
Collect. Math. 54, 3 (2003), 269–281

c© 2003 Universitat de Barcelona

Curves on a ruled cubic surface

John Brevik

Department of Mathematics, Wheaton College, Norton, MA 02766, USA.

E-mail: jbrevik@wheatonma.edu

Francesco Mordasini ∗

E-mail: framor@sbcglobal.net

Received October 7, 2002

Abstract

For the general ruled cubic surface S (with a double line) in P
3 = P

3
k, k any

algebraically closed field, we find necessary conditions for which curves on S can
be the specialization of a flat family of curves on smooth cubics. In particular, no
smooth curve of degree > 10 on S is such a specialization.

1. Introduction

Let k be an algebraically closed field, and let X0 be the general ruled cubic surface
in P

3 = P
3
k (see Section 2 below). For any irreducible nonsingular (not necessarily

complete) curve T over k with a special closed point 0 ∈ T , consider families X of
cubic surfaces, where Xt is nonsingular for t �= 0 and the fibre over 0 is X0. The aim of
this paper is to determine which curves (locally Cohen-Macaulay subschemes of pure
dimension 1) on X0 can belong to a flat family of curves D in X for some family X.
The language and techniques of generalized divisors as developed by Hartshorne ([6]
and [5]) lend themselves well to this problem. In this language, the group of almost
Cartier divisors for the ruled cubic was found in [5, 6], and the group of Cartier divisors
on the smooth cubic surface is classically known ([4, V 4.8]).

This paper is organized as follows. In Section 2, we review the construction of the
general ruled cubic X0, briefly review Hartshorne’s theory of generalized and almost
Cartier divisors, and identify the almost Cartier divisor class group APicX0 on this
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surface. In Section 3 we base-extend the above family X so that there are 27 families
of lines, which restrict on the general member of the family to the classical 27 lines
on a smooth cubic surface, and we study the limits of these families on the special
surface X0. In Section 4 we compute the group of relatively almost Cartier divisors
for the family X as in [6]. Now, if C is a curve on X0 with no components supported
on the double line, C comes from a flat family of divisors on X if it is the restriction
of an effective Cohen-Macaulay relatively almost Cartier divisor on X. We show in
Section 5 that this condition implies conditions on the divisor type of C. In Section 6,
we specialize to the case where C is smooth, and we obtain an upper bound of 10 on
the degree of C (see Theorem 6.1). This provides an example where the conjecture [2,
Conjecture B′] of Ellia and Hartshorne is true, and it strengthens a result of Gruson
and Peskine [3, B.4.], who proved that no sufficiently general smooth curve of degree
> 10 on X0 is such a limit.

2. Singular ruled cubic surface

In this section we review the construction of the general ruled cubic surface with a
double line in P

3
k and calculate divisors on this surface.

We start with the projective plane P
2
k and a point Q in it. By blowing-up Q we

obtain a surface S of degree 3 in P
4
k [4, II Exercise 7.7]. Let l be a line in P

2
k not

containing Q. Its inverse image is a conic Γ in S which does not meet the exceptional
curve E. Let N be the plane containing Γ and let O ∈ N \ S be a point. Then we
may project S with respect to O to P

3
k. In this way we get a surface X0 of degree 3 in

P
3
k and a morphism f : S → X0, which sends Γ to a double line L and two points on

Γ to two pinch points. The morphism f induces an isomorphism f : S \ Γ ∼→ X0 \ L.
Note that the projection from O yields an involution σ on Γ (i.e. a one to one map σ

on Γ such that σ2 = 1). Another way to describe f is to consider the linear system
of conics in P 2

k through Q, which meet l in a pair of the involution, i.e. a point on
l and its image under σ. This gives a linear system D on S which induces f . Now
the inverse images of lines in P 2

k through Q are all the lines in S, they meet E in one
point, Γ in two, and cover S. These lines project to lines covering X0 and meeting the
lines f(E) and L once. Hence X0 is a ruled cubic surface in P

3
k with a double line L

and two pinch points P and P ′ on L.
Alternatively, we may describe X0 as follows: Let x, y, z, w be homogeneous co-

ordinates of P
3
k. After a suitable linear change of coordinates the surface X0 can be

defined by the equation x2z − y2w = 0. The rulings Mλ of X0 are given by the equa-
tions y = λx and z = λ2w, together with M∞(x = w = 0). Note that the only lines on
X0 are the rulings, L (given by x = y = 0) and the image f(E) (given by z = w = 0)
of E. Each point of L is contained in the rulings Mλ and its conjugate M−λ (the pinch
points correspond to M0 and M∞, which are their own conjugates), and every ruling
meets f(E) (see Figure 1 after Proposition 10).

