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Abstract

We deal with a class of integral transformations of the form

f(x)→ 1
2x

∏∞
n=1

(
1+

x

(
x− d

dx
−x d2

dx2

)
(2n−1)2

)∫
R
2
+

e
− 1

2

(
x

u2+y2
uy

+ yu
x

)
f(u)h(y)dudy,x∈R+

in L2(R+;xdx), which is associated with the Kontorovich-Lebedev operator

Kiτ [f ]=
∫ ∞

0
Kiτ (x)f(x)dx, τ∈R+.

Necessary and sufficient conditions on h to establish that the transformation is
unitary in L2(R+;xdx) are obtained. A reciprocal inversion formula and an example
of the unitary convolution transformation are given.

1. Introduction

Let f, h be functions defined on R+ = [0,∞). The following double integral, which
we call the convolution of f and h, is denoted by (f ∗ h)(x), x ∈ R+, and we define it
as in [10], [14], [15] by

(f ∗ h)(x) =
1
2x

∫ ∞

0

∫ ∞

0

e
− 1

2

(
xu2+y2

uy + yu
x

)
f(u)h(y)dudy, x > 0. (1.1)

This convolution has a relationship with the Kontorovich-Lebedev transform [6], [15]

Kiτ [f ] =
∫ ∞

0

Kiτ (x)f(x)dx, τ ∈ R+, (1.2)
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which contains as the kernel the modified Bessel function of the second kind Kν(z) or
the Macdonald function [1] of the pure imaginary index ν = iτ . The function Kν(z)
satisfies the differential equation

z2 d
2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0, (1.3)

for which it is the solution that remains bounded as z tends to infinity on the real line.
The Macdonald function has the asymptotic behaviour [1]

Kν(z) =
( π

2z

)1/2

e−z[1 +O(1/z)], z → ∞, (1.4)

and near the origin
zνKν(z) = 2ν−1Γ(ν) + o(1), z → 0, (1.5)

K0(z) = − log z +O(1), z → 0. (1.6)

The kernel of the Kontorovich-Lebedev operator (1.2) can be given by the following
Fourier integral [1], [6]

Kiτ (x) =
∫ ∞

0

e−x coshu cos τudu, x > 0. (1.7)

The product of the functions (1.7) of different arguments can be represented in turn
by the Macdonald formula [cf. [1], [14]]

Kiτ (x)Kiτ (y) =
1
2

∫ ∞

0

e
− 1

2

(
xu2+y2

uy + yu
x

)
Kiτ (u)

du

u
. (1.8)

This is a key formula, which is used to prove the factorization property for the convo-
lution (1.1), i.e.

Kiτ [f ∗ h] = Kiτ [f ]Kiτ [h], τ ∈ R+, (1.9)

in terms of the Kontorovich-Lebedev operator (1.2) in appropriate Lebesgue spaces. In
particular, this operator is well defined in the Banach ring L0(R+) ≡ L1(R+;K0(x)dx)
(see [14, Section 15.4], [15, Section 4.3], [10], [14]) normed by

||f ||L0(R+) =
∫ ∞

0

K0(x)|f(x)|dx. (1.10)

It is proved (see [14], Chapter 6) that the Kontorovich-Lebedev transform is a bounded
operator from L0(R+) into the space of bounded continuous functions on R+ vanishing
at infinity. Furthermore, the convolution (1.1) of two functions f, h ∈ L0(R+) belongs
to L0(R+) and satisfies the norm inequality

||f ∗ h||L0(R+) ≤ ||f ||L0(R+)||h||L0(R+). (1.11)
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However, if we define the operator (1.2) in L2(R+;xdx) as

Kiτ [f ] = lim
N→∞

∫ N

1/N

Kiτ (x)f(x)dx, (1.12)

where the limit is taken in the mean square sense with respect to the norm of the space
L2(R+; τ sinhπτdτ), then (see [15], Theorem 2.4 )

Kiτ : L2(R+;xdx) ↔ L2(R+; τ sinhπτdτ)

is a bounded operator and forms an isometric isomorphism between these spaces with
the Parseval identity of the form

∫ ∞

0

x|f(x)|2dx =
2
π2

∫ ∞

0

τ sinhπτ |Kiτ [f ]|2dτ. (1.13)

