the finite group is played by the group C.
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We construct a bijective correspondence between the set of orbifold bundles over
Z and the set of parabolic bundles over X with parabolic structure at the marked
pointed and the weights at each pi being multiples of 1/mi (Theorem 4.4). Given
an orbifold vector bundle E over Z, the corresponding parabolic bundle over X is
constructed using the subsheaves of E that are left invariant by the action of C.

Furthermore, this bijective correspondence takes semistable (respectively, poly-
stable) orbifold bundles exactly to the parabolic semistable (respectively, polystable)
bundles.

Let G be a connected semisimple algebraic group over C. By an orbifold G–bundle
over Z we mean a principal G–bundle over Z equipped with a lift of the action of C.
In [1] parabolic G–bundles were defined.

In Theorem 5.1 we extend this bijective correspondence to principal G–bundle.
Just as for vector bundles, this bijective correspondence preserves semistability and
polystability.

2. Orbifold principal bundles

Fix a lattice Λ := Z+Zτ of C, with the imaginary part of τ being nonzero. Therefore,
C/Λ is an elliptic curve, which we will denote by C.

Let X be a compact Riemann surface and

S := {p1, p2, · · · , ph} ⊂ X

be a finite subset of h distinct points. To each point pi ∈ S, we associate a positive
integer mi. Given this data, we have an elliptic fibration

(1) f : Z −→ X

such that for any point x ∈ X \ S, we have f−1(x) = C, and for any pi ∈ S, the
fiber over pi is the quotient C by its subgroup Z/miZ, or in other words, the reduced
inverse image

(2) f−1(pi)red = C/

(
Z

mi
+ Zτ

)
,

and f−1(pi) = mif
−1(pi)red. The details of this construction of elliptic fibration can

be found in [2, p. 164]. However, we will briefly recall the construction.
To extend the trivial fibration (X \ S) × C over X \ S to X satisfying the above

conditions, it suffices to take a punctured disk around pi and extend the family across
the puncture.

Let D = {z ∈ C
∣∣ |z|2 ≤ 1} be the unit disk and D0 := D\{0} be the punctured

disk. Let D′ be another copy of the disk D and

(3) g : D′ −→ D
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be the map defined by z −→ zmi . Consider the following action of the cyclic group
Z/miZ on D′ × C. For β ∈ Z, the action of β sends any (s , c) to

(4)
(
exp(2π

√
−1β/mi)s , c + β/mi

)
∈ D′ × C .

Since this is a diagonal action and the map g in (3) is invariant for the action on the
factor D′, the quotient

(5) Zpi
:=

D′ × C

Z/miZ

for the action in (4) has a map

(6) fi : Zpi −→ D .

It is easy to see that this extends the trivial fibration D0 × C over D0. This is an
example of a logarithmic transformation. We recall that logarithmic transformations
were introduced by K. Kodaira [7].

From the above construction it is immediate that the condition (2) is satisfied
over 0 and we have f−1

i (0) = mif
−1
i (0)red. For each pi ∈ S, the fibration fi is the

local model for the elliptic fibration f in (1) around the point pi.
The translation action of the group C on itself induces an action of C on any

quotient of it. Since C is abelian, left and right translations coincide. Therefore, C
acts on the fibration Z in (1). So we have a homomorphism

(7) φ : C −→ Aut(Z)

such that the projection f in (1) is invariant for this action of C on Z. For any point
x ∈ X \ S, this action is free and transitive on f−1(x). But for any pi ∈ S, although
the action is transitive on f−1(pi)red, it is not free. More precisely, the subgroup
Z/miZ of C is the kernel. Therefore, we have X = Z/C.

It is easy to see that the surface Z is smooth. Indeed, it is immediate from its local
description given in (6). We will now show that Z is a projective algebraic surface.

Let m be a common multiple of the numbers m1,m2, · · · ,mh. Consider the sub-
group

Γ := Z/mZ ⊂ C

defined using the inclusion of R in C. Taking the quotient of Z by the action of Γ
defined using φ in (7), we obtain a (ramified) Galois covering

(8) g : Z −→ Z/Γ

with Galois group Γ. It is easy to see that Z/Γ = X×(C/Γ). Since Z/Γ is a projective
manifold and the quotient map g is finite, we conclude that Z is algebraic. Indeed, using
a criterion for ampleness [5, p. 65, Proposition 1.2(iv)] and the projection formula, it
follows that for any coherent analytic sheaf F on Z and any ample line bundle L on
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Z/Γ, we have Hi(Z, F
⊗

g∗L⊗k) = 0 for all i > 0 and k sufficiently large. Therefore,
a sufficiently large tensor power of g∗L is very ample, establishing projectivity of Z.