Let us now turn to the description of almost Cartier divisors on X0 and their
properties. This was done by Hartshorne in [5, Section 6].
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Definition 2.1 (See [5, Section 2]). Let X be any Noetherian scheme satisfying G1

(i.e. every local ring of dimension ≤ 1 is Gorenstein) and the Serre property S2. Let
KX be the sheaf of total quotient rings. A subsheaf I ⊆ KX is an almost Cartier
divisor if

(a) I is a coherent reflexive nondegenerate (i.e. for every generic point η of X, Iη =
KX,η) OX -module.

(b) There is a closed subset Z ⊂ X of codimension ≥ 2 such that I restricted to X \Z
is Cartier (that is locally principal).

Remark 2.2. There is an exact sequence [5, 6.3]

0−→APicX0−→PicS ⊕ Div Γ/f∗DivL−→Pic Γ/f∗PicL−→0,

which allows us to represent an element of APicX0 as a triple (a, b, α), where
(a, b) ∈ Z ⊕ Z ∼= PicS and α ∈ Div Γ/f∗DivL, such that a = deg α (mod 2) (in
fact Pic Γ/f∗PicL ∼= Z/2Z).

We also recall the following proposition from [5, Section 6].

Proposition 2.3

Let D ∈ APicX0 be an effective divisor represented by (a, b, α); then

(a) deg D = 2a− b.

(b) pa (D) = 1
2 (a− 1)(a− 2)− 1

2b(b− 1) + 1
2 (a− h(α)), where h(α) is the least degree

of an effective divisor representing α in Div Γ/f∗DivL.

(c) D is represented by an effective divisor if and only if

(i) a > b, a > 0, or

(ii) a = α = 0, b < 0, or

(iii) a = b > 0 and h(α) ≤ a.

(d) D is represented by a smooth curve if and only if

(i) D = f(E), or

(ii) D is a union of rulings meeting L at distinct points, or

(iii) a > b ≥ 0 and h(α) = a.

3. Degeneration of the 27 lines

We will now turn our attention to a family X of cubic surfaces over a smooth irreducible
(not necessarily complete) curve T with point 0, where Xt is smooth for t �= 0 and X0 is
the ruled cubic from Section 2. In this section, we examine the possible ways in which
the 27 lines on the general surface can degenerate on X0. We start by introducing
some notation.

Definition 3.1 (Cf. [6], paragraphs before Proposition 1.3) . Let X ⊂ P
3
T be a flat

family of surfaces over a nonsingular irreducible curve T with special point 0, and let
D be an almost Cartier divisor on X with associated sheaf L = L(D), such that L is
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invertible at every generic point of X0. Define the restriction of L to X0 as the sheaf
L0 = (L⊗OX0)

∨∨. L is relatively almost Cartier if its restriction to X0 is invertible at
all points of X0 of codimension 1. Define the group of relatively almost Cartier classes
by RAPic (X,X0), or, if no confusion will result, RAPicX.

Remarks 3.2.

1. If D is effective, then the divisor D0 defined by the restriction L0 is the scheme
obtained by throwing away any embedded components from the scheme-theoretic
intersection D ∩X0.

2. By [6], Proposition 1.3, the operation of restriction defines a group mapping ρ′ :
RAPicX → APicX0.

Proposition and Definition 3.3 (Cf. [6], Proposition 1.4 and 1.5) Let X ⊂ P
3
T be

a flat family of surfaces over a nonsingular irreducible curve T with special point 0,

and let D be an almost Cartier divisor on X with associated sheaf L = L(D). Then

the following conditions are equivalent:

1. L ⊗OX0 is a reflexive sheaf.

2. L is a Cohen-Macaulay sheaf at all points of X0.

3. The fractional ideal ID ∼= L(−D) is a Cohen-Macaulay sheaf at all points of X0.

In this case we say that D is a Cohen-Macaulay divisor of X along X0.

