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Abstract

Sets which simultaneously tile R
n by applying powers of an invertible matrix and

translations by a lattice are studied. Diagonal matrices A for which there exist sets
that tile by powers of A and by integer translations are characterized. A sufficient
condition and a necessary condition on the dilations and translations for the exis-
tence of such sets are also given. These conditions depend in an essential way on the
interplay between the eigenvectors of the dilation matrix and the translation lattice
rather than the usual dependence on the eigenvalues. For example, it is shown that
for any values |a| > 1 > |b|, there is a (2 × 2) matrix A with eigenvalues a and
b for which such a set exists, and a matrix A′ with eigenvalues a and b for which
no such set exists. Finally, these results are related to the existence of wavelets for
non-expansive dilations.

1. Introduction and preliminaries

Let D be a collection of invertible n × n matrices, and T a collection of points in R
n.

A (D, T ) wavelet is a function ψ ∈ L2(Rn) such that

{
|A|1/2ψ(Ax + k) : A ∈ D, k ∈ T

}

is an orthonormal basis for L2(Rn). The following problem was formalized in [15]:

Problem 1. For which pairs (D, T ) do there exist wavelets?
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Problem 1 is far from solved even in dimension one. In fact, it seems as though
a solution to the spectral set conjecture will be required before a full solution to
Problem 1 will be known. In this paper, we will assume that T is a full rank lattice,
and that D = {Aj : j ∈ Z} for some invertible matrix A. This set-up, while much
more restrictive than that proposed by Wang, is far more general than most papers
on wavelets allow. In particular, with the exception of sporadic examples in [2], [8],
[11] and [15], no papers have allowed the dilation matrices not to be expansive (all
eigenvalues bigger than one in modulus). This is probably because almost no examples
of existence of such wavelets were known prior to this paper. Contrast this with the
continuous wavelet case where non-expansive dilations are well-studied in [13], [12].

There have been several partial results concerning Problem 1 to date. In [3], it
was shown that if A is expansive and D = {Aj : j ∈ Z}, then there always exist
(D, Zn) wavelets. In fact, it was shown that the wavelets can be chosen to be (D, T )
MSF wavelets; namely, they can be chosen such that ψ̂ = IE , the indicator function
on a set. In general, an MSF wavelet is a wavelet such that |ψ̂| = IE is also the
Fourier transform of a wavelet. MSF wavelets have been studied in [3], [4], [7], and
[14] among others. It was also shown in [1] that whenever D = {Aj : j ∈ Z} and
Aj(Zn) ∩ Z

n = {0} for all j 
= 0, then the only (D, Zn) wavelets that exist are MSF
wavelets. Thus, MSF wavelets seem to play a special role in Problem 1.

Problem 2. For which pairs (D, T ) do there exist MSF wavelets?

Problems 1 and 2 should be seen as complementary problems to the problem of
characterizing wavelets via the Fourier transform as in the recent paper [8], where
they consider non-expansive matrices. In fact, there is a strong interplay between the
examples of matrices that yield wavelets and the examples of matrices for which char-
acterizing equations are known, with progress in the one question leading to natural
questions in the other. In particular, for some of the matrices in [8] for which charac-
terizing equations are known (see Theorem 4.1 in this paper for an exact statement),
it is shown in this paper that no wavelets exist. It is also shown in this paper that
wavelets exist for matrices for which no characterizing equations are currently known.

A characterization of MSF wavelets was given in [15] and other places, which
states that when A is invertible, D = {Aj : j ∈ Z}, and T is a full rank lattice, then
ψ satisfying |ψ̂| = IE is a (D, T ) (MSF) wavelet if and only if

{At(E) : A ∈ D} is a tiling of R
n, and

{E + γ : γ ∈ T ′} is a tiling of R
n,

where At is the transpose of A and T ′ is the dual lattice of T . Here, we use tiling
loosely so that it means simply an almost everywhere partition of R

n.
This brings us to the closely related

Problem 3. For which pairs (D, T ) do there exist sets E such that {A(E) : A ∈ D}
and {E + γ : γ ∈ T } are tilings of R

n?
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Schulz and Taylor [13] have several characterizations on A for when there exist E
such that {Aj(E) : j ∈ Z} is a tiling. In particular, they showed that there is such
a set E that has finite measure if and only if |det(A)| 
= 1. We study when the set
E can also be chosen to tile R

n by translations. The main feature of this paper is to
show that it is not the eigenvalues of A that determine in general whether there exists
a wavelet, but rather the precise nature of the interplay between the eigenvectors and
the integer lattice. This is made most explicit in

Theorem 4.3
Let |a| > 1 > |b|. There is a matrix A with eigenvalues a and b such that there

exists an (A, Z2) wavelet and a matrix M with eigenvalues a and b for which there
does not exist an (M, Z2) wavelet.

Theorem 4.3 gives the first example of wavelets for dilations A with eigenvalues
on both sides of one in modulus. (In [15], some of the matrices in D could be chosen
to be non-expansive.)