Let G be an algebraic group over C. A principal G–bundle over Z is a complex
manifold P equipped with a free right holomorphic action of G together with a smooth
holomorphic surjective map

(9) γ : P −→ Z

which is invariant for the action of G and P/G = Z [12].
Since Z is algebraic, a G–bundle over Z is an algebraic bundle. An isomorphism

between two such G–bundles P and P ′ is a biholomorphism between P and P ′ that
commutes with the actions of G on P and P ′.

Definition 2.1. An orbifold G–bundle over Z is a principal G–bundle P with a
holomorphic action of C on P satisfying the following two conditions:

1. the action of C on P commutes with the action of G;
2. the map γ in (9) is equivariant for the actions of C on P and Z.

From the above definition it follows immediately that for any c ∈ C, the auto-
morphism of P defined by the action of c is a G–bundle isomorphism between P and
the pullback bundle φ(c)∗P , where φ is defined in (7).

If we set G = GL(n,C), then using the standard representation of GL(n,C), an
orbifold GL(n,C)–bundle over Z gets identified with a holomorphic vector bundle over
Z of rank n equipped with a lift of the action of C. An orbifold GL(n,C)–bundle will
also be called an orbifold vector bundle.

In the next two sections we will identify orbifold vector bundles over Z with
parabolic vector bundles over X.

3. Parabolic bundle associated to an orbifold bundle

Let V be an orbifold vector bundle of rank n over Z. Take any point x ∈ X \S. Since
the action of C on f−1(x) is free and transitive, the restriction of V to f−1(x) gets
trivialized by the action of C on V

∣∣
f−1(x)

. More precisely, if we fix a point y0 ∈ f−1(x),
then for any point y ∈ f−1(x), the action of C on V identifies the fiber Vy with Vy0 .
So V

∣∣
f−1(x)

gets identified with the trivial vector bundle over f−1(x) with fiber Vy0 .
To understand the restriction of V to f−1(pi)red, where pi ∈ S, we recall the local

description of the fibration f given in (6).
Take any pi ∈ S. Let

(10) gi : D′ × C −→ (D′ × C)/(Z/miZ) = Zpi

be the quotient map in (5). Consider the vector bundle g∗i V over D′ ×C obtained by
pulling back the restriction of V to Zpi

⊂ Z. The pullback of the action of C on V

is an action of C on g∗i V . Since this action descends to the translation action of C on
D′ × C, the restriction of g∗i V to {0} × C ⊂ D′ × C is trivial.
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Since the group of automorphisms of a trivial bundle of rank n over C is GL(n,C),
the action of Z/miZ on (g∗i V )

∣∣
{0}×C

is given by a homomorphism of Z/miZ into
GL(n,C). We consider Cn as a Z/miZ–module using this homomorphism. Now, Cn

decomposes as a direct sum of Z/miZ–modules of dimension one.
Let χ denote the character of Z/miZ defined by

(11) α −→ exp(2π
√
−1α/mi) .

Any character of Z/miZ is of the form χl, where l ∈ [0 ,mi − 1].
Consider the quotient (C ×C)/(Z/miZ) for the diagonal action, where the action

on C is the translation action and the action on C is the one defined by χ (any
t ∈ Z/miZ sends c ∈ C to χ(t)c). This is the line bundle over the base

C/(Z/miZ) = f−1
i (0)red

where fi is defined in (6), associated to the principal Z/miZ–bundle

(12) C −→ C/(Z/miZ)

for the character χ−1. This line bundle is identified with the normal bundle of the
divisor f−1

i (0)red ⊂ D × C.
To see this identification with the normal bundle, first observe that for the action of

C on D′ × C, the induced action on the normal bundle of the (complex) submanifold
{0} × C ⊂ D′ × C is given by the character χ. Now sending the tangent vector
∂
∂z ∈ T0D

′, where z is the coordinate as in (3), to ∂
∂z ∈ T0D we conclude that normal

bundle of {0} × C in D′ × C descends, by the quotient map in (12), to the normal
bundle of f−1

i (0)red = C/(Z/miZ) in D × C.
Therefore, the restriction of the orbifold vector bundle V to the reduced fiber

f−1
i (0)red is identified with a direct sum of the form

(13) V
∣∣
f−1
i

(0)red
=

n⊕
j=1

N ij

where N is the normal bundle of f−1
i (0)red ⊂ D × C and ij ∈ [0 ,mi − 1]. From the

construction of this decomposition it is evident that the decomposition is preserved by
the action of C on V

∣∣
f−1
i

(0)red
.