If in addition D is effective and contains no irreducible component of X0, then

the above are also equivalent to

4. D is a Cohen-Macaulay scheme at all points of X0.

5. The scheme D has no embedded points.

If D is effective without vertical components, and if either (a) Xt is smooth for

t �= 0 or (b) the curve Dt ⊂ Xt is smooth for t �= 0, then the above are equivalent to

6. The divisors Dt form a flat family of curves in P
3.

7. The arithmetic genus is constant over the family, i.e. pa(D0) = pa(Dt) for all

t �= 0 in T .

Remark 3.4. Hartshorne states the above in a slightly more general context, specifically
for X a three-dimensional Gorenstein scheme and X0 a Cartier divisor on X.

Now suppose that we are in the situation of smooth cubics degenerating to the
ruled cubic X0, as described at the beginning of this section. By making a suitable
base extension if necessary [6, 1.8], we may assume that there are effective CM almost
Cartier Divisors Ei, Gi for i = 1, ..., 6 and Fij for 1 ≤ i < j ≤ 6 on the whole family
X with no vertical components, which restricted to the nonsingular cubic surfaces are
the 27 lines with the notation of [4, V 4.9]. This is the kind of family that we are going
to study in the rest of the paper.

Let G be a CM almost Cartier divisor on X such that Gt is a line for every
t ∈ T \{0} (27 possibilities, no vertical components). Then the lines form a flat family
[6, 1.4 and 1.5] and G0, the special member, is a line on the ruled cubic X0. Now we
know from Section 2 all the lines on X0. Which of these will G0 be? To answer this
question we apply two principles.
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Remark 3.5.

(1) A triangle ∆t on the general fibre Xt is a scheme consisting of three distinct
lines each meeting the other two. A family of triangles is an effective almost
Cartier divisor ∆ on X such that ∆t is a triangle for every t ∈ T \ {0}. Since
∆t is contained in a plane, its degeneration ∆0 is also contained in a plane by
semicontinuity. Therefore ∆ is a CM divisor; in fact, it is Cartier on each fibre. (∆
is CM on X0 because the ruled cubic is irreducible, so that the scheme-theoretic
intersection ∆ ∩X0 is already contained in the complete intersection of X0 with
a plane, which has no embedded components.)

(2) If two lines meet on the general fibre, then they also meet on the special fibre X0,
by [6, 3.1].

Lemma 3.6

No family of triangles on the family X can degenerate to a multiplicity-3 structure

on the line L in the special fibre X0.

Proof. A family of triangles ∆ on the family X has degree three and is cut out by a
plane on every fibre. Now assume that ∆ degenerates to a triple structure on L. Then
there must be a plane meeting X0 at L only. This is impossible, because the equations
of the rulings of X0 in Section 2 show that every plane containing L also contains a
ruling. �

Lemma 3.7

Two incident lines on the general fibre of the family X cannot degenerate to the

same ruling on the special fibre X0.

Proof. The two lines are part of a family of triangles ∆. The double structure on
the ruling has to be contained in a plane (3.5 (1)), therefore its arithmetic genus
is 0 [1, p. 116, and Exercise III-28]. But by 2.3 the 2-structure on the ruling has
arithmetic genus −1 (in fact a ruling is represented by the triple (1, 1, Q) where Q is
the intersection point of the ruling with L). This is impossible. �

Lemma 3.8

At least one of the 27 lines on the general fibre of the family X degenerates to the

line f(E) on the special fibre X0.

Proof. Assume that none of the 27 lines degenerate to f(E). Then the only a priori
possible degenerations of triangles on X0 are two: the double line L and a ruling Mλ

or the reduced line L and a multiplicity 2 structure on a ruling Mλ. Only the first
of the two possibilities can occur (see 3.7). Now by 3.6 there is a line, E1 say (after
relabeling the 27 lines if necessary [4, V 4.10]), that degenerates to a ruling. Thus the
triangles E1F1iGi show that the lines F1i, Gi degenerate to L for 2 ≤ i ≤ 6.