Finally, we set notation. A will denote an invertible n × n matrix with transpose
B = At. Γ ⊂ R

n will denote a full rank lattice with dual lattice Γ′. We say a
function f tiles R

n by (Γ) translations if
∑
γ∈Γ f(x + γ) = 1 a.e., and a function

tiles R
n by D dilations if

∑
A∈D f(Ax) = 1 a.e. When D = {Aj : j ∈ Z}, we say

f tiles by A dilations. When f = IE a.e. is the indicator function on the set E and
f tiles R

n by translations (resp. dilations), we say that E tiles R
n by translations

(resp. dilations). Under many conditions on A, when D = {Aj : j ∈ Z}, a function
ψ is a (D,Γ) wavelet if and only if |ψ̂|2 tiles R

n by Γ′ translations and At dilations,
and ψ̂ satisfies an additional pointwise orthogonality condition. (See Theorem 4.1 for
a precise statement of this condition.) We denote σf,Γ(x) =

∑
γ∈Γ |f(x + γ)|2 and

∆f,D(x) =
∑
A∈D |f(Ax)|2. When D = {Aj : j ∈ Z}, we may write ∆f,A. When

f = IE and σf,Γ ≤ 1 (resp. ∆f,A ≤ 1), we say that E packs R
n by Γ translations

(resp. D dilations). When any of the subscripts of σ or ∆ are obvious from context, we
will omit them. Given a set F that tiles R

n by Γ translations, we denote the translation
projection onto F by τ = τF (E) = ∪γ∈Γ((E + γ) ∩ F ). Given a set G that tiles by D
dilations, we denote the dilation projection onto G by d = dG(E) = ∪A∈D(A(E)∩G).
Finally, observe that if f tiles by Γ translations and A dilations, then f̃(x) = f(U−1x)
tiles by UAU−1 dilations and UΓ translations.

2. Block matrices

In this section, we study the case when the dilation matrix can be written as a block
matrix that interacts “nicely” with the lattice of translations.

We begin with a lemma that generalizes the obvious fact that the height of a
rectangle which packs R

n by Z
n translations is bounded independent of the width.

Lemma 2.1
Let Γ be a lattice in R

n1 ×R
n2 such that Γ0 = Γ∩ (0×R

n2) is a full rank lattice
in R

n2 . Let F0 be a fundamental region for Γ0, F a fundamental region for Γ, and K
a set in R

n1 . If σψ,Γ(ξ) ≤ 1, then
∫
K

∫
Rn2 |ψ(ξ)|2 dξ ≤ (|F0||K| ∧ |F |).
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Proof. We have ∫
K

∫
Rn2

|ψ(ξ)|2 =
∫
K

∫
∪γ∈Γ0F0+γ

|ψ(ξ)|2

=
∫
K

∑
γ∈Γ0

∫
F0+γ

|ψ(ξ)|2

=
∫
K

∫
F0

∑
γ∈Γ0

|ψ(ξ + γ)|2

≤
∫
K

∫
F0

1 = |K| |F0|.

Similarly,
∫
K

∫
Rn2 |ψ(ξ)|2 ≤

∫
Rn |ψ(ξ)|2 ≤ |F | follows from a similar periodization

argument. �

Proposition 2.2

Let A =
(

A1 0
T A2

)
be a lower block triangular matrix with A1 expansive, all

eigenvalues of A2 less than or equal to one in modulus, and |A| > 1. Let ni = rank(Ai).
Let Γ be a lattice such that Γ ∩ (0 × R

n2) is a full rank lattice. If |A2| < 1, then for

every function ψ such that σψ,Γ(ξ) ≤ 1 and every K ⊂ R
n1 of positive measure,∫

K

∫
Rn2

∑
j∈Z

|ψ(Ajξ)|2 < ∞. In particular, there is no C > 0 such that ∆ψ(ξ) ≥ C >

0 a.e.

Proof. Let K ⊂ R
n1 be a set of positive, finite measure. Let F be a fundamental

region for Γ and F0 be a fundamental region for Γ0. Then, supposing σψ,Γ(ξ) ≤ 1

∫
K

∫
Rn2

∑
j∈Z

|ψ(Ajξ)|2

=
∑
j∈Z

∫
K

∫
Rn2

|ψ(Ajξ)|2

=
∑
j∈Z

∫
Aj

1(K)

∫
Rn2

|ψ(ξ)|2|A|−j

≤
∑
j∈Z

|A|−j
(
|Aj1(K)| |F0| ∧ |F |

)

=
∑
j∈Z

|A|−j
(
|A1|j |K| |F0| ∧ |F |

)
, (2.1)

where the third equality follows from the change of variables u = Ajξ and the block
lower triangular nature of A, and the fourth inequality is Lemma 2.1. Now, choose the
smallest J such that j ≥ J implies that |A1|j |K| |F0| ≥ |F |. Then, equation (2.1) is
equal to ∑

j≥J
|A|−j |F | +

∑
j<J

|K| |F0| |A2|−j ,
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which is finite since |A| > 1 and |A2| < 1. Thus,
∫
K

∫
Rn2

∑
j∈Z

|ψ(Ajξ)|2 < ∞, so in
particular, there is no C such that ∆ψ,A ≥ C > 0. �
Remark. Proposition 2.2 implies that if ψi ∈ L2(Rn) for i = 1, . . . , N , and for each i,
σψi,Γ(ξ) ≤ 1, then there is no C > 0 such that

∑N
i=1 ∆ψi(ξ) ≥ C > 0.