Note that Nmi is the trivial bundle as the character χ is of order mi. Using the
adjunction formula [4, p. 146], the normal bundle N is identified with the restriction
of the line bundle OZ(f−1

i (0)red) to f−1
i (0)red ⊂ Z.

Given an orbifold vector bundle V of rank n over Z, consider the direct image f∗V
on X for the projection f in (1). Since f∗V is a torsionfree coherent sheaf, it defines
a vector bundle over X. For any x ∈ X, there is a natural homomorphism

(14) (f∗V )x −→ H0
(
f−1(x)red, V

∣∣
f−1(x)red

)
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Since V
∣∣
f−1(x)

is the trivial vector bundle of rank n for any x ∈ X \ S, we conclude
that f∗V is a vector bundle of rank n over X. For any x ∈ X \ S, we have (f∗V )x ∼=
H0(f−1(x), V

∣∣
f−1(x)

).
For any pi ∈ S, using the decomposition (13) it follows that the image of (f∗V )pi

in H0(f−1(pi)red, V
∣∣
f−1(pi)red

) for the homomorphism in (14) coincides with the sub-
space

(15)
⊕

{i∈[1,n]|ij=0}
H0(f−1(pi)red, N ij ) ⊂

n⊕
j=1

H0(f−1(pi)red, N ij ) .

We will show that f∗V has a natural parabolic structure over the divisor S ⊂ X. For
that we first recall from [9], [8] the definition of a parabolic bundle.

Definition 3.1. A parabolic vector bundle on X with parabolic structure over the
divisor S is a vector bundle E over X together with the following data:

1. for each pi ∈ S, there is a filtration

Epi
= F 1

i ⊃ F 2
i ⊃ F 3

i ⊃ · · · ⊃ F li
i ⊃ F li+1

i = 0

known as the quasiparabolic filtration,
2. and a sequence of rational numbers

0 ≤ αi,1 < αi,2 < αi,3 < · · · < αi,li < 1

corresponding to the filtration.

The numbers αi,j are called the parabolic weights.

Let E∗ denote the parabolic bundle defined above. The parabolic degree of E∗ is
defined to be

par-deg(E∗) := degree(E) +
h∑

i=1

li∑
j=1

αi,jni,j

where ni,j = dim(F j
i /F

j+1
i ) [9, Definition 1.11], [8, Definition 1.8].

Let I ⊂ [1 , n] be a subset. The subbundle

⊕
j∈I

N ij ⊂
n⊕

j=1

N ij = V
∣∣
f−1
i

(0)red

over f−1
i (0)red constructed using the decomposition (13) will be denoted by Fi,I . Let

WI,i denote the vector bundle over Z defined by the exact sequence

(16) 0 −→ Wi,I −→ V −→ (V
∣∣
f−1
i

(0)red
)/Fi,I −→ 0

It was noted that the action of C on V preserves the decomposition (13). In particular,
Fi,I is preserved by the action. This immediately implies that the orbifold structure
(i.e., the action of C) on V induces an orbifold structure on Wi,I .
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Note that f∗Wi,I is a subsheaf of f∗V , with the inclusion map obtained from the
inclusion of Wi,I in V in (16). Clearly f∗Wi,I and f∗V coincide over X \ {pi}. The
parabolic structure on f∗V will be constructed using these subsheaves.

The parabolic weights on f∗V at the point pi are {ij/mi}nj=1, where ij are as
in (13). Take any t ∈ {ij/mi}. Set

I := {j ∈ [1 , n]
∣∣ ij ≥ tmi}

The subspace in the quasiparabolic filtration of (f∗V )pi
corresponding to the parabolic

weight t is the image in (f∗V )pi
of (f∗Wi,I)pi

. In other words, the image of the fiber
(f∗Wi,I)pi

in (f∗V )pi
(for the inclusion map of the sheaf f∗Wi,I in f∗V ) is one of the

terms in the quasiparabolic filtration over pi (see Definition 3.1). Furthermore, all
terms in the quasiparabolic filtration over pi arise this way.

Thus we have constructed a vector bundle with parabolic structure from an orb-
ifold bundle. We will denote by V∗ the parabolic bundle constructed from V .

For a projective manifold Y , let CH1(Y ) denote the group of divisors on Y modulo
rational equivalence. Let CH1(Y )Q := CH1(Y )

⊗
Z Q denote the rational Chow group.