Consider the triangles G1F1iEi: Where does G1 and Ei degenerate for 2 ≤ i ≤ 6?
We have precisely two cases both of which will lead to impossibilities.
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First case. G1 degenerates to a ruling and Ei to L for 2 ≤ i ≤ 6. The triangles
E2F23G3 and E4F45G5 show, using 3.6 and 3.7, that the lines F23 and F45 degenerate
to distinct rulings. But this means that the triangle F16F23F45 degenerates to the
reduced line L and two rulings, which is not contained in a plane, an impossibility.

Second case. G1 degenerates to L and Ei to rulings for 2 ≤ i ≤ 6. The triangles
E2F23G3 and E4F45G5 show in this case that F23 and F45 degenerate to L. Then the
triangle F16F23F45 degenerates to a multiplicity 3 structure on L, which is impossible
by 3.6. �

Lemma 3.9

Two lines on the general fibre of the family X cannot degenerate to f(E) on the

special fibre X0.

Proof. Let D be an almost Cartier divisor on the whole family X such that Dt is
the union of two lines, for t �= 0 and D0 a 2-structure on f(E). D is a CM divisor
because it is locally Cartier everywhere (here we use the fact that X0 is nonsingular
along f(E)). The arithmetic genus of Dt is 0 (if the two lines meet) or −1 (else) for
t �= 0 [4, V 4.8]. But the genus of D0 is −2 by 2.3 ( f(E) is represented by (0,−1, 0)).
This contradicts the fact that a CM divisor on the family gives a flat family of curves
[6, 1.5]. �

Proposition 3.10

After relabeling, if necessary, the 27 lines degenerate as follows (see Figure 1
below).

(i) E6, Gi for 1 ≤ i ≤ 5 and Fij for 1 ≤ i < j ≤ 5 degenerate to L.
(ii) G6 degenerates to f(E).
(iii) Ei for 1 ≤ i ≤ 5 degenerate to (possibly coincident) rulings.
(iv) Fi6 for 1 ≤ i ≤ 5 degenerate to the conjugate rulings of (iii).

Proof. By 3.8 and relabeling the 27 lines if necessary we may assume that G6 degen-
erates to f(E) and by 3.9 this is the only line degenerating to f(E). Consider the
triangle G6F16E1; then F16 and E1 must degenerate to conjugate rulings. In fact none
of these lines can degenerate to L, by 3.5 (2). Lemma 3.7 tells us that F16 and E1

have to degenerate to distinct rulings. These must meet by 3.5 (2), hence the rulings
have to be conjugated. The same holds for Fi6 and Ei for 1 ≤ i ≤ 5. Now by 3.9 E6

degenerates to either a ruling or to L. In the first case we come to a contradiction
as follows. The triangle E6Fi6Gi shows that Gi degenerates to f(E) for 1 ≤ i ≤ 5, a
contradiction to 3.9. Hence E6 must degenerate to L as well as Gi for 1 ≤ i ≤ 5 (using
the same triangles). Finally the triangles EiFijGj show that also Fij degenerates to
L for 1 ≤ i < j ≤ 5. This concludes our proof. �
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4. Almost Cartier divisors on X

Assume that X and X0 are as usual, with the base curve T base-extended as above so
that there are 27 irreducible families of lines. In this section we compute the group of
almost Cartier divisors APic (X) and the subgroup of relatively almost Cartier divisors
RAPic (X), which are those almost Cartier divisors on X whose restriction to X0 is
almost Cartier (see [6, 1.3]). Now, since X0 is irreducible, the group of almost Cartier
divisors with no vertical components APic (X)/f∗Pic (T ) is isomorphic to Z7 by [6,
1.2 and 1.1]. We will denote this group APic (X) in the sequel omitting f∗Pic (T ).
Similarly we will write simply RAPic (X) for the subgroup of relative almost Cartier
divisors with no vertical components. What are the generators of RAPic (X)?