We now complete the characterization of diagonal matrices A for which there
exists a function f such that |f |2 tiles R

n by Z
n translations and A dilations. We will

need the following

Lemma 2.3

There exists a partition of R
n, {Im : m ≥ 1}, such that for each real diagonal

matrix D with entries ±1, D(Im) = Im for all m and Im tiles R
n by Z

n translations
for each m.

Sketch of proof. For n = 1, this can be done by letting U = [0, 1/2] and Uk =
(U +k)∪ (−U −k) for k ∈ Z. Then re–order the sets {Uk} so that they are indexed by
the positive integers. Assuming the lemma for dimension 1, . . . , n−1, let {Im : m ≥ 1}
be sets satisfying the lemma for dimension 1 and {Lm : m ≥ 1} be sets satisfying the
lemma for dimension n−1. Then {Lm×Ip : m, p ≥ 1} satisfies the lemma for dimension
n after re–ordering so that the collection is indexed by the positive integers.

Proposition 2.4

Let A be a diagonal matrix, all of whose diagonal entries are bigger than or equal
to one in absolute value. If |A| > 1, then there exists a set that tiles R

n by Z
n

translations and A dilations.

Proof. Write A =
(

A1 0
0 A2

)
, where A1 is expansive and A2 is idempotent. (If this is

impossible, then A1 is expansive, and the result follows from [3]). Let ni = rank(Ai),
and K = [−1/2, 1/2]n1 . Let {Ij : j ≥ 1} be as in Lemma 2.3, and D = A1(K)\K. Note
that {Aj1(D) : j ∈ Z} is a partition of R

n1 . We claim that W = ∪∞
j=1

(
A−j

1 (D) × Ij
)

tiles R
n by Z

n translations and A dilations.
First, we show that {Aj(W )} is a partition of R

n. Notice that

Ai(W ) =
∞⋃
j=1

(
Ai−j1 (D) × Ai2(Ij)

)

=
∞⋃
j=1

Ai−j1 (D) × Ij . (2.2)

(Recall that A2(Ij) = Ij from Lemma 2.3.) So, when i 
= k

Ai(W ) ∩ Ak(W ) =
∞⋃
j=1

∞⋃
l=1

(
Ai−j1 (D) × Ij

)
∩

(
Ak−l1 (D) × Il

)

⊂
⋃
j,l≥1

(
Ai−j1 (D) ∩ Ak−l1 (D)

)
×

(
Ij ∩ Il

)

= ∅,
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where the first equality is from equation (2.2), and the last equality is because when
j 
= l, Ij ∩ Il = ∅, while when j = l and i 
= k, Ai−j1 (D) ∩ Ak−l1 (D) = ∅. Thus,
Ai(W ) ∩ Ak(W ) = ∅ when i 
= k.

Now, ⋃
i∈Z

Ai(W ) =
⋃
i∈Z

⋃
j≥1

(
Ai−j1 (D) × Ij

)

=
⋃
j≥1

⋃
i∈Z

(
Ai−j1 (D) × Ij

)

=
⋃
j≥1

(
R
n1 × Ij

)

= R
n.

Next, we show that {W +k} is a partition of R
n. First, we show that for k 
= m ∈

Z
n, |(W + k)∩ (W +m)| = 0. Write k = (k1, k2) and m = (m1,m2) with ki,mi ∈ Z

ni ,
i = 1, 2. Since A−j(D) ⊂ [−1/2, 1/2]n1 for j ≥ 1, it follows that A−j(D)+k1 is disjoint
from A−l(D)+m1 unless k1 = m1. Moreover, Ij+k2 is disjoint from Ij+m2 since τ |Ij
is 1-1. Therefore, reasoning as we did in the dilation case, |(W + k) ∩ (W + m)| = 0
unless k = m.

Finally,

⋃
k∈Zn

W + k =
⋃

k1∈Zn1

⋃
k2∈Zn2

⋃
j≥1

(
A−j

1 (D) + k1

)
×

(
Ij + k2

)

=
⋃

k1∈Zn1

⋃
j≥1

(
A−j

1 (D) + k1

)
×

⋃
k2∈Zn2

(
Ij + k2

)

=
⋃

k1∈Zn1

⋃
j≥1

(
A−j

1 (D) + k1

)
× R

n2

=
⋃

k1∈Zn1

(
[−1/2, 1/2]n1 + k1

)
× R

n2

= R
n,

as desired. �

Corollary 2.5

Let A be a diagonal matrix with |A| > 1. There exists a set that tiles R
n by A

dilations and Z
n translations if and only if all the diagonal entries of A are bigger than

or equal to one in absolute value.