For a divisor D, its cycle class in H2(Y, Q) will be denoted by [D]. The first Chern
class is a homomorphism from coherent sheaves on Y to CH1(Y )Q. If we identify
CH1(Y ) with the Picard group of line bundles on Y , then the homomorphism defined
by the first Chern class is simply taking the top exterior power of a coherent sheaf.

Let Z be the elliptic surface constructed in Section 2 using the above mi, 1 ≤ i ≤ h.

Lemma 3.2

For first Chern class c1(V ) ∈ CH1(Z)Q coincides with

f∗c1(f∗V ) +
h∑

i=1

n∑
j=1

ij
mi

f−1(pi) ∈ CH1(Z)Q

where the integers ij are as in (13).

Proof. Consider the canonical homomorphism

ψ : f∗f∗V −→ V

It was noted earlier that for any x ∈ X \ S, the homomorphism in (14) is an iso-
morphism and the restriction V

∣∣
f−1(x)

is trivial. Therefore, ψ is an isomorphism on
f−1(X \ S). Since mif

−1(pi)red = f−1(pi) and f∗c1(W ) = c1(f∗W ) for any vector
bundle W on X, it suffices to show that c1(V/f∗f∗V ) ∈ CH1(Z)Q coincides with∑h

i=1

∑n
j=1 ijf

−1(pi)red.
To calculate the quotient of the homomorphism ψ, we recall the construction in (5)

and (6) of the local model of the fibration f around pi ∈ S.
Since a complex Z/miZ–module of dimension n decomposes as a direct sum of n

one dimensional modules, the question of determining the quotient reduces to the case
of line bundles.
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Consider the character χl of Z/miZ, where χ is defined in (11) and l ∈ [0 ,mi−1].
The group Z/miZ acts on C using the character χl, and it acts on D′×C as the Galois
group for the covering gi defined in (10). The quotient of (D′×C)×C by the diagonal
action of Z/miZ is a line bundle, which we will denote by Ll, over Zpi , the quotient of
D′ × C by Z/miZ as in (5). Consider f∗

i (fi)∗Ll, where fi is the projection as in (6).
It is easy to see that f∗

i (fi)∗Ll is identified with the line bundle OZi
(−lf−1

i (0)red). In
particular, the support of the quotient Ll/f∗

i (fi)∗Ll is lf−1
i (0)red.

The restriction of Ll to f−1
i (0)red is of finite order (the order divides mi). In

particular, the rational Chern class of Ll
∣∣
f−1
i

(0)red
vanishes. Combining this with the

observations in the previous paragraph we conclude that

c1(V/f∗f∗V ) =
h∑

i=1

n∑
j=1

ijf
−1(pi)red

This completes the proof of the lemma. �

The Lemma 3.2 compares the parabolic degree V∗ with the degree of V .
We will construct a polarization on Z. Let γ1 (respectively, γ2) denote the po-

sitive generator of H2(X, Z) (respectively, H2(C/Γ, Z)), where Γ as in (8). Let q1
(respectively, q2) be the projection of Z/Γ = X × (C/Γ) to X (respectively, C/Γ).
Let

(17) ξ := (q1 ◦ g)∗γ1 +
(q2 ◦ g)∗γ2

m
∈ H2(Z, Q)

be the polarization on Z, where g as in (8) and m = #Γ. It is easy to check that the
polarization ξ does not depend on the choice of the common multiple m.

The degree of a coherent sheaf W on Z is defined to be (c1(W ) ∪ ξ) ∩ [Z] ∈ Q.

Corollary 3.3

The degree of an orbifold vector bundle V coincides with the parabolic degree of

the corresponding parabolic bundle V∗.

Proof. From the definition of the polarization ξ it is immediate that for any vector
bundle W on X, the degree of f∗W coincides with the degree of W . Also recall that
mi[f−1(pi)red] = [f−1(x)]. In view of these, comparing Lemma 3.2 with the definition
of parabolic degree of V∗ we immediately conclude that the parabolic degree of V∗
coincides with the degree of V . This completes the proof of the corollary. �

In the next section we will describe the inverse construction, that is, starting with
a parabolic bundle we will construct an orbifold bundle. We will also compare their
semistability conditions.
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4. From parabolic bundle to orbifold bundle

In order to construct an orbifold bundle from a given parabolic on X, we first analyze
further the relationship between V and f∗V , where V is an orbifold vector bundle
over Z.