Figure 1: Lines on X0

Lemma 4.1

The group RAPic (X) is a subgroup of index 2 of APic (X), and it is free of rank

7 generated by H,G6, {Ei : 1 ≤ i ≤ 5}, where H is the class of a hyperplane section

of X.
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Proof. Let Pi be the intersection of the restriction of Ei to X0 with the line L for
1 ≤ i ≤ 5, see Figure 1 after Proposition 3.10. Clearly Ei is locally Cartier everywhere
except at Pi, 1 ≤ i ≤ 5. Hence Ei ∈ RAPic (X). Since H is a Cartier divisor,
H ∈ RAPic (X). The divisor G6 also belongs to RAPic (X) because it is locally
Cartier everywhere (since X0 is regular along f(E)).

Set S := Ei : 1 ≤ i ≤ 5. Now, for t �= 0, consider the restriction map . t :
RAPic (X) ⊂ APic (X)−→APic (Xt) in the remarks following Definition 3.1. By look-
ing at the images of the classes H,G6, and the elements of S on a general fibre, we see
that < H,G6, S > is free of rank 7 and that it is a subgroup of index 2 in APic (X).
Thus the index formula for the chain of inclusions of subgroups

< H,G6, S >⊆ RAPic (X) ⊂ APic (X)

yields the equality < H,G6, S >= RAPic (X), because there are elements in APic (X)
not in RAPic (X) (for example E6). �

Let D := hH + gG6 +
∑5

i=1 eiEi ∈ RAPic (X), where h, g, e1, ..., e5 ∈ Z. The
restriction of D to a general fibre (t �= 0) has divisor type

Dt =(3h + 2g;h + g − e1, h + g − e2, . . . , h + g − e5, h), (1)

hence we know the degree and arithmetic genus of Dt (if effective). Let us now turn
to the restriction of D to the special fibre (see Section 2), we have

H0 : (2, 1, 0)

(Ei)0 : (1, 1, Pi)

(Fi6)0 : (1, 1, −Pi) if Pi is not a pinch point, (1, 1, Pi) else

(G6)0 : (0, −1, 0)

for 1 ≤ i ≤ 5, where two or more of the five points Pi may coincide and may coincide
also with the pinch points P and P ′. Hence

D0 =

(
2h +

5∑
i=1

ei , h− g +
5∑

i=1

ei ,

5∑
i=1

eiPi

)
. (2)

By 2.3 we can find the degree and arithmetic genus of D0 if it is effective.

5. Cohen-Macaulay divisors in RAPic (X)

We determine the Cohen-Macaulay relatively almost Cartier divisors with no vertical
components on X.

Example 5.1: An effective divisor of class nH, n > 0, gives a CM family of complete
intersections, since the genus of a complete intersection depends only on the degrees of
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the intersected surfaces. For a more interesting example, let C0 be an effective divisor
on X0 which is residual to a ruling of type (1, 1, P ) in a complete intersection. Then
the divisor type of C is (2n− 1, n− 1, Q), where n is the degree of the other surface in
the complete intersection and Q is the point conjugate to P . Then C0 is the limit of a
family of divisors on a family of smooth cubics containing L, and one can verify that
the genus formula given in Proposition 2.3 gives the same answer as the usual genus
formula on a smooth cubic.

Lemma 5.2
Let

D :=
s∑

i=0

fi(Fi6 + G6) +
6∑

j=s+1

ejEj ∈ RAPic (X)

be an effective divisor with 0 ≤ s ≤ 5, f0 = e6 = 0. Then D is CM if and only if∑s
i=0 f

2
i +

∑6
j=s+1 e

2
j − h(α) = 0, where h(α) is the least degree of an effective divisor

on Γ representing the third component of D0 (see 2.3).

Proof. Set f :=
∑s

i=0 fi and e :=
∑6

j=s+1 ej ; then, by (2) in section 4 we have
D0 = (f + e, e, α), where α :=

∑s
i=0(−1)pifiPi +

∑6
j=s+1 ejPj and pi = 0 if Pi is a

pinch point, pi = 1 else. Hence we may compute the arithmetic genus with 2.3

pa(D0) =
1
2
(
f2 + 2fe− 2f − e + 2 − h(α)

)
.