3. Results in the plane

In this section, we restrict attention to R
2. We note here the following Lemma, whose

proof is omitted.
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Lemma 3.1

Let En be a sequence of measurable sets in L2(Rn). Suppose that there is a set

E such that |En�E| → 0.

(1) If En packs [resp. tiles] R
n by translations, then E packs [resp. tiles] R

n by

translations.

(2) If En packs R
n by A dilations, then E packs R

n by A dilations.

Recall that the obstacle to constructing sets that tile by Z
n translations and A

dilations was Lemma 2.1, which stated that the height of rectangles R for which τ |R is
injective is bounded independent from the width of the rectangle. When the lattice Γ
does not contain a point on the y-axis, this is not true as will be seen in Theorem 3.2.
Moreover, when the height of the rectangle can be increased as the width decreases
as below, we will see that sets that tile both by Γ translations and A dilations can
be constructed even when A is far from expansive. Fix Γ a lattice with fundamental
region F and translation projection τF . We begin with

Theorem 3.2

Let A =
(

a 0
0 b

)
with |ab| > 1. Let D = {Am : m ∈ Z}. If for every rectangle

R ⊂ R
2 there is an M such that whenever −∞ < m ≤ M , AmR packs R

2 by Γ
translations, then there is a set U ⊂ [−a, a]×R that packs R

2 by translations and tiles

R
2 by D dilations.

Proof. Note that D :=
(
[−a,−1] ∪ [1, a]

)
× R tiles R

2 by A dilations. Let d denote
the dilation projection onto D via elements of D. It is clear from the hypothesis of
the theorem that for any bounded set B, there exists an M such that m ≤ M implies
τ |AmB is injective.

Define Un =
(
[−a,−1] ∪ [1, a]

)
× [−n, n] for n ≥ 1. Let n1 = 1. Choose m1 such

that τ |Am1U1 is injective and |Am1U1| < n1. Now, supposing that n1, . . . , nk−1 and
m1, . . . ,mk−1 have been chosen, we choose nk < |Amk−1Uk−1|

2k . Then, choose mk such
that τ |AmkUk

is injective and |AmkUk| < nk. Two observations about nj that we will
need are

nj < |AmiUi|/2j , for 1 ≤ i < j,

and
∞∑
j=k

nj <

∞∑
j=k

|Amj−1Uj−1|/2j

<
∞∑
j=k

|Amk−1Uk−1|/2j

=
|Amk−1Uk−1|

2k−1
. (3.1)

We proceed to define U . Let V1 = Am1U1. Let Ṽ2 = Am2U2, I2 = τ−1(τ(V1) ∩
τ(Ṽ2))∩V1, and let V2 = Am2(U2\U1)∪Am2(d(I2))∪(V1\I2). Note that |I2| ≤ |Ṽ2| < n2.
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In general, let

Ṽk = Amk(Uk)

Ik = τ−1
(
τ(Vk−1) ∩ τ(Ṽk)

)
∩ Vk−1

Vk = Amk(Uk \ Uk−1) ∪ Amk(d(Ik)) ∪ (Vk−1 \ Ik).

Note that |Ik| ≤ |Ṽk| < nk.
We proceed to prove four facts about the collection {Vk}.
Claim 1: d(Vk) = Uk and d|Uk

is injective. Indeed, note that

d(Vk) = (Uk \ Uk−1) ∪ d(Ik) ∪ (d(Vk−1) \ d(Ik)) = (Uk \ Uk−1) ∪ d(Vk−1).

Since d(V1) = U1, an inductive argument shows that d(Vk) = Uk. Now, since Ik ⊂
Vk−1, it follows that d(Ik), (Uk \Uk−1) and d(Vk−1)\d(Ik) are pairwise disjoint. Since
d is injective on each of the three pieces comprising the definition of Vk, this allows us
to conclude that d is injective.

Claim 2: τ |Vk
is injective. Since Ik ⊂ Vk−1, d(Ik) ⊂ Uk−1. Therefore, τ restricted

to the set Amk(Uk \ Uk−1) ∪ Amk(d(Ik)) is injective. Now,

τ(Vk−1 \ Ik) ∩ τ
(
Amk(Uk \ Uk−1) ∪ Amk(d(Ik))

)
= ∅

by the definition of Ik. So, if τ is injective when restricted to Vk−1, then τ |Vk
is also

injective. Induction then proves the result.
Claim 3: |Vk�Vk−1| < 3nk. Indeed,

|Vk�Vk−1| ≤ |Ik| + |Amkd(Ik)| + |Amk(Uk \ Uk−1)| ≤ |Ik| + |Ṽk| + |Ṽk| < 3nk.

Claim 4: | ∩∞
k=l Vk| ≥ |Vl| −

∑∞
k=l+1 nk. Indeed, we show that ∩∞

k=lVk ⊃ Vl \(
∪∞
k=l+1Ik

)
for all l ≥ 1. If x ∈ Vl \

(
∪∞
k=l+1Ik

)
, then clearly x ∈ Vl. Since x 
∈ Il+1,

x ∈ Vl \ Il+1 ⊂ Vl+1. Continuing in this fashion gives x ∈ ∩∞
k=lVk. This implies that

∣∣∣∣
∞⋂
k=l

Vk

∣∣∣∣ ≥
∣∣Vl \ (

∞⋃
k=l+1

Ik)
∣∣

≥ |Vl| −
r∑

k=l+1

|Ik|

≥ |Vl| −
r∑

k=l+1

nk.