Note that V is a subsheaf of f∗(OX(S)
⊗

f∗V ). Indeed, this is an immediate
consequence of the observation in the previous section that the support of the quotient
Ll/f∗

i (fi)∗Ll is lf−1
i (0)red. The tensor product of the fiber OX(S)pi with the quasi-

parabolic filtration of the fiber (f∗V )pi defines a filtration of (OX(S)
⊗

f∗V )pi . The
pullback of which induces a filtration of f∗(OX(S)

⊗
f∗V )

∣∣
f−1(pi)

. In terms of this
filtration it is easy to trace the elementary transformations on f∗(OX(S)

⊗
f∗V ) that

give back V . Our next step is to do that.
Let E∗ be a parabolic vector bundle, as in Definition 3.1, of rank n over X with

parabolic structure over S and underlying vector bundle E. We assume that for each
pi ∈ S, the parabolic weights are of the form

(18) αi,j =
λi,j

mi

where λi,j is an integer. Note that the collection {αi,j} do not determine {λi,j ,mi}.
After fixing positive integers ci for pi, we can replace {λi,j ,mi} by {ciλi,j , cimi}.
Given a collection of parabolic weights αi,j , fix {λi,j ,mi} satisfying (18).

For notational simplicity, we will denote E
⊗OX(S) by W . For any pair (i , j),

consider the subspace of the fiber Wpi
defined by F j

i

⊗OX(S)pi
, where F j

i as in
Definition 3.1. Denoting this subspace by W j

i we observe that f∗W j
i is a subbundle

of (f∗W )
∣∣
f−1(pi)

∼= f∗Wpi over f−1(pi).
For notational simplicity, we will denote the divisor (mi − λi,j)f−1(pi)red of Z

by Di,j (recall that αi,j = λi,j/mi). Let W
j

i denote the restriction of f∗W j+1
i to

Di,j (note that Wmi+1
i = 0). Recall that f∗W j

i is a vector bundle over f−1(pi) =
mif

−1(pi)red. So W
j

i is the restriction of this vector bundle to the subscheme Di,j ⊂
f−1(pi).

Now we construct a vector bundle V j
i on X using the exact sequence

(19) 0 −→ V j
i −→ f∗W −→ (f∗W )

∣∣
Di,j

/W
j

i −→ 0

where i ∈ [1 , h] and j ∈ [1 ,mi].
Note that since f∗W is a pullback of a vector bundle on X, it has an obvious

orbifold structure (that is, an action of the elliptic curve C). The subsheaf V j
i is

clearly preserved by this action. Indeed, this is an immediate consequence of the
observation that the action of C on f∗W

∣∣
Di,j

preserves the subbundle W
j

i .
Therefore, the intersection

(20) V :=
⋂
i,j

V j
i

is an orbifold bundle. Note that V and f∗W coincide on Z \ f−1(S).
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It is easy to see that if we set E∗ to be the parabolic bundle constructed in the
previous section from an orbifold bundle V , then V in (20) is canonically isomorphic,
as on orbifold bundle, with V . To prove this it is enough to consider the local model
in (6) around pi ∈ S. Using the decomposition of the Z/miZ–module Cn into a direct
sum of one dimensional modules the problem reduces to the case of a line bundle. Now
it is straight-forward to construct the isomorphism in question using the local model
of V described in the proof of Lemma 3.2 in terms of the character χ.

Also, the parabolic bundle corresponding to V by the construction in the previous
section coincides with E∗. Therefore, these two constructions are inverses of each
other.

From the constructions it is evident that subsheaves of the parabolic bundle E∗
are in one-to-one correspondence with the coherent subsheaves of V left invariant by
the action of C.

We recall that a torsionfree coherent sheaf V on Z is called semistable if for any
coherent subsheaf F of V , the inequality

degree(F )
rank(F )

≤ degree(E)
rank(E)

is valid. If the strict inequality is valid for all F with V/F torsionfree, then V is called
stable. If V is a direct sum of stable sheaves with same degree/rank quotient, then V

is called polystable. We will call an orbifold bundle V on Z to be orbifold semistable if
for any coherent subsheaf F of V left invariant by the action of C, the above inequality
is valid. Similarly, define orbifold stability and orbifold polystability by restricting to
only invariant subsheaves for the action of C.

We recall that a parabolic bundle E∗ is called parabolic semistable if for any sub-
bundle F of the vector bundle underlying E∗, the inequality par-deg(F∗)/rank(F∗) ≤
par-deg(E∗)/rank(E∗) is valid, where F∗ is the parabolic structure induced on F [9,
Definition 1.13(ii)], [8, Definition 1.10(2)]. If the strict inequality is valid for any proper
subbundle F , then E∗ is called parabolic stable. If E∗ is a direct sum of parabolic stable
bundles with same par-deg/rank quotient, then E∗ is called parabolic polystable.