The two definitions (1.2) and (1.12) are equivalent, if f ∈ L2(R+;xdx)∩L0(R+). The
inverse operator in the latter case is given by the formula f(x) = limN→∞ fN (x), where

fN (x) =
2
π2

∫ N

0

τ sinhπτ
Kiτ (x)
x

Kiτ [f ]dτ, (1.14)

and the convergence is in the mean square sense with respect to the norm of
L2(R+;xdx). It can be written for almost all x ∈ R+ in the equivalent form (see
[15], formula (2.70))

f(x) =
2
xπ2

d

dx

∫ ∞

0

∫ x

0

τ sinhπτKiτ (y)Kiτ [f ]dydτ. (1.15)

The boundedness and inversion problems for convolution mappings of different
classes of integral transformations are well known. We note that similar results were
obtained for convolution transforms in [2], [3], [7], [9] related to the Mellin type and
general Fourier type operators. The theory of the convolution (1.1) was developed by
the author in [10], [11], [12], [13], [14], [16] and was used in some applications to the
corresponding class of convolution integral equations.

Here we draw a parallel with results for the Fourier cosine and sine convolution
transforms (cf. [4], [8]). Namely, we continue to study the Kontorovich-Lebedev
convolution (1.1) in the weighted Lebesgue spaces. Furthermore, we investigate, for
a fixed h, an integral transform of the convolution type f → g, which contains a
differential operator of the infinite order and can be written in the operational form as

g(x) =
1
2x

∞∏
n=1


1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2




×
∫ ∞

0

∫ ∞

0

e
− 1

2

(
xu2+y2

uy + yu
x

)
f(u)h(y)dudy, x > 0. (1.16)
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We obtain necessary and sufficient conditions on the kernel function h ∈ L0(R+)
for the transformation (1.16) to be unitary on L2(R+;xdx), and compute its inverse.
The Watson type theorem is proved. Finally we give a particular example of such
convolution kernels.

2. Convolution properties

In this section we prove some important preliminary results, which give the norm esti-
mates in L2(R+;xdx) for the convolution (1.1). For instance, appealing to Theorem 4.7
in [15] we obtain for f, h ∈ L2(R+) the following inequality

||f ∗ h||L2(R+;xdx) ≤
1
2

√
π

2
||f ||L2(R+)||h||L2(R+). (2.1)

Let us extend the norm inequality for convolution (1.1) if one of the functions, say h,
belongs to L0(R+) ⊃ L2(R+) and f ∈ L2(R+;xdx). We have

Lemma 1

Let f ∈ L2(R+;xdx) and h ∈ L0(R+). Then, convolution (1.1) exists for each

x > 0 as the Lebesgue double integral and belongs to L2(R+;xdx). Moreover,

||f ∗ h||L2(R+;xdx) ≤ ||f ||L2(R+;xdx)||h||L0(R+). (2.2)

Proof. Indeed, with Schwarz’s inequality we deduce

|(f ∗ h)(x)|2 ≤ 1
4x2

∫ ∞

0

∫ ∞

0

e
− 1

2

(
xu2+y2

uy + yu
x

)
|h(y)|dudy

u

×
∫ ∞

0

∫ ∞

0

u|f(u)|2e
− 1

2

(
xu2+y2

uy + yu
x

)
|h(y)|dudy.

Since (see [1]) ∫ ∞

0

e
− 1

2

(
xu2+y2

uy + yu
x

)
du

u
= 2K0(

√
x2 + y2), (2.3)

it follows that

|(f ∗ h)(x)|2 ≤ 1
2x2

∫ ∞

0

K0(
√
x2 + y2)|h(y)|dy

×
∫ ∞

0

∫ ∞

0

u|f(u)|2e
− 1

2

(
xu2+y2

uy + yu
x

)
|h(y)|dudy

≤ 1
2x2

∫ ∞

0

K0(y)|h(y)|dy

×
∫ ∞

0

∫ ∞

0

u|f(u)|2e
− 1

2

(
xu2+y2

uy + yu
x

)
|h(y)|dudy. (2.4)
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We note that we have used in (2.4) the elementary inequality

K0(
√
x2 + y2) ≤ K0(y), x, y > 0.