On the general fibre we have (1) of Section 4:

Dt = (3f, f + f1, .., f + fs, f − es+1, .., f − e5, f).

By [4, V 4.8] the arithmetic genus is

pa(Dt) =
1
2

(
f2 −

s∑
i=0

f2
i −

6∑
j=s+1

e2
j + 2fe− 2f − e + 2

)
.

Now D is CM if and only if the two arithmetic genera are equal. �
Note that the lemma holds also for D :=

∑
i∈A fi(Fi6 +G6) +

∑
j∈B ejEj , where

A and B are nonempty complementary subsets of {0, 1, ..., 6}.

Lemma 5.3
A divisor D ∈ APic (X) is CM if and only if its negative −D is.

Proof. Since X is a Gorenstein scheme, this follows from [5, 1.14], which says that
a finitely generated module over a local Gorenstein ring is CM if and only if its dual
is. �
Remark 5.4. Let D := hH + gG6 +

∑5
i=1 eiEi ∈ RAPic (X). Since X is regular

everywhere except along the double line L, the divisor D is locally Cartier and hence
CM except possibly at the points where it meets L, namely P1, ..., P5. So we only have
to check at these points which are the CM divisors in RAPic (X).

Proposition 5.5
Let D := hH + gG6 +

∑5
i=1 eiEi ∈ RAPic (X) be a divisor. Keeping the above

notation, assume that P1, ..., P5 are distinct points. Then D is CM if and only if
|ei| ≤ 1 for 1 ≤ i ≤ 5.
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Proof. By 5.4 we only have to compute the CM divisors at P1, ..., P5. Without loss
of generality we may restrict ourselves to the computation at P1. Now at P1, D and
e1E1 are the same, hence it suffices to compute the conditions for e1E1 to be CM.

Case e1 ≥ 0. Then e1E1 is CM if and only if e2
1−h(α) = 0, by 5.2. Since α = e1P1

we have h(α) = e1 (if P1 is not a pinch point) or h(α) = 0 (if P1 is a pinch point and
e1 is even) or h(α) = 1 (if P1 is a pinch point and e1 is odd). Hence D is CM at P1 if
and only if e1 = 0, 1.

Case e1 ≤ 0. Set e := −e1; then eE1 is effective and dual to e1E1. The same
argument as before applied to eE1 and 5.3 yield that D is CM if and only if e1 =
−1, 0. �

Proposition 5.6

Let D := hH + gG6 +
∑5

i=1 eiEi ∈ RAPic (X) be a divisor, and assume that

precisely 2 ≤ r ≤ 5 of the points P1, ..., P5 are equal, say P1 = · · · = Pr (after

relabeling if necessary).

(a) Suppose the coincident point is not a pinch point. Then D is CM at P1 if and

only if
∑r

i=1 e
2
i − |∑r

i=1 ei| = 0.

(b) Suppose that the coincident point P1 = · · · = Pr is a pinch point. Then D is CM
at P1 if and only if

∑r
i=1 e

2
i = 0, 1.

Proof. (a). The divisor D at P1 = · · · = Pr is the same as D′ :=
∑r

i=1 eiEi. Hence D is
CM at P1 if and only if D′ is. The class of D′ in APic (X0) is given by (e, e, eP1), where
e :=

∑r
i=1 ei. Note that h(eP1) = |e| because P1 is not a pinch point, by assumption.

We want to represent D′ by an effective divisor in order to be able to apply 5.2.

A) Case where ei ≥ 0 for 1 ≤ i ≤ r. The divisor D′ is effective, thus D′ is CM at
P1 if and only if

∑r
i=1 e

2
i − e = 0, by 5.2.

B) Case where ei ≤ 0 for 1 ≤ i ≤ r. Here we apply 5.3 and reduce to case A).
Then D′ is CM at P1 if and only if

∑r
i=1 e

2
i − |e| = 0, by 5.2.

