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Abstract

We prove some properties similar to the theorem of Ax-Kochen-Ershov, in some
cases of pairs of algebraically maximal fields of residue characteristicp > 0. These
properties hold in particular for pairs of Kaplansky fields of equal characteristic,
formally℘-adic fields and finitely ramified fields. From that we derive results about
decidability of such extensions.

1. Introduction

First we recall the theorem of Ax-Kochen-Ershov ([1], [2], [11], [12]). Let (K, v) and
(K ′, v′) be two henselian valued fields of residue characteristic zero. Then (K, v) and
(K ′, v′) are elementarily equivalent if and only if the value groups vK and v′K ′ are
elementarily equivalent, and the residue fields Kv and K ′v′ are elementarily equivalent.

This theorem has also been proved for other classes of fields. We are interested in
generalizing it to pairs of valued fields.

By a pair of valued fields we mean a structure (K ⊂ L, v), with L a valued field,
and K a subfield of L. Let (K ⊂

�= L, v) and (K ′ ⊂
�= L′, v′) be two pairs of henselian

valued fields with residue characteristic zero. Is it true that (K ⊂
�= L, v) ≡ (K ′ ⊂

�= L′, v′)
if and only if (vK ⊂ vL) ≡ (v′K ′ ⊂ v′L′) and (Kv ⊂ Lv) ≡ (K ′v′ ⊂ L′v′) ?

In general, this is false. First, we recall that a pair (K ⊂ L, v) of valued fields is
immediate if vK = vL and Kv = Lv. Françoise Delon proved the following (cf. [8]).

Let TR (resp. TG) be a theory of fields of characteristic zero (resp. totally ordered
abelian groups), and T be the theory of all immediate pairs (K ⊂

�= L, v) of henselian
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fields such that Kv |= TR and vK |= TG. Then T is not complete, and admits 2ℵ0

distinct completions.
The failure comes from initial segments v(l −K) = {v(l − x) | x ∈ K} of vL, for

a fixed l ∈ L. With the set of all such initial segments, Françoise Delon interprets the
theory of all symmetric and antireflexive graphs in T .

We need to consider those initial segments in the theory.
Note that for every l 	= 0 in L, v(l − K) = v(l) + v(1 − Kl−1). Hence we can

generalize in a natural way the initial segments v(l −K) by defining the sets In(K ⊂
L, v) := {v(1 − A) | A ⊆ L, A is a K-module of dimension n, disjoint from K}, with
n a positive integer. We also set I(K ⊂ L, v) = {In(K ⊂ L, v) | n ≥ 1}.

If vK = vL, then v(1 − A) is an initial segment of vK. In general, we can have
In(K ⊂ L, v) 	= In+1(K ⊂ L, v): Baur proved that there exist pairs (K ⊂ L, v) with
I2(K ⊂ L, v) 	= I3(K ⊂ L, v) (cf. [4], p. 33).

The family I(K ⊂ L, v) is interpretable in the theory of (K ⊂ L, v). Hence, if
(K ⊂ L, v) ≡ (K ′ ⊂ L′, v′), then (Kv ⊂ Lv) ≡ (K ′v′ ⊂ L′v′) and (vK ⊂ vL)∪ I(K ⊂
L, v) ≡ (v′K ′ ⊂ v′L′) ∪ I(K ′ ⊂ L′, v′). Is the converse true? In this paper, we focus
on two special cases.

The first one is: I1(K ⊂ L, v) = {vK}. This is equivalent to K being dense in L,
with the topology associated to v. In this case we say that the pair is dense.

The second one is: for every finitely generated K-submodule A of L, v(1−A) has
a greatest element. In this case, we say that the pair is separated or vs-defectless.

In both examples, the theory of I(K ⊂ L, v) is contained in the theory of (vK ⊂
vL). We obtain generalizations of the theorem of Ax-Kochen-Ershov in the cases of
dense and separated pairs of valued fields, and in other cases (see subsection 3.3).

In [17], those pairs have been studied only with residue characteristic 0. Here we
generalize the results to some classes of fields with residue characteristic p > 0. In
Section 4, we derive properties about decidability of such pairs.