Hence multiplying both sides of (2.4) by x we integrate with respect to x ∈ R+.
Inverting the order of integration by the Fubini theorem we invoke (2.3) to obtain∫ ∞

0

x|(f ∗ h)(x)|2dx ≤
∫ ∞

0

K0(y)|h(y)|dy
∫ ∞

0

∫ ∞

0

uK0(
√
u2 + y2)|f(u)|2|h(y)|dudy

≤
∫ ∞

0

u|f(u)|2du
(∫ ∞

0

K0(y)|h(y)|dy
)2

. (2.5)

Now we recall norm (1.10) and write (2.5) in equivalent form (2.2). Lemma 1 is
proved. �

The relationship between the convolution (1.1) and the Kontorovich-Lebedev
transform (1.2) under the conditions of Lemma 1 is given by

Lemma 2

Let f, h be under conditions of Lemma 1. Then, the Kontorovich-Lebedev convo-

lution (f ∗ h)(x) satisfies the factorization property (1.9). Furthermore, for almost all

x > 0 the generalized Parseval equality holds

(f ∗ h)(x) =
2
π2

lim
N→∞

∫ N

0

τ sinhπτ
Kiτ (x)
x

Kiτ [f ]Kiτ [h]dτ, (2.6)

where the limit is taken with respect to the norm of L2(R+;xdx). In particular, it can

be written in the form

(f ∗ h)(x) =
2
π2

∫ ∞

0

τ sinhπτ
Kiτ (x)
x

Kiτ [f ]Kiτ [h]dτ, x > 0, (2.7)

if the latter integral converges absolutely and uniformly on x ≥ x0 > 0.

Proof. By virtue of the formula (1.14) we have for almost all x > 0

x(f ∗ h)(x) =
2
π2

d

dx

∫ ∞

0

∫ x

0

τ sinhπτKiτ (y)Kiτ [f ∗ h]dydτ. (2.8)

Also, since h ∈ L0(R+) and |Kiτ (x)| ≤ K0(x) (see (1.7)), it follows from (1.10) that
|Kiτ [h]| ≤ ||h||L0(R+). Further, as is proved in [15], Lemma 2.5, the kernel

∫ x

0

Kiτ (y)dy ∈ L2(R+; τ sinhπτdτ)

for each x > 0. Therefore we have that the product

Kiτ [h]
∫ x

0

Kiτ (y)dy ∈ L2(R+; τ sinhπτdτ).
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At the same time if we denote by

θx(y) =

{
1, if y ∈ [0, x],

0, if y ∈ (x,∞),

we see that θx(y) ∈ L0(R+) and the factorization property (1.9) takes place in the
Banach ring L0(R+) for the functions h, θx(y), namely

Kiτ [h]Kiτ [θx] = Kiτ [h ∗ θx].

Thus Lemma 1 and the Parseval equality (1.13) yield

2
π2

∫ ∞

0

∫ x

0

τ sinhπτKiτ (y)Kiτ [h]Kiτ [f ]dydτ

=
2
π2

∫ ∞

0

τ sinhπτKiτ [f ]Kiτ [h ∗ θx]dτ

=
∫ ∞

0

uf(u)(h ∗ θx)(u)du. (2.9)

Substituting the double integral (1.1) for (h ∗ θx)(u) in (2.9) and inverting the order
of integration by using Fubini’s theorem, we get

∫ ∞

0

uf(u)(h ∗ θx)(u)du =
∫ x

0

v(f ∗ h)(v)dv.

Consequently, for almost all x > 0, we obtain

x(f ∗ h)(x) =
2
π2

d

dx

∫ ∞

0

∫ x

0

τ sinhπτKiτ (y)Kiτ [f ]Kiτ [h]dydτ (2.10)

and comparing with (2.8) we verify the factorization equality (1.9) for (f ∗h)(x) under
conditions of the Lemma.

It is possible to justify the differentiation under the integral sign in (2.10) by the
absolute and uniform convergence of the differentiated integral. Therefore in this case
we write (2.10) in the form (2.7). However, comparing with (1.15) we find, that for the
sequence fN of L2(R+;xdx)- functions, which is defined by (1.14) the differentiation
in (2.10) is performed and

(fN ∗ h)(x) =
2
π2

∫ ∞

0

τ sinhπτ
Kiτ (x)
x

Kiτ [fN ]Kiτ [h]dτ

=
2
π2

∫ N

0

τ sinhπτ
Kiτ (x)
x

Kiτ [f ]Kiτ [h]dτ, (2.11)

where

Kiτ [fN ] =

{
Kiτ [f ], if τ ∈ [0, N ],

0, if τ ∈ (N,∞).
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Indeed, the integral (2.11) converges uniformly with respect to x over any finite interval
(0, N). Further, invoking (2.2) we derive

||f ∗ h− fN ∗ h||L2(R+;xdx) = ||(f − fN ) ∗ h||L2(R+;xdx)

≤ ||f − fN ||L2(R+;xdx)||h||L0(R+) → 0, N → ∞.