In view of Corollary 3.3 we have the following proposition.

Proposition 4.1

A parabolic bundle E∗ is parabolic semistable (respectively, parabolic stable) if

and only if the corresponding orbifold vector bundle V is orbifold semistable (respec-

tively, orbifold stable). Similarly, E∗ is parabolic polystable if and only if V orbifold

polystable.

The above proposition can be strengthened as follows.

Proposition 4.2

A parabolic bundle is parabolic semistable if and only if the corresponding orbifold

vector bundle is semistable in the usual sense.
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Proof. In view of Proposition 4.1 it suffices to show that an orbifold semistable bundle
is semistable in the usual sense.

If V is a vector bundle which is not semistable, then it has a unique maximal
unstable subsheaf F (the first term in the Harder–Narasimhan filtration) [6, p. 174,
Theorem 7.15]. If V is an orbifold bundle, from the uniqueness of F it follows that
the action of C on V leaves F invariant. Therefore, V cannot be orbifold semistable.
This completes the proof of the proposition. �

Although the corresponding assertion in the context of stable bundles is not valid,
it remains valid for polystable bundles, as shown in the following proposition.

Proposition 4.3

A parabolic bundle is parabolic polystable if and only if the corresponding orbifold

vector bundle is polystable in the usual sense.

Proof. All we need to show is that any orbifold bundle which is orbifold polystable is
actually polystable in the usual sense.

If V is an orbifold bundle which is orbifold polystable, then it follows that V admits
a Hermitian–Yang–Mills connection [13, p. 878, Theorem 1]. Set the group A in [13]
to be C and the Higgs field to be zero. Since C is compact, given any Kähler form
on Z, we can integrate (average) it over all automorphisms of Z given by the action
of C. This average is a Kähler form on Z invariant under the action of C. Now [13,
Theorem 1] says that an orbifold polystable bundle V admits a Hermitian–Yang–Mills
connection which is invariant under the action of C on V .

On the other hand, a vector bundle over Z admits a Hermitian–Yang–Mills con-
nection if and only if it is polystable [3, p. 1, Theorem 1], [13, Theorem 1]. This
completes the proof of the proposition. �

Combining the constructions in Section 3 and in this section, and Propositions
4.2 and 4.3, we have

Theorem 4.4

There is a bijective correspondence between the space of isomorphism classes of

orbifold vector bundles over Z and parabolic bundles over X with parabolic structure

over S satisfying the condition that at each pi ∈ S, the parabolic weights are of

the form λ/mi, where λ ∈ Z. An orbifold vector bundle is semistable (respectively,

polystable) in the usual sense if and only if the corresponding parabolic bundle is

parabolic semistable (respectively, parabolic polystable).

In view of the above theorem it is natural to ask whether a given vector bundle
over Z can admit more than one orbifold structure. The following proposition answers
this negatively.

Proposition 4.5

Let V be a holomorphic vector bundle over Z admitting an orbifold structure.

Then V admits exactly one orbifold structure.
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Proof. Take any x ∈ X \ S. The group C acts freely and transitively on f−1(x) and
the restriction of V to f−1(x) is the trivial bundle.

To prove the proposition it suffices to show that for the trivial vector bundle
W := C × Cn of rank n over C, there is exactly one lift of the translation action of
C on itself to W . The trivial action of C on Cn gives an action of C on W . Using
this action we see that any action of C on W gives a map from C to GL(n,C). More
precisely, fix a point y ∈ C. If we have an action of C on W , then send any z ∈ C to
the isomorphism of the fiber Wy with Wz defined by the action of the (unique) element
in C that sends y to z. But Wz = Cn = Wy. So this isomorphism is an element of
GL(n,C). This defines a holomorphic map µ from C to GL(n,C).

Since GL(n,C) is an affine variety, there is no nonconstant map from C to
GL(n,C). Now, since µ(y) = Id, we conclude that the action of C on W coincides
with the trivial action. This completes the proof of the proposition. �

In the next section we will relate the parabolic analog of principal bundles over
X with the orbifold principal bundles over Z introduced in Section 2.

5. Parabolic principal bundles

Let G be a connected semisimple algebraic group over C. We will recall from [1] the
definition of a parabolic G–bundle.