Continuing with the proof of the theorem, by claim 3 and the fact that
∑

nj < ∞,
the sequence {Vk} is Cauchy in the symmetric difference metric, so there is a set V

such that Vk → V . By Lemma 3.1 and claims 1 and 2, τ |V is bijective and d|V is
injective. It remains to show that d(V ) = D. We show that each bounded set E of
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positive measure contained in D has non–empty intersection with d(V ). Choose L

such that |UL|
2L < |E| and E ⊂ UL. Then, note that |d−1(E) ∩ VL| ≥ |AmL ||E| and

| ∩∞
j=L Vj | ≥ |VL| −

∞∑
j=L+1

nj ≥ |VL| − |AmL ||UL|2−L

by equation (3.1). In addition, since VL ⊃ (d−1(E) ∩ VL) ∪
(
∩∞
j=LVj), it follows that

|VL| ≥
∣∣∣∣(d−1(E) ∩ VL) ∪

(
∩∞
j=LVj)

∣∣∣∣
=

∣∣∣∣d−1(E) ∩ VL

∣∣∣∣ +
∣∣∣∣

∞⋂
j=L

Vj

∣∣∣∣ −
∣∣∣∣d−1(E) ∩ VL ∩

∞⋂
j=L

Vj

∣∣∣∣

≥ |AmL ||E| + |VL| − |AmL ||UL|2−L − |d−1(E) ∩
∞⋂
j=L

Vj |,

so
∣∣∣∣d−1(E) ∩

∞⋂
j=L

Vj

∣∣∣∣ ≥ |AmL ||E| − |AmL ||UL|2−L = |AmL |
(
|E| − |UL|

2L
)

> 0

by the choice of L. Since
⋂∞
j=L Vj ⊂ V , it follows that |d−1(E) ∩ V | ≥ |d−1(E) ∩⋂∞

j=L Vj | > 0, as desired. �

We now turn to examining various cases in the plane when the hypotheses of
Theorem 3.2 are satisfied.

Proposition 3.3

Let A =
(

a 0
0 ±1

)
, where a > 1. Let D = {Am : m ∈ Z}. Let Γ be a lattice with

fundamental region F such that Γ ∩ {(0, y) : y ∈ R} = {0}. Then, for every rectangle

R of finite measure, there exists an M such that for all m ≤ M , AmR packs R
2 by Γ

translations.

Proof. Without loss of generality, the rectangle R = [−n, n]2. Denote Yn = {(0, y) :
|y| ≤ n}. Since Γ contains only the trivial element of the y-axis, τ is injective when
restricted to Yn. Indeed, if τ(0, y) = τ(0, z), then (0, y)+γ1 = (0, z)+γ2 and (0, y−z) =
γ2 − γ1 ∈ Γ. Therefore, y − z = 0.

Moreover, when F is chosen to be convex, the image of Yn under τ is a finite
number of line segments in F . Thus, there is an ε > 0 such that τ restricted to
Yn,ε := {(x, y) : |x| < ε and |y| ≤ n} is injective. Choose any M such that aMn < ε.
Then AmR ⊂ Yn,ε for all m ≤ M . In particular, τ restricted to AmR is injective for
each m ≤ M . �

A more interesting example of when the hypotheses of Theorem 3.2 are satisfied
is given in the following
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Proposition 3.4

Let x be an irrational number approximable to order J but to no higher order. Let

Γ = span
Z
{(1, 0), (x, 1)}, and let F be a fundamental region for Γ. Let A =

(
a 0
0 b

)
,

where |a| > 1 > |b| and |abJ−1| > 1. Then, for every rectangle R, there exists an M

such that for all m ≥ M , A−mR packs R
2 by Γ translations.

Proof. Without loss of generality, assume a > 1 > b > 0. By definition of order of
approximation of an irrational number (see [6, Theorem 188], for example), for any
δ > 0 and any constant K, the equation |p/q − x| < K/qJ+δ has only finitely many
solutions. Thus, after fixing δ > 0 chosen so that abJ−1+δ > 1, one can choose K small
enough so that |p/q − x| < K/qJ+δ has no solutions. In other words, we have that
|p − qx| ≥ K/qJ−1+δ for all p, q ∈ Z, q ≥ 1.

Now, let R be a rectangle. Without loss of generality, R = [−n, n]2. Choose M

such that
(K/2n)1/(J−1+δ)(a1/(J−1+δ)b)m/2n > 1

for all m ≥ M .

Claim. The function τ restricted to A−mR is injective for all m ≥ M .