Thus the limit of (fN ∗ h)(x) with respect to the norm in L2(R+;xdx) coincides with
(f ∗ h)(x) and we prove (2.6) and complete the proof of Lemma 2. �

Corollary 1

Under conditions of Lemma 1 the Parseval equality (1.13) takes the form∫ ∞

0

x|(f ∗ h)(x)|2dx =
2
π2

∫ ∞

0

τ sinhπτ |Kiτ [f ]Kiτ [h]|2dτ.

In particular, for f ∈ L0(R+) ∩ L2(R+;xdx) it gives∫ ∞

0

x|(f ∗ f)(x)|2dx =
2
π2

∫ ∞

0

τ sinhπτ |Kiτ [f ]|4dτ.

3. A Watson type theorem

In this section we study the problem of inverting the convolution transformation (1.16)
in L2(R+;xdx), where h(x) belongs to a class of the so-called Kontorovich-Lebedev
kernels. We will show that this class is significant in the theory of the transformation
(1.16) as, for instance, a class of general Fourier kernels related to the Fourier and
Mellin type convolution transforms (cf. [7, Chapter VIII], [3], [4], [8]).

Definition 1. A function h ∈ L0(R+) is said to be a Kontorovich-Lebedev kernel if
it satisfies the following convolution equation

(h ∗ h)(x) =
4
π2
K0(x), x > 0. (3.1)

Combining this with the factorization property (1.9) and formula (2.16.48.14) in
[5] we obtain

Kiτ [h ∗ h] = |Kiτ [h]|2 = Kiτ

[
4
π2
K0(x)

]
=

1
cosh2(πτ/2)

, (3.2)

or
|Kiτ [h]| =

1
cosh(πτ/2)

. (3.3)

Now we are ready to prove an analogue of Watson’s theorem [9], [14] about
necessary and sufficient conditions for convolution integral transformations of the
Kontorovich-Lebedev type to be unitary in L2(R+;xdx).
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Theorem

Let h(x) ∈ L0(R+). The transformation f → g given by formula (1.16) is unitary

on L2(R+;xdx) whose inverse can be written in the symmetric form

f(x) = lim
N→∞

1
2x

N∏
n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)

×
∫ ∞

0

∫ ∞

0

e
− 1

2

(
xu2+y2

uy + yu
x

)
g(u)h(y)dudy, (3.4)

if, and only if, h is a Kontorovich-Lebedev kernel. The convergence in (3.4) is with

respect to the norm in L2(R+;xdx).

Proof. Sufficiency: Let h be a Kontorovich-Lebedev kernel. Applying Lemma 2 we
find that convolution transform (1.16) can be written in the form

g(x) = lim
N→∞

2
π2x

N∏
n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)∫ ∞

0

τ sinhπτKiτ (x)Kiτ [f ]Kiτ [h]dτ.

(3.5)
Indeed, the corresponding integral (2.7) is absolutely and uniformly convergent on
x > 0. We show this fact by using Schwarz’s inequality and invoking (3.3). Precisely,
we have

∫ ∞

0

τ sinhπτ |Kiτ (x)Kiτ [f ]Kiτ [h]| dτ ≤
(∫ ∞

0

τ sinhπτ |Kiτ [f ]|2 dτ
)1/2

×
(

2
∫ ∞

0

τ tanh
(πτ

2

)
|Kiτ (x)|2 dτ

)1/2

<∞, (3.6)

since the first integral in the right-hand side of inequality (3.6) represents the norm
of Kiτ [f ] in L2(R+; τ sinhπτdτ) and the second one is convergent for each x > 0 by
virtue of the asymptotic expansion (1.148) in [15] for the Macdonald function Kiτ (x)
when τ → +∞.

Furthermore, if we denote by

gN (x) =
2
π2x

N∏
n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)∫ ∞

0

τ sinhπτKiτ (x)Kiτ [f ]Kiτ [h]dτ,

(3.7)
then we can invert the order of operators in (3.7) and it formally becomes

gN (x) =
2
π2x

∫ ∞

0

τ sinhπτ
N∏

n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)
[Kiτ (x)]Kiτ [f ]Kiτ [h]dτ.

(3.8)
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Hence applying (1.3) we see that

N∏
n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)
[Kiτ (x)] = Kiτ (x)

N∏
n=1

(
1 +

τ2

(2n− 1)2

)
.