Let Rep(G) denote the category of all finite dimensional complex left G–modules.
Note that Rep(G) is equipped with the operations of taking dual, direct sum and
tensor product.

Let PVect(X,S) denote the space of parabolic vector bundles over X, of arbitrary
rank, with parabolic structure over the divisor S. This has direct sum operation, tensor
product operation, and the operation of taking dual (see [14]). For any integer N ≥ 2,
let PVect(X,S,N) ⊂ PVect(X,S) be the subset consisting of all parabolic bundles
that have the property that all the parabolic weights are integral multiples of 1/N .
The subset PVect(X,S,N) is closed under all the three operations on PVect(X,S)
mentioned above.

A parabolic G–bundle over X gives a covariant functor F from the category Rep(G)
of left G–modules to the category PVect(X,S) of parabolic bundles compatible with the
operations of taking dual, direct sum and tensor product and satisfying the condition
that there is an integer N such that the image of F is contained in PVect(X,S,N)
(see [1, p. 343, Definition 2.5] for the details).

It should be pointed out that the above definition of a parabolic G–bundle given
in [1] was very much inspired by [10]. The motivation for such a definition can be found
in [10], where usual G–bundles were defined as functor with the above compatibility
properties. Below we very briefly recall this definition of [10].

Nori proves that the collection of principal G–bundles over an irreducible pro-
jective variety M are in bijective correspondence with the collection of C–additive
functors

F : Rep(G) −→ Vect(M) ,
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where Vect(M) denotes the category of vector bundles over M , satisfying the following
properties:

1. The rank of the vector bundle F(V ) coincides with the dimension of the G–module
V .

2. A morphism of vector bundles is said to be strict if the cokernel is also locally
free. Let

f : V −→ W

be a homomorphism of G–modules. Then the corresponding homomorphism of
vector bundles

F(f) : F(V ) −→ F(W )

is strict. In other words, the cokernel of F(f) is locally free. Note that this implies
that both the image and the kernel of F(f) are both locally free.

3. The kernel of the homomorphism F(f) (which is a vector bundle by the previous
condition) coincides with F(kernel(f)) and the cokernel of F(f) coincides with
F(cokernel(f)). The rank of the vector bundle F(V ) coincides with the dimension
of the G–module V .

4. For any two G–modules V and W ,

F(V ⊗W ) = F(V ) ⊗F(W )

and F(V ∗) = F(V )∗. Furthermore, F(C), where C is the trivial G–module, is
the trivial line bundle OM .

5. For any two G–modules V and W , the map

F(Hom(V ,W )) = F(V ∗ ⊗W ) −→ F(V ∗) ⊗F(W ) = Hom(F(V ) ,F(W ))

is injective.

Given such a functor F , there is a G–bundle E, unique up to a unique isomor-
phism, such that F ∼= F(E) [10, p. 34, Proposition 2.9]. For any principal G–bundle
E, consider the functor

F(E) : Rep(G) −→ Vect(M)

that sends a G–module V to the vector bundle

F(E)(V ) := E ×G V :=
E × V

G
,

where the quotient is for the twisted diagonal action of G on E×V . We recall that the
action of any α ∈ G sends a point (y , v) ∈ E × V to (yα , α−1(v)), where α−1(v) ∈ V

is defined using the left G–module structure of V . This functor F(E) has all the above
properties. The bijective correspondence between functors and G–bundles sends the
G–bundle E to this functor F(E).

Let Y be a polarized smooth projective variety. Given a G–bundle EG over Y and
a maximal parabolic subgroup Q of G, let EG(Q) denote a reduction of the structure
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group of EG to Q over an open set U ⊆ X with the property that codim(X −U) ≥ 2.
The principal G–bundle EG is called semistable (respectively, stable) if for every Q and
every such reduction, the line bundle over U associated to EG(Q) for any character
of Q, dominant with respect to a Borel subgroup contained in Q, is of nonpositive
degree (respectively, strictly negative degree) [11, p. 282, Definition 3.7]. Let H ⊂ G

be a maximal reductive subgroup of a parabolic subgroup of G. The principal bundle
EG is called polystable if there is such a H and a reduction of the structure group
EG(H) ⊂ EG (over Y ) of EG to H such that EG(H) is a stable principal H–bundle,
and furthermore, for any character of M the corresponding line bundle associated to
EG(M) is of degree zero [11, p. 285, Definition 3.16], [1, p. 346, Definition 3.1].

A parabolic G–bundle F is called semistable (respectively, polystable) if the image
of the functor is contained is semistable (respectively, polystable) parabolic vector
bundles [1, p. 347, Definition 3.3].