Observe that we use the notation (K ⊂
�= L, v) only in the non-separated case.

Indeed, from general properties of separated pairs (see, for example the main theorem
of [9]), we deduce the following. If (K ⊂ L, v) is a separated pair of valued fields, such
that vL = vK and Kv = Lv, then K = L.

2. Definitions - Classical results

The reader can find basic definitions about valuations and pseudo-Cauchy sequences
in [10], [13], [15], [17], [19] (for example).

Let (K, v) be a valued field. We will use the following notations:

- v will be the valuation.
- vK will be the value group of (K, v).
- Rv will be its valuation ring, Rv := {x ∈ K | v(x) ≥ 0}.
- Mv will be its maximal ideal, Mv := {x ∈ K | v(x) > 0}.
- Kv will be the residue field, Kv := Rv/Mv.
- For x ∈ Rv, x/v will be the class of x modulo Mv.
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Let Uv := Rv ∩ (Rv\{0})−1 be the group of all units of Rv. Then we know
that vK � (K\{0})/Uv, and we can assume that v is the quotient map K\{0} →
(K\{0})/Uv. Therefore, we can assume that the language of valued fields is LV F :=
(+, ·, 0, 1, R), where R is a unary predicate interpreted by: ∀x ∈ K, R(x) ⇔ x ∈ Rv.
However, in our proofs we will use the symbol v of the valuation mapping because it
is usual.
LF will be the language of fields, and LG will be the language of ordered groups.

2.1 Some valued fields

The results of Section 3 will apply to some classes of fields which we will define
now.

Let (K, v) be a valued field of residue characteristic p > 0. (K, v) is called a
Kaplansky field if it satisfies:

(i) p · vK = vK

(ii) Any polynomial Xpn

+ an−1X
pn−1

+ · · ·+ a1X
p + a0X + b with coefficients

in the residue field Kv has a root in Kv.

Note that, under assumption (i), (ii) is equivalent to “Kv does not admit a finite
extension of degree divisible by p” ([15]). We see that the residue field of any Kaplansky
field is perfect, and that any algebraically maximal Kaplansky field is perfect.

In [13], Theorem 5, Kaplansky proved that, for every Kaplansky field (K, v), the
maximal immediate algebraic extension M of (K, v) is uniquely determined up to
valuation preserving isomorphism. Furthermore, for every pseudo-Cauchy sequence of
algebraic type (xλ) having P for a minimal polynomial, and without a pseudo-limit
in (K, v), M contains a pseudo-limit l of (xλ) which is also a root of P (x) = 0 ([13],
Theorem 3. For the definition of pseudo-Cauchy sequences, see [13], Section 2).

A valued field (K, v) is said to be finitely ramified if charK = 0 < p = char(Kv),
and there exists an integer e ≥ 1 such that vp/e is the least positive element of vK.
The integer e is called the ramification index of (K, v).

Note that the class of all finitely ramified fields is not elementary. However for
any prime number p and any positive integer e, the class of all finitely ramified fields
of residue characteristic p and with ramification index e is elementary.

A valued field (K, v) is called unramified if it is finitely ramified and its ramification
index e is equal to 1.

A finitely ramified field (K, v) is called a formally ℘-adic field if Kv is a finite
field.

The henselization of every valued field is uniquely determined up to valuation
preserving isomorphism. Now, a finitely ramified field is algebraically maximal if and
only if it is henselian (see, for example, [15]). Hence the immediate maximal algebraic
extension of any finitely ramified field is uniquely determined up to valuation preserving
isomorphism.
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2.2 Enriched theories

In order to prove the results of Section 3, we introduce the following definitions.