C) Case where e1 ≤ 0 and ei ≥ 0 for 2 ≤ i ≤ r. Let f1 := −e1. If we add f1

times the hyperplane section E1 + F16 + G6 (which is principal) to D′ (or D), we do
not affect its class and D′′ := f1(F16 + G6) +

∑r
i=2 eiEi is effective. Apply 5.2. Then

D′ is CM at P1 if and only if
∑r

i=1 e
2
i − |e| = f2

1 +
∑r

i=2 e
2
i − |e| = 0.

D) Case where 2 < r, e1, e2 ≤ 0 and ei ≥ 0 for 3 ≤ i ≤ r. If we cannot reduce
to one of the previous cases by dualizing and relabeling, we will set f1 := −e1 and
f2 := −e2. By adding f1 times the hyperplane section E1 + F16 + G6 and f2 times
E2 + F26 + G6 we may represent D′ by the effective divisor f1(F16 + G6) + f2(F16 +
G6) +

∑r
i=3 eiEi. Again 5.2 gives that D′ is CM at P1 if and only if

∑r
i=1 e

2
i − |e| =

f2
1 + f2

2 +
∑r

i=3 e
2
i − |e| = 0.

Any divisor D′ can be brought into the form of one of the above four cases just
by dualizing and relabeling. This concludes the proof of (a).

For the proof of (b) we follow the proof of (a). The only difference is that here,
since P1 is a pinch point, h(eP1) = 0 if e is even and 1 if e is odd. �
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Corollary 5.7

Let D := hH + gG6 +
∑5

i=1 eiEi ∈ RAPic (X), let Ei ∩ L = Pi for 1 ≤ i ≤ 5
and denote by P0, P6 the two pinch points of X0. Let S := {1, ..., 5} and Sc := {i ∈
S : ∃j ∈ S \ {i} such that Pi = Pj}. Define the disjoint (possibly empty) subsets

S0, S1, S2, S3 as follows:

S0 := {i ∈ S : Pi = P0}, S1 := {i ∈ S : Pi = P6},
S2 := {i ∈ S : Pi = Pj , j ∈ Sc \ (S0 ∪ S1)},
S3 := {i ∈ S : Pi = Pk, k ∈ Sc \ (S0 ∪ S1 ∪ S2)}.
Then D is CM if and only if

(i) |ei| ≤ 1 for i ∈ S \ (
⋃3

l=0 Sl).
(ii)

∑
i∈Sl

e2
i − |∑i∈Sl

ei| = 0 for l = 2, 3.

(iii)
∑

i∈Sl
e2
i = 0 or 1 for l = 0, 1.

Proof. One only has to find necessary and sufficient conditions for D to be Cohen-
Macaulay at the points P1 to P5. At the points Pi with i ∈ S \ (∪3

l=0Sl) the necessary
and sufficient condition (i) is due to the proof of 5.5. If i ∈ S2∪S3, then (ii) is necessary
and sufficient because of 5.6 (a). At the points Pi with i ∈ S0 ∪ S1 the divisor D is
CM if and only if (iii) holds, by 5.6 (b). �

Remark 5.8. From the Corollary 5.7 follows that whenever D := hH + gG6 +∑5
i=1 eiEi ∈ RAPic (X) is CM, the absolute value of the ei’s cannot be larger than 1.

This implies that 0 ≤ h(α) ≤ 5, where D0 = (a, b, α) is the restriction of D to X0

(see 2.3). Thus we get a strong necessary condition for an effective divisor on X0,
having no components supported on the double line, to be a limit of a flat family
of effective divisors on smooth cubics. Except in special easy cases (such as those
in 5.1), we do not know of any conditions on a specific effective divisor on X0 which
will guarantee that it is realizable as such a limit.

6. Specialization to smooth curves

Let X denote as usual a family of cubic surfaces parametrized by the irreducible
nonsingular curve T . In this section we look at families of curves on X which specialize
to a smooth curve on the ruled cubic surface X0. Observe that if D0 ∈ APic (X0) is
a smooth curve in X0 which comes from a flat family of curves Dt on Xt, then we
may assume that there is an effective CM divisor D ∈ RAPic (X) with no vertical
components which restricts to Dt on Xt (see [6, 1.6 and 1.6.1]).