Proof of claim. Note that A−mR is the rectangle [−a−mn, a−mn] × [−b−mn, b−mn].
So, in order for |

(
A−mR + γ) ∩ A−mR| > 0, it must be that γ = (γ1, γ2) satisfies

γ1 < 2a−mn. (That is, the translation in the x-direction must be no more than the
width of the rectangle.) This says that γ = p(1, 0)− q(x, 1) satisfies |p− qx| < 2a−mn.

So, 2a−mn ≥ K/qJ−1+δ and q ≥ am/(J−1+δ)
(
K
2n

)1/(J−1+δ)
> b−m2n. But, q = γ2,

so translating A−mR by γ translates in the y-direction by an amount larger than the
height of the rectangle. Therefore, |(A−mR + γ) ∩ A−mR| = 0 and τ restricted to
A−mR is injective. �

Remark. If x is approximable to order 2 but to no higher order in Proposition 3.4 (for
example, if x =

√
2 [6, Theorem 188]), then the hypotheses of the proposition reduce

to |det(A)| > 1.

Note that what we have proven so far is that for many cases in the plane, there
exist sets that tile the plane by dilations and also pack the plane by translations. It is
easier to see that whenever the determinant of the dilation matrix is not 1, it is possible
to tile the plane by translations while packing the plane by dilations. What is harder
to see is that using these two facts, one can often construct a set which simultaneously
tiles the plane by translations and dilations in the non–expansive case.

Proposition 3.5

Let A =
(

a 0
0 b

)
be a diagonal matrix with |a| > 1. Let D = {Am : m ∈ Z}. Let

Γ be any full rank lattice. Then there exists an M such that for all m ≥ M , there is a

set Um ⊂ [am, a(m+1)]×R that tiles the plane by translations. Moreover, in this case,

Um packs R
2 by dilations.
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Proof. Choose a bounded fundamental region F for Γ and γ = (γ1, γ2) such that
γ1 
= 0. Choose M such that a(M+1) − aM is bigger than the width of F plus 2γ1.
Then, for each m ≥ M , there is a k such that F +kγ ⊂ [am, am+1]×R. Moreover, since
Um is a subset of a set that tiles R

2 by D dilations, Um packs R
2 by D dilations. �

Proposition 3.6

Let A =
(

a 0
0 b

)
be a diagonal matrix with |a| > 1. Let D = {Am : m ∈ Z}. Let

Γ be any full rank lattice. If there exists a set U ⊂ [−a, a]×R that tiles by A dilations

and packs by Γ translations then there exists a set W which tiles R
2 by Γ translations

and A dilations.

Proof. This is essentially the same proof as a result of Ionascu and Pearcy [9] in the
dyadic case, but there are several modifications to be made. Choose J such that there
is a set G ⊂ [aJ , a(J+1)] × R which tiles by translations and packs by dilations (as in
Proposition 3.5), and such that [aJ , a(J+1)] ∩ [−a, a] = ∅. For this choice of J

V ⊂ G =⇒ |d(V )| ≤ |A|−1|V |. (3.2)

For the remainder of this proof, τ will denote the translation projection onto G

and d will denote the dilation projection onto U .
Define W1 = U , and Wk =

(
Wk−1 ∪ (G \ τ(Wk−1)

)
\ d

(
G \ τ(Wk−1)

)
. Now, note

that Wk tiles R
2 by dilations for each k and that τ restricted to Wk is injective for

each k.
Now, we compute

|Wk−1�Wk| = |G \ τ(Wk−1)| + |d(G \ τ(Wk−1))|
≤ 2|G \ τ(Wk−1)|. (3.3)

In addition,

|Wk| ≥ |Wk−1| + (|G| − |Wk−1|) − |A|−1(|G| − |Wk−1|)
= |Wk−1| + (1 − |A|−1)(|G| − |Wk−1|), (3.4)

where the first inequality in equation (3.4) is due to the definition of Wk and equation
(3.2). Equation (3.4) implies that |Wk| → |G|. Moreover, note that the recursive
relation ak = ak−1 +α(N −ak−1) yields N −ak = (1−α)k−1(N −a1), so if 0 < α < 1,
N − ak is summable. Therefore, by equation (3.3), |Wk�Wk−1| is summable and
Wk is a Cauchy sequence in the symmetric difference metric; hence, Wk converges to
some W .

We claim that W tiles R
2 by Γ translations and A dilations. Indeed, note that by

Lemma 3.1, τ restricted to W is injective, and since |W | = |G|, τ restricted to W is a
bijection. Also by Lemma 3.1, d restricted to W is injective, so it remains to show that
d(W ) = U , the dilation generator of R

2. To see this, let V ⊂ U be a set of positive
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measure. We show that |d(W ) ∩ V | > 0. By equation (3.2), if K ⊂ Wk is chosen so
that d(K) = V , then |K| ≥ |V |. Choose k such that |Wk�W | < |V |. Then,

|K| = |Wk ∩ K| = |(W ∩ Wk ∩ K) ∪ (W̃ ∩ Wk ∩ K)|
≤ |W ∩ K| + |Wk�W |
< |W ∩ K| + |V | ≤ |W ∩ K| + |K|.