Definition 2.1 ([17], Définition 1.2.2). Let T be a theory of valued fields in a language
L(T ) containing LV F , and α, β be two n-ary symbols of L(T ).
1) If:

∀(x1, . . . , xn) , α(x1, . . . , xn) ⇒
[ ∧

1≤i≤n

xi ∈ Rv ∧ (∀(y1, . . . , yn) (∗)

∧
1≤i≤n

yi ∈ Rv ∧
∧

1≤i≤n

(yi/v = xi/v) → α(y1, . . . , yn))
]

holds in T , then there exists an n-ary relation α/v on Kv with:

(α/v)(x1/v, . . . , xn/v) ⇔ α(x1, . . . , xn);

α will be called a lifting of the residue relation α/v.
2) If:

∀(x1, . . . , xn), β(x1, . . . , xn) ⇒
[
∀(y1, . . . , yn) (∗∗)

∧
1≤i≤n

(v(yi) = v(xi)) → β(y1, . . . , yn)
]

holds in T , then there exists an n-ary relation vβ on vK with:

vβ(v(x1), . . . , v(xn)) ⇔ β(x1, . . . , xn);

β will be called a lifting of the value relation vβ.

Definition 2.2 ([17], Définition 1.2.3). Let T be a theory of algebraically maximal
valued fields. T will be called an enriched theory of valued fields if:

The language of T is L(T ) = LV F ∪ {αi, βi | i ∈ N} ∪ {Fi | 1 ≤ i ≤ n}, with n < ω,
where, in the theory T :

- every αi is the lifting of a residue relation,
- every βi is the lifting of a value relation,
- the interpretation of the Fi’s in the models of T is an ascending chain of alge-

braically maximal valued subfields.

If T is an enriched theory of valued fields, let:

LRF (T ) := LF ∪ {αi/v | i ∈ N} ∪ {Fi/v | 1 ≤ i ≤ n},
TRF (T ) be the theory of all residue fields of models of T , in the language LRF (T ),
LV G(T ) := LG ∪ {vβi | i ∈ N} ∪ {vFi | 1 ≤ i ≤ n},
TV G(T ) be the theory of all value groups of models of T , in the language LV G(T ).
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For example, the theory of all pairs of algebraically maximal fields (K ⊂
�= L, v),

together with a valuation u finer than v is an enriched theory of valued fields. Indeed,
let u/v be the quotient valuation, then Ru := {x ∈ Rv | x/v ∈ Ru/v}. Hence Ru can
be interpreted by a lifting of a residue relation.

The enriched theories will enable us to generalize theorems on pairs in two ways.
The first one is the generalization of 3.1 and 3.2 to separated n-tuples of valued fields by
means of predicates of subfields (3.10 to 3.13). The second one is the generalization to
some cases of neither dense nor separated pairs, by means of coarsenings of valuations,
which can be encoded by residue relations (3.16, 3.17). Recall that a valuation v is
said to be coarser than u if u is finer than v, i.e. Ru ⊂ Rv. We will denote u > v.

If f is an isomorphism of valued fields from (K, v) onto (K ′, v′) then there exist
two isomorphisms vf from vK onto v′K ′, and f/v from Kv onto K ′v′ such that:

- ∀g ∈ vK, vf(g) = v(f(x)) with v(x) = g

- ∀z ∈ Kv, (f/v)(z) = f(x)/v with x/v = z.

Definition 2.3. Let T be an enriched theory of valued fields and F1, . . . , Fn be all
the predicates of subfields of L(T ). Let (K, v) be a model of T and (K0, v) be a L(T )-
submodel of (K, v). We will say that (K0, v) has the linear disjointness property if
∀i, 1 ≤ i ≤ n, Fi and Fi+1 ∩K0 are linearly disjoint over Fi ∩K0 (with Fn+1 = K).

The following definition generalizes Définitions 1.4.1 in [17].