Theorem 6.1

Let Dt ⊆ P
3
k be a flat family of curves included in X such that D0 is a smooth

curve in the ruled cubic X0 represented by (a, b, α) (see 2.3). Then 0 ≤ a ≤ 5, and in

particular degD0 ≤ 10.



280 Brevik and Mordasini

Proof. In the observation preceding the theorem we saw that there is an effective CM
divisor D ∈ RAPic (X) with no vertical components which restricts to the given curves
Dt on Xt. By Section 4, D := hH + gG6 +

∑5
i=1 eiEi ∈ RAPic (X). Let Ei ∩ L = Pi

for 1 ≤ i ≤ 5. Proposition 2.3 tells us that there are only three types of classes of
smooth curves on X0.

(i) D0 = f(E), represented by (0,−1, 0) has degree 1 and a = 0. The only family of
curves degenerating to f(E) is G6 (see 3.10).

(ii) D0 is a union of rulings meeting at distinct points of L. The families degenerating
to such a curve are of the form

∑s
i=1 δi(H−G6−Ei)+

∑5
j=s+1 δjEj with δi = 0, 1

and 0 ≤ s ≤ 5 (after relabeling if necessary), hence 0 ≤ degD0 =
∑5

i=1 δi = a ≤ 5
(see 2.3).

(iii) D0 is represented by (a, b, α) with a > b ≥ 0 and h(α) = a. On the other hand
the restriction of the family D to X0 is given by

(
2h +

5∑
i=1

ei, h +
5∑

i=1

ei − g,

5∑
i=1

eiPi

)
.

By replacing these values for a, b, and α we obtain the following inequalities:

c ≤ −g < −
(
c +

5∑
i=1

ei

)
≤ c + 5, (3)

where c := −(
∑5

i=1 ei + h). Now Remark 5.8 shows that |∑5
i=1 ei| ≤ 5 and that

generally 0 ≤ h(α) ≤ 5. Therefore we get in our situation 1 ≤ a = h(α) ≤ 5 and,
using (3), deg D0 = 3h +

∑5
i=1 ei + g ≤ 10 (see 2.3 and Table 1 below). �

The family of lines G6 has degree 1 and arithmetic genus 0. What are the possible
degree d and genus pa of families of curves with limit a curve of type (ii) in 2.3 ? Write
D :=

∑s
i=1 δi(H − G6 − Ei) +

∑5
j=s+1 δjEj with δi = 0, 1 and 0 ≤ s ≤ 5 as in the

proof of 6.1. Using 5.7 we obtain (d, pa) = (1, 0), (2,−1), (3,−2), (4,−3), (5,−4).
Now let D := hH + gG6 +

∑5
i=1 eiEi ∈ RAPic (X) be an effective CM divisor

with no vertical components and special fibre D0 a smooth curve of type (iii) in 2.3.
Since e :=

∑5
i=1 ei ranges between −5 and 5 (see 5.7), we are able to write Table 1

of all possible values of degree d, h(α) and arithmetic genus pa of D0. We use (3) to
compute h and g. Then these values feed 2.3 with which we obtain d, h(α) and pa.
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d pa h(α)
10 6 5
9 6 5
8 3 4

5 5
7 3 4

5
6 0 5

1 3
2 4

d pa h(α)
5 0 4

1 3
4 0 2

3
3 0 2
2 0 1

Table 1: Specialization to smooth curves of type (iii) of 2.3 on X0

Acknowledgement. Both authors thank Prof. Robin Hartshorne for introducing
them to the theme of the paper as well as for many helpful and fruitful discussions.

References

1. D. Eisenbud and J. Harris, Schemes: The Language of Modern Algebraic Geometry, The Wadsworth
& Brooks/Cole Mathematics Series, 1992.

2. Ph. Ellia and R. Hartshorne, Smooth specializations of space curves: questions and examples,
Lecture Notes in Pure and Appl. Math. 206 (1999), 53–79.

3. L. Gruson and C. Peskine, Genre des courbes de l’espace projectif. II, Ann. Sci. École Norm. Sup.
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