So, |W ∩ K| > 0 and |d(W ) ∩ d(K)| = |d(W ) ∩ V | > 0, as desired. �

Corollary 3.7

Let |a| > 1 > |b|. Then, there is a matrix G with eigenvalues a and b for which

there exists a set that tiles R
2 by Z

2 translations and G dilations and a matrix B with

eigenvalues a and b for which no set tiles R
2 by Z

2 translations and B dilations.

Proof. Without loss of generality |ab| > 1. By Proposition 3.4, A =
(

a 0
0 b

)
satisfies

the hypotheses of Theorem 3.2 with Γ = span
Z
{(1, 0), (

√
2, 1)}. Combining this with

Propositions 3.5 and 3.6, one obtains a set that tiles both by Γ translations and A

dilations. Let U =
(

1 0
−1

√
2

)
. Then, UΓ = Z

n and G = UAU−1 is the desired

dilation matrix.

The matrix B can be chosen to be
(

a 0
0 b

)
, as in Corollary 2.5. �

Corollary 3.8

Let A be a 2 × 2 matrix with eigenvalues |a| > 1 and |λ| = 1, and Γ a full rank

lattice. Then, there is a set that tiles R
2 by Γ translations and A dilations.

Proof. It suffices to show that if A is diagonal and Γ is any lattice, then there exists a
set that tiles R

2 by Γ translations and A dilations. First, note that if Γ∩y-axis = {0},
then the result follows from Proposition 3.3 and Proposition 3.6. Next, suppose that
there exists a b 
= 0 such that (0, b) ∈ Γ. Choose the smallest b > 0 such that (0, b) ∈ Γ,
the smallest d such that there exists a y with (d, y) ∈ Γ, and the smallest c such that
(d, c) ∈ Γ. Then, span

Z
{(0, b), (d, c)} = Γ, so the rectangle [−d/2, d/2] × [−b/2, b/2] is

a fundamental region for Γ.
Now, if a > 1 and λ = 1, then let

Ik = [da−(k+1)/2, da−k/2] × [−b/2, 0],

Jk = [da−(k+1)/2, da−k/2] × [0, b/2],

Lk = [−da−(k+1)/2,−da−k/2] × [−b/2, 0], and

Mk = [−da−(k+1)/2,−da−k/2] × [0, b/2].

Let
W =

⋃
k≥0

(Ik + kb) ∪
⋃
k≥0

(Jk − kb) ∪
⋃
k≥0

(Lk − kb) ∪
⋃
k≥0

(Mk + kb)

∪
⋃
k>0

(Ik − kb) ∪
⋃
k>0

(Jk + kb) ∪
⋃
k>0

(Lk + kb) ∪
⋃
k>0

(Mk − kb).
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It follows from inspection that W tiles R
2 by Γ translations and A dilations. The set

W is also symmetric in x and y, so we can see that the same set will work for a < −1
and/or λ = −1. �

Finally, we turn to trying to understand exactly what the prototiles that we
have constructed look like. It follows from [13] that whenever the dilation matrix
is not expansive, the sets must be unbounded. If one reads carefully the proofs of the
theorems above, one can see that the prototiles constructed in the fashion of the proofs
when Γ does not intersect the y-axis may also have empty interior. This is not solely
an artifact of the construction, as the next proposition shows.

Proposition 3.9

Let A =
(

a 0
0 1

)
, and suppose that Γ does not intersect the y-axis. Then, every

set that tiles R
2 by A dilations and Γ translations is unbounded with empty interior.

Proof. Let W be a set with non-empty interior that tiles R
2 by A dilations and Γ

translations. We derive a contradiction. Let R be a square of length 4ε such that
R ⊂ W . Then R packs R

2. Let Y denote the y-axis. Since τ(Y ) is dense in the
fundamental region F , τ(Y ) intersects τ(R) within ε of the center of R infinitely often.
That is, there exist {γi}∞i=1 ⊂ Γ, no two of which are equal, such that (R+γi) intersects
Y within ε of the center of R. Now, assuming none of the γi are 0, |(R + γi)∩W | = 0
for all i. So, since τ restricted to W is injective, it follows that on each horizontal
strip Si of height 4ε centered at the center of R+γi, the projection of W ∩Si onto the
x-axis is contained in (−∞,−ε] ∪ [ε,∞). Now, since ∪j∈ZAjW ⊃ S, we obtain that
|W ∩ Si| ≥ aε (equality is obtained when W ∩ Si = ([−aε,−ε] ∪ [ε, aε]) × PY (R + γi),
where PY is the projection onto the y-axis). Since there are infinitely many γi and the
Si are disjoint, it follows that |W | = ∞. This is a contradiction. �

Remark. It was noted in [15] that it is not known whether there are dilation sets D
such that the only sets that tile by D dilations have empty interior. Proposition 3.9
provides another example that in the non-expansive case, the interplay between the
dilations and the translations is crucial.

On the other hand, when A =
(

a 0
0 ±1

)
, one can find a nice picture of sets that

tile by A dilations and Z
2 translations. Following the proofs in Proposition 2.4 in this

special case yields the following picture (see Figure 1). A similar picture has appeared
in [2] and [8].