Definition 2.4. Let T be an enriched theory of valued fields. T will be said to have
the residue-value extension property if the following holds.
Let (K, v) and (K ′, v′) be ω1-saturated models of T , with vK ≡ v′K ′ and Kv ≡ K ′v′.
Assume that there exists an L(T )-isomorphism f0 from K0 onto K ′

0 where (K0, v)
(resp. (K ′

0, v
′)) is a countable L(T )-submodel of (K, v) (resp. (K ′, v′)), having the

linear disjointness property, with vK0 ≺ vK and K0v ≺ Kv (resp. v′K ′
0 ≺ v′K ′ and

K ′
0v

′ ≺ K ′v′). Let (K1, v) be a countable L(T )-submodel of (K, v) having the linear
disjointness property, and such that (K0, v) ⊂ (K1, v), vK1 ≺ vK and K1v ≺ Kv.
Let φ be an LV G(T )-isomorphism from vK1 onto an LV G(T )-elementary substructure
of v′K ′ with φ�vK0 = vf0, and let ψ be an LRF (T )-isomorphism from K1v onto an
LRF (T )-elementary substructure of K ′v′ with ψ�K0v = f0/v. Then there exists an
L(T )-isomorphism f1 from (K1, v) onto an L(T )-substructure of (K ′, v′) such that
f1�K0 = f0, vf1 = φ and f1/v = ψ.

For example, let p be a prime number, n be a positive integer and T be the theory
of all finitely ramified algebraically maximal fields of residue characteristic p, with
ramification index lower than n. Then T has the residue-value extension property (see
[15]). The theory of all algebraically maximal Kaplansky fields also has the residue-
value extension property ([15]).

Let (K, v) be a model of an enriched theory of valued fields. Then any elementary
substructure of (K, v) has the linear disjointness property. Hence, by the theorem
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of Löwenheim-Skolem, there exist countable substructures (Ki, v) having the linear
disjointness property and such that vKi ≺ vK, Kiv ≺ Kv.

The proofs of the main results of this paper are based on the following theorem
(cf. [6], Chapter 5).

Theorem 2.5

Let L be a language and M , M ′ be two ω1-saturated L-structures. Then the

following (1), (2), (3) are equivalent.

(1) There exists a non-empty family of partial isomorphisms, between M and M ′,

having the back and forth property.

(2) M ≡M ′.

(3) The family of all isomorphisms, from a countable elementary substructure of M

onto a countable elementary substructure of M ′, is non-empty and has the back

and forth property.

Let (K, v) and (K ′, v′) be ω1-saturated models of an enriched theory of valued
fields. Let f0, K0, K ′

0, K1 be like in Definition 2.4. Assume that: vK ≡ v′K ′. Hence
the family of all isomorphisms between countable elementary substructures of vK and
v′K ′ respectively has the back and forth property. Hence there exists an isomorphism φ

extending vf0 to vK1. In the same way, if Kv ≡ K ′v′, then there exists an isomorphism
ψ extending f0/v to K1v.

Theorem 2.6

Let T be an enriched theory having the residue-value extension property. Let

(K ′, v′) be a model of T and let (K, v) be an L(T )-substructure of (K ′, v′) having the

linear disjointness property, such that vK ≺ v′K ′ and Kv ≺ K ′v′. Then (K, v) ≺
(K ′, v′).

Proof. The proof is similar to Démonstration 1.6.2 in [17]. �

Theorem 2.7

Let T be an enriched theory having the residue-value extension property, and

(K, v), (K ′, v′) be two models of T such that vK ≡ v′K ′ and Kv ≡ K ′v′. Assume

that there exists an isomorphism f0 from K0 onto K ′
0 where (K0, v) (resp. (K ′

0, v
′)) is

a countable L(T )-substructure of (K, v) (resp. (K ′, v′)), having the linear disjointness

property, with vK0 ≺ vK and K0v ≺ Kv (resp. v′K ′
0 ≺ v′K ′ and K ′

0v
′ ≺ K ′v′). Then

(K, v) ≡ (K ′, v′).
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Proof. Let I be the family of all isomorphisms f1 from K1 onto K ′
1 such that (K1, v)

(resp. (K ′
1, v

′)) is a countable L(T )-substructure of (K, v) (resp. (K ′, v′)), having the
linear disjointness property, with vK1 ≺ vK, v′K ′

1 ≺ v′K ′, K0v ≺ Kv and K ′
1v

′ ≺
K ′v′. Then I is not empty, because it contains f0. By Definition 2.4, I has the back
and forth property. Now, by Theorem 2.5, we have (K, v) ≡ (K ′, v′). �

We know that f0 exists in the case of Kaplansky fields of positive characteristic
(see [7], Proposition 5.15). In the case of unramified fields, we know that the algebraic
closure of (Q, vp) in (K, v) is isomorphic to the algebraic closure of (Q, vp) in (K ′, v′),
with vp the p-adic valuation (see [11] and [12]). But, in the case of finitely ramified
fields, f0 need not exist. For example, in [3], p. 192, Basarab defines two algebraically
maximal finitely ramified fields (K, v) and (K ′, v′) such that:

- Kv � K ′v′, vK � v′K ′ � Z,
- the ramification index of K and K ′ is 2,
- (K, v) 	≡ (K ′, v′).

Proposition 2.8

Let T ⊂ T ′, be two enriched theories of valued fields such that:

i) L(T ′) = L(T ) ∪ {αi, βi | i ∈ N},
ii) for all i ∈ N, the αi’s satisfy (∗) and the βi’s satisfy (∗∗) of Definition 2.1,

iii) T ′�L(T ) = T ,

iv) T ′ is generated by T and the interpretations of TRF (T ′) and TV G(T ′),
v) T has the residue-value extension property.

Then T ′ has the residue-value extension property.

Proof. The proof is similar to the proof of Propriété 1.4.4. in [17]. �

Definition 2.9 ([17], Définition 1.4.5). Let T be an enriched theory of valued fields
and T ∗ be a theory of pairs of valued fields in the language LV F ∪ {E} (where E is
interpreted in all models (K ⊂ L, v) of T ∗ by: E(x) iff x ∈ K). A theory T ′ will be
called the expansion of T to T ∗ if it satisfies:

(a) L(T ′) = L(T ) ∪ {E},
(b) (K ⊂ L, v) is a model of T ′ if and only if:

- the LV F ∪ {E}-reduct of (K ⊂ L, v) is a model of T ∗,
- T ′ |= ∀x, Fn(x) → E(x) (hence for every i, 1 ≤ i ≤ n, T ′ |= ∀x, Fi(x) → E(x))
- (K, v) is a model of T ,
- (L, v) is a model of T .

Definition 2.10. Let C be a class of valued fields. We will say that C has uniqueness
of the maximal immediate algebraic extensions if the maximal immediate algebraic
extension of any (K, v) ∈ C is unique up to valuation preserving isomorphism.

We recall that the henselization of any valued field is uniquely determined up to
valuation preserving isomorphism. But in general, the maximal immediate algebraic
extensions are not (see [13] Section 5, [16] and [20]).
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For example, the class of all valued fields of residue characteristic 0, the class of
all Kaplansky fields and the class of all finitely ramified fields have uniqueness of the
maximal immediate algebraic extensions.

Definition 2.11. Let (K, v) be a valued field and T be a theory of valued fields. We
will say that (K, v) is between two models of T if there exist two models (K0, v0) and
(K1, v1) of T such that (K0, v0) ⊂ (K, v) ⊂ (K1, v1) (with v0 = v�K0, and v = v1�K).

Assume that all the models of the theory T are finitely ramified fields. Then the
class of all valued fields which are between two models of T has uniqueness of the
maximal immediate algebraic extensions, because every subfield of a finitely ramified
field is finitely ramified. The same holds if T is a theory of fields of characteristic 0.

2.3 Liftings

In practice the construction of the residue-value extension requires torsion-free
quotients of value groups. In the case of elementary substructures, this condition is
satisfied. Otherwise, we can drop this hypothesis if the pair (K ⊂ L, v) contains a
lifting of the pair of value groups (vK ⊂ vL). We know that such a lifting exists when
the pair is ω1-saturated and vL/vK is torsion-free, but a value lifting may exist in
other cases.

In the same way, we will require that the pair of residue fields be a separable pair.
If the residue field is perfect, this condition holds. However, it is possible to omit this
hypothesis by introducing liftings of residue fields (in the case charK = charKv), in
definitions.

Recall that a multiplicative subgroup G of K\{0} is called a group of representa-
tives for the value group or a lifting of vK if there exists an isomorphism f from vK

onto G such that v ◦ f = Id. The isomorphism f is called a cross-section.