Consequently, the interchange of the order of integration and the N -th product in (3.8)
is performed if the following integral∫ ∞

0

τ sinhπτKiτ (x)
N∏

n=1

(
1 +

τ2

(2n− 1)2

)
Kiτ [f ]Kiτ [h]dτ

converges uniformly on x > 0. Splitting the latter integral into two
∫ E

0
and

∫ ∞
E

it is
not difficult to verify the interchange in the first integral over any finite interval [0, E],
since the integrand is analytic with respect to x > 0. To change the order in the second
integral we show that∣∣∣∣∣

∫ ∞

E

τ sinhπτKiτ (x)
N∏

n=1

(
1 +

τ2

(2n− 1)2

)
Kiτ [f ]Kiτ [h]dτ

∣∣∣∣∣ → 0, E → ∞,

uniformly for all x > 0. In a similar manner we use the uniform estimate (1.100) in
[15] for the Macdonald function and via Schwarz’s inequality we obtain∣∣∣∣∣

∫ ∞

E

τ sinhπτKiτ (x)
N∏

n=1

(
1 +

τ2

(2n− 1)2

)
Kiτ [f ]Kiτ [h]dτ

∣∣∣∣∣
≤ K0(x0 cos δ)

(
2

∫ ∞

E

τ tanh
(πτ

2

)
(1 + τ2)2Ne−2δτdτ

)1/2

× ||Kiτ [f ]||L2(R+;τ sinhπτdτ) → 0,

when E → ∞ and x ≥ x0 > 0, δ ∈
(
0, π2

)
. We employ now the elementary infinite

product

cosh
(πτ

2

)
=

∞∏
n=1

(
1 +

τ2

(2n− 1)2

)
, (3.9)

which converges uniformly on 0 ≤ τ ≤ A, A > 0. Hence due to equalities (1.13), (3.2)
and Levi’s theorem we deduce

lim
N→∞

2
π2

∫ ∞

0

τ sinhπτ

∣∣∣∣∣
N∏

n=1

(
1 +

τ2

(2n− 1)2

)
Kiτ [f ]Kiτ [h]

∣∣∣∣∣
2

dτ

=
2
π2

∫ ∞

0

τ sinhπτ |Kiτ [f ]|2 dτ =
∫ ∞

0

x|f(x)|2dx.

On the other hand,

2
π2

∫ ∞

0

τ sinhπτ

∣∣∣∣∣
N∏

n=1

(
1 +

τ2

(2n− 1)2

)
Kiτ [f ]Kiτ [h]

∣∣∣∣∣
2

dτ

=
∫ ∞

0

x|gN (x)|2dx (3.10)
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and
lim

N→∞

∫ ∞

0

x|gN (x)|2dx =
∫ ∞

0

x|f(x)|2dx. (3.11)

It is clear that

Kiτ [gN ] = Kiτ [f ]Kiτ [h]
N∏

n=1

(
1 +

τ2

(2n− 1)2

)

and invoking (3.9) we verify the pointwise convergence to a function Kiτ [g], namely

lim
N→∞

Kiτ [gN ] = lim
N→∞

Kiτ [f ]Kiτ [h]
N∏

n=1

(
1 +

τ2

(2n− 1)2

)

= Kiτ [f ]Kiτ [h] cosh
(πτ

2

)
= Kiτ [g]. (3.12)

Using again the Parseval identity (1.13) we show that the sequence gN (x) converges in
mean to a function g(x) say, of the space L2(R+;xdx), which we call the convolution
transform (1.16). From (3.10), (3.12) we have∫ ∞

0

x|gN (x) − g(x)|2dx =
2
π2

∫ ∞

0

τ sinhπτ |Kiτ [gN ] −Kiτ [g]|2 dτ. (3.13)

The right-hand side of (3.13) tends to zero when τ → ∞ via the dominated conver-
gence theorem since |Kiτ [gN ]| ≤ |Kiτ [f ]|. Thus we establish that gN (x) → g(x) in
L2(R+;xdx) and passing to the limit in (3.11) we obtain the Parseval equality for the
transform (1.16) ∫ ∞

0

x|g(x)|2dx =
∫ ∞

0

x|f(x)|2dx.

However formulas (1.9), (3.2) and (3.12) yield

Kiτ [g]Kiτ [h] = Kiτ [f ]
1

cosh(πτ/2)
. (3.14)

Therefore, it is equivalent to the identity

Kiτ [f ] = Kiτ [g]Kiτ [h] cosh
(πτ

2

)
, (3.15)

where both sides are L2(R+; τ sinhπτdτ)-functions. Thus, in the same manner as
above it corresponds to (3.4) and gives the inversion formula of the transform (1.16).