4. Applications to wavelets

In this section, we apply the theorems above to the existence of wavelets. Recall the
definitions of wavelets and MSF wavelets given in Section 1. It is also known [7] that
if {ψ(x+k) : k ∈ Γ} is a (not necessarily complete) orthonormal system (in particular,
if ψ is a wavelet), then σψ̂,Γ′(ξ) = 1 a.e.
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Figure 1: Set that tiles via powers of A =
(

a 0
0 ±1

)
and integer translations.

The most general characterization of wavelets via the Fourier transform to date
was given in [8]. Given M ∈ GLn(R) and a non-zero linear subspace F of R

n, we say
that M is expanding on F if there exists a complementary (not necessarily orthogonal)
linear subspace E of R

n with the following properties:
(1) R

n = F + E and F ∩ E = {0};
(2) M(F ) = F and M(E) = E, that is, E and F are invariant under M ;
(3) there exists 0 < k ≤ 1 < γ < ∞ such that |M jx| ≥ kγj |x| when x ∈ F , j ≥ 0;
(4) given r ∈ N, there exists C = C(M, r) such that for all j ∈ Z, the set

Zjr (E) = {m ∈ E ∩ Z
n : |M jm| < r}

has less than C elements. Note that if all eigenvalues of a matrix are bigger than one
in modulus, then the matrix is expanding on R

n.
Theorem 4.1

[8, Theorem 5.3] Let ψ ∈ L2(Rn) and A such that B = At is expanding on a

subspace F of R
n. Then, ψ is an (A, Zn) wavelet if and only if

σψ̂,Zn(ξ) = 1 a.e., and
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∑
j∈Pα

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = δα,0

for all α ∈ Λ = ∪j∈ZBj(Zn) and Pα = {j ∈ Z : B−jα ∈ Z
n}.

Note that when α = 0, the second condition of Theorem 4.1 becomes ∆ψ̂,B(ξ) = 1
a.e. This is also called the discrete Calderón condition. It is not known in general
whether the discrete Calderón condition is necessary for a function to be a wavelet,
though it seems very likely.

We are now ready to interpret the results of the previous sections for wavelets.

Theorem 4.2

Let A be a diagonal matrix with determinant bigger than 1. There exists an

(A, Zn) wavelet that satisfies the discrete Calderón condition if and only if all diagonal

entries of A are bigger than or equal to 1.

Proof. Apply Proposition 2.2 and Proposition 2.4. �

Remark. Proposition 2.2 can be applied to prove that the upper block triangular
matrices described in Proposition 2.2 do not admit wavelets which satisfy the discrete
Calderón condition. By the remark following Proposition 2.2, these dilations do not
even admit multiwavelets which satisfy the discrete Calderón condition.

Theorem 4.3

Let |a| > 1 > |b|. There is a matrix A with eigenvalues a and b such that there

exists an (A, Z2) wavelet and a matrix M with eigenvalues a and b for which there

does not exist an (M, Z2) wavelet.

Proof. The matrix for which there exists a wavelet is given by Corollary 3.7. For
the other half, we showed in Proposition 2.2 that no wavelet satisfying the Calderón

condition can exist for M t =
(

a 0
c b

)
for any c. Choose c such that (a − b)/c is

irrational. Then, while M t is not expanding on a subspace, M t−1 =
(

1/a 0
−c/(ab) 1/b

)

is expanding on the subspace F = {(0, y) : y ∈ R} with complementary subspace
E = {(x(a− b)/c, x) : x ∈ R}. (This follows since E ∩Z = {0}.) Therefore, every M−1

wavelet satisfies the discrete Calderón condition, and by symmetry every M wavelet
must satisfy the discrete Calderón condition. Therefore, no M wavelets can exist. �

We present now several two dimensional examples that illustrate the progress made
in this paper and open questions that still remain. These examples also illustrate the
delicate nature of the arguments presented in this paper, as the existence of wavelets
for non-expansive dilations is related to the interplay between the eigenvectors of A

and the integer lattice, not merely the eigenvalues. (Here, we have translated all of
the previous results back to the standard lattice Z

2.)
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Examples:

(i) A =
(

2 0
0 2/3

)
, Γ = Z

2. No MSF (multi)-wavelets can exist, and no (multi)-

wavelet can exist that also satisfies the discrete Calderón condition. It is not known
whether all wavelets must satisfy the discrete Calderón condition for this dilation.

(ii) A =
(

2
√

2
0 2/3

)
, Γ = Z

2. No (multi)-wavelets can exist for this dilation.

(iii) A =
(

2 0√
2 2/3

)
, Γ = Z

2. MSF wavelets exist for this dilation.

(iv) A =
(

2 0
3
√

2 2/3

)
, Γ = Z

2. It is not known whether MSF wavelets exist for this

dilation, since 3
√

2 is approximable to order 3 and no higher order, but 2(2/3)2 < 1.

(v) A =
(

2 0
3
√

2 3/4

)
, Γ = Z

2. MSF wavelets exist for this dilation since 2(3/4)2 > 1.
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