Let (K ⊂ L, v) be an ω1-saturated pair of valued fields such that vL/vK is
torsion-free. Then L contains a pair of multiplicative groups (G ⊂ H) such that v is
an isomorphism from H onto vL, and the inverse-image of vK is G ⊂ K ([14]).

Definition 2.12. Let T be an enriched theory of valued fields, and F1, . . . , Fn be all
the predicates of subfields of L(T ). We let V G and RF be new unary predicates. An
L(T )∪{V G} (resp. L(T )∪{RF}, resp. L(T )∪{V G,RF})-model of T will be a model
of T containing a lifting V G of vK (resp. a lifting RF of Kv, resp. liftings V G of vK
and RF of Kv), such that for every i, 1 ≤ i ≤ n, Fi ∩ V G is a lifting of vFi (resp.
Fi ∩RF is a lifting of Fiv).

T will be said to have the residue-value extension property with value lifting if the
following holds:

Let (K, v) and (K ′, v′) be ω1-saturated L(T )∪{V G}-models of T , with vK ≡ v′K ′

and Kv ≡ K ′v′. Assume that there exists an L(T ) ∪ {V G}-isomorphism f0 from K0

onto K ′
0 where (K0, v) (resp. (K ′

0, v
′)) is a countable L(T )-submodel of (K, v) (resp.

(K ′, v′)), having the linear disjointness property, with vK0 ≺ vK and K0v ≺ Kv
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(resp. v′K ′
0 ≺ v′K ′ and K ′

0v
′ ≺ K ′v′). Let (K1, v) be a countable L(T ) ∪ {V G}-

submodel of (K, v) having the linear disjointness property, and such that (K0, v) ⊂
(K1, v), vK1 ≺ vK and K1v ≺ Kv. Let φ be an LV G(T )-isomorphism from vK1

onto an LV G(T )-elementary substructure of v′K ′ with φ�vK0 = vf0, and let ψ be an
LRF (T )-isomorphism from K1v onto an LRF (T )-elementary substructure of K ′v′ with
ψ�K0v = f0/v. Then there exists an L(T ) ∪ {V G}-isomorphism f1 from (K1, v) onto
an L(T )∪{V G}-substructure of (K ′, v′) such that f1�K0 = f0, vf1 = φ and f1/v = ψ.
In the same way, we define the residue-value extension property with residue lifting and
the residue-value extension property with residue and value lifting.

Note that in any ω1-saturated model such that the vFi+1/vFi’s are torsion-free,
the value lifting always exists, hence we have the following.

Theorem 2.13

Let T be a theory having the residue-value extension property with value lifting

such that, for 1 ≤ i ≤ n, vFi+1/vFi’s are torsion-free. Let (K ′, v′) be a model of T (in

a language without lifting of the value group) and (K, v) be a L(T )-substructure of

(K ′, v′) having the linear disjointness property such that vK ≺ v′K ′ and Kv ≺ K ′v′.
Then (K, v) ≺ (K ′, v′).

Proof. The proof is the same as Démonstration 1.6.1 in [17]. �

Theorems 2.6, 2.7 and Property 2.8 remain valid with residue-value extension
property with value lifting (resp. with residue lifting).

3. Elementarily equivalent pairs

3.1 Separated pairs

Theorem 3.1

Let T be an enriched theory of algebraically maximal valued fields with perfect

residue fields and having the residue-value extension property.

Let T1 be the restriction of T to LV F -formulas and T ′ be the expansion of T to

separated pairs (K ⊂ L, v) such that vL/vK is torsion-free.

Assume that the class of all the valued fields which are between two models of T1

has uniqueness of the maximal immediate algebraic extensions.

Then T ′ has the residue-value extension property.

Proof. Let (K0 ⊂ L0, v) be a countable T ′-submodel of (K ⊂ L, v), having the linear
disjointness property, and let f0 be an L(T ′)-isomorphism from (K0 ⊂ L0, v) into an
ω1-saturated model (K ′ ⊂ L′, v′). We set (K ′

0 ⊂ L′
0, v

′) := f(K0 ⊂ L0, v). Assume
that (v′K ′

0 ⊂ v′L′
0) ≺ (v′K ′ ⊂ v′L′) and (K ′

0v
′ ⊂ L′

0v
′) ≺ (K ′v′ ⊂ L′v′).