Necessity: We suppose that h ∈ L0(R+) is a function such that the convolution
transformation (1.16) is unitary on L2(R+;xdx) and whose inverse is given by (3.4).
Here we cannot apply directly relations (3.12) and (3.15) since there is no guarantee
that, for instance, the right-hand side of (3.15) is a function from L2(R+; τ sinhπτdτ).
We only know that h ∈ L0(R+) and consequently Kiτ [h] is bounded. But since (3.4)
takes place for any g ∈ L2(R+;xdx) let us consider

g(x) =
4
√

2
π3

√
π

(
e−x

√
x

∗K0(x)
)
. (3.16)
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It is easily seen from (1.11) and Lemma 1 that g(x) ∈ L2(R+;xdx) ∩ L0(R+). Con-
sequently, there exists a function f(x) which corresponds to (3.16) by the inversion
formula (3.4). At the same time, by virtue of the factorization property (1.9) in the
ring L0(R+) by using formulas (2.16.6.4) in [5] and (3.2) we find

Kiτ [g] =
4
√

2
π3

√
π
Kiτ

[(
e−x

√
x

∗K0(x)
)]

=
1

cosh2(πτ/2) coshπτ
. (3.17)

Therefore, formula (3.14) yields

Kiτ [f ] =
Kiτ [h]

cosh(πτ/2) coshπτ
∈ L2(R+; τ sinhπτdτ) (3.18)

since Kiτ [h] is bounded. Combining with (3.17) and (1.9) we obtain

1
cosh2(πτ/2) coshπτ

=
Kiτ [h ∗ h]
coshπτ

,

and immediately arrive at (3.2), (3.3). The theorem is proved. �
Finally, we give some ideas to construct a Kontorovich-Lebedev kernel (3.1) and

an example of this function with reciprocal formulas of the convolution transformation
(1.16), (3.4). In view of the formula (2.16.2.1) in [5]

2
π

∫ ∞

0

Kiτ (x)dx =
1

cosh(πτ/2)
,

we see that the function h(x) = 2/π ∈ L0(R+) is a Kontorovich-Lebedev kernel.
Moreover, after calculating the inner integral in (1.16), (3.4) with respect to y (cf. [15,
Section 4.5]) we deduce the following pair of reciprocal convolution transformations of
the Kontorovich-Lebedev type

g(x) = lim
N→∞

2
πx

N∏
n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)∫ ∞

0

K1(
√
x2 + u2)

xu√
x2 + u2

f(u)du,

f(x) = lim
N→∞

2
πx

N∏
n=1

(
1 +

x
(
x− d

dx − x d2

dx2

)
(2n− 1)2

)∫ ∞

0

K1(
√
x2 + u2)

xu√
x2 + u2

g(u)du,

which are unitary in the space L2(R+;xdx).

Corollary 2

Let h, l ∈ L0(R+) be the Kontorovich-Lebedev kernels. If m(x), x ∈ R+ is a

solution of the convolution integral equation in the Banach ring L0(R+)

2
π

∫ ∞

0

u√
x2 + u2

K1(
√
x2 + u2)m(u)du = ϕ(x), (3.19)

where ϕ(x) = (h ∗ l)(x), then m(x) is a Kontorovich-Lebedev kernel.
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Indeed, in terms of the Kontorovich-Lebedev transform (1.2) (see (1.9)) equation
(3.19) can be written as follows

Kiτ [m]
1

cosh(πτ/2)
= Kiτ [ϕ] = Kiτ [h]Kiτ [l].

Thus via (3.2) we finally derive

|Kiτ [m]| = cosh
(πτ

2

)
|Kiτ [h]Kiτ [l]| =

1
cosh(πτ/2)

.
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Russian).

13. S.B. Yakubovich and Yu.F. Luchko, Operational properties of convolution for the Kontorovich-
Lebedev transformation, Dokl. Akad. Nauk Belarusi 38 (1994), 19–23 (in Russian).

14. S.B. Yakubovich and Yu.F. Luchko, The Hypergeometric Approach to Integral Transforms and
Convolutions, Mathematics and its Applications 287, Dordrecht, 1994.

15. S.B. Yakubovich, Index Transforms, World Scientific Publishing Co., Inc., River Edge, N.J., 1996.
16. S.B. Yakubovich, Index Transforms and Convolution Method, Dr. Sc. Thesis. Minsk, 1996.