We introduce a couple of notations for the benefit of the exposition. Let M
denote the set of isomorphism classes of parabolic vector bundles over X with parabolic
structure over S such that the parabolic weights at every pi ∈ S are all integral
multiples of 1/mi (the same set in Theorem 4.4). It is easy to see that M is closed
under all the three operations, namely, direct sum, dual and tensor product. Let MG

denote the set of all isomorphism classes of parabolic G–bundles such that the image
of the functor is contained in M.

Theorem 5.1

There is a bijective correspondence between MG and the space of all isomorphism

classes of orbifold G–bundles over Z. An orbifold G–bundle is semistable (respectively,

polystable) in the usual sense if and only if the corresponding parabolic G–bundle is

parabolic semistable (respectively, parabolic polystable).

Proof. The set of all orbifold vector bundles over Z is equipped with the operations of
taking dual, direct sum and tensor product. The bijective correspondence in Theorem
4.4 is actually compatible with these operations. Clearly direct sum of orbifold bundles
over Z corresponds to the direct sum of the corresponding parabolic bundles over X.
For the other two operations, we need to consider the local model given in (5) and in
the proof of Lemma 3.2.

Since a complex Z/miZ–module of dimension n decomposes as a direct sum of n
one dimensional modules, the question reduces (as in Lemma 3.2) to the case of line
bundles (n = 1). But for line bundles, the compatibility of the bijective correspondence
in Theorem 4.4 with the operations of taking dual and tensor product is obvious.

Now the bijective correspondence asserted in the theorem is quite clear. Take
an orbifold G–bundle EG over Z. For any G–module V ∈ Rep(G), consider the
corresponding vector bundle

V := EG ×G V

over Z associated to EG for V . Since the action of C on EG commutes with the action
of G, the vector bundle V is equipped with an action of C. Let V∗ ∈ M denote the
parabolic vector bundle over X associated, by Theorem 4.4, to the orbifold bundle V .



Orbifold bundles and parabolic bundles 307

The earlier observation that the bijective correspondence in Theorem 4.4 is com-
patible with all the three operations imply that the map

F (EG) : Rep(G) −→ M

that sends a G–module V to the parabolic bundle V∗ constructed above defines a
parabolic G–bundle. The other conditions in the definition of a parabolic G–bundle
[1, p. 343, Definition 2.5] are satisfied.

So we have a map from the space of orbifold G–bundles over Z to MG that sends
any EG to the parabolic G–bundle defined by the functor F (EG).

For the converse direction, we start with a parabolic G–bundle over X defined by a
covariant functor F from Rep(G) to M. So, using Theorem 4.4, for any V ∈ Rep(G)
we have an orbifold vector bundle V over Z corresponding to the parabolic bundle
F(V ). Again from the earlier observations we know that this map that sends V to V

is compatible with the three operations.

We know from [10] that such a map defines a principal G–bundle over Z [10, p. 32,
Lemma 2.3]. We need to show that this G–bundle, which we will denote by EG, has
an orbifold structure. Recall that according to Proposition 4.5, the G–bundle EG can
have at most one orbifold structure.

Take a point c ∈ C of the elliptic curve. Consider the automorphism φ(c) ∈
Aut(Z), where φ as in (7). Since V is an orbifold bundle, we are given with an
isomorphism of V with φ(c)∗V . The point to note about this isomorphism is that
it is compatible with the operations of taking dual, direct sum and tensor product.
Indeed, this is an immediate consequence of the earlier observation that the bijective
correspondence in Theorem 4.4 is compatible with these operations. Therefore, we
obtain an automorphism

δc : EG −→ φ(c)∗EG

of G–bundles [10, p. 34, Proposition 2.9(a)].

From the construction of δc it is immediate that δ0 is the identity automorphism
and δb+c = δb ◦ δc. Consequently, these isomorphisms δc together define an action of
C on EG lifting the action of C on Z. In other words, EG is an orbifold G–bundle.

Therefore, we have a map from MG to orbifold G–bundles over Z that sends any
F to the orbifold G–bundle EG constructed from it. It is easy to check that this map
is the inverse of the earlier constructed map from orbifold G–bundles over Z to MG.

Recall the definition of parabolic semistability and parabolic polystability given
earlier. From the second part of Theorem 4.4 it is immediate that an orbifold G–
bundle over Z is semistable (respectively, polystable) in the usual sense if and only
if the corresponding parabolic bundle over X is parabolic semistable (respectively,
parabolic polystable). This completes the proof of the theorem. �
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