Let (K1 ⊂ L1, v) be a countable model of T ′, having the linear disjointness prop-
erty, with L0 ⊂ L1, (vK0 ⊂ vL0) ≺ (vK1 ⊂ vL1), (K0/v ⊂ L0/v) ≺ (K1/v ⊂ L1/v).
Let φ be an isomorphism from (vK1 ⊂ vL1) onto an LV G(T ′)-elementary substructure
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(v′K ′ ⊂ v′L′) with φ�vK0 = vf0, and let ψ be an isomorphism from (K1v ⊂ L1v) onto
an LRF (T ′)-elementary substructure of (K ′v′ ⊂ L′v′) with ψ�K0v = f0/v. We have
to construct an extension f1 of f0 to (K1 ⊂ L1, v) such that vf1 = φ, f1/v = ψ.

In the same way as in [17], Démonstration 1.5.2, we can prove that vK1L0 =
vL0 + vK1, (K1L0)v = (K1v)(L0v) and that there exists K ′

1 ⊂ K ′ and an L(T ′)-
isomorphism f ′ from K1L0 onto K ′

1L
′
0 such that f ′�L0 = f0.

We set L01 := K1L0. Then by hypothesis, the maximal immediate algebraic
extension L01

m
of L01 is unique, up to valuation preserving isomorphism. Hence f ′

extends to L01
m

. Now, (L01
m ⊂ L1) is separable, L01v = (K1v)(L0v) is perfect, and

vL01 = vL0+vK1, therefore vL1/vL01 is torsion-free. Hence this isomorphism extends
to L1, by using the construction of [15] between (L1, v) and (L′, v′). We recall that this
construction consists in extending the isomorphism to any finitely generated extension
of L01. Then by using ω1-saturation it extends to L1. By hypothesis, the maximal
immediate algebraic extension of any finitely generated extension of L01 is uniquely
determined, up to valuation preserving isomorphism. Let f1 be this extension. Then
f1 is an isomorphism of valued fields. The same arguments as in [17], Démonstration
1.5.2, prove that f1 is an L(T ′)-isomorphism. �

This is true in the case of finitely ramified fields and in the case of fields of
residue characteristic 0, because any subfield is algebraically maximal if and only if it
is henselian.

Theorem 3.2

Let T be an enriched theory of algebraically maximal valued fields with perfect

residue fields and having the residue-value extension property with value lifting.

Let T1 be the restriction of the theory T to LV F -formulas, and T ′ be the expansion

of T to separated pairs (K ⊂ L, v) such that (K ⊂ L, v) contains a lifting of the value

group, where the lifting of every subfield is contained in this subfield.

Assume that either T1 is a theory of algebraically maximal Kaplansky fields of

positive characteristic or that the class of all valued fields which are between two

models of T1 has uniqueness of the maximal immediate algebraic extensions.

Then T ′ satisfies the residue-value extension property with value lifting.

Proof. The proof is similar to the proof of Theorem 3.1, but in the case of the Ka-
plansky fields of positive characteristic, we extend f ′ in another way. In this case,
K0 contains a lifting k0 of K0v that extends to a lifting k1 of K1v and to a lifting
l0 of L0v. By linear disjointness, k1l0 is a lifting of (K1v)(L0v) = (K1L0)v. L1 is
Kaplansky, hence k1l0 extends to a lifting l1 of L1v, that contains a subfield l01 such
that l01 is algebraic over l1k0 and l01 is closed under extensions of degree p. Let K1L0

h

be the henselization of K1L0, and let L01 = K1L0
h
(l01). L01 is algebraic over K1L0

h
,

hence f ′ extends to L01. Now, L01 is Kaplansky therefore the maximal immediate
algebraic extension L01

m
of L01 is unique, up to valuation preserving isomorphism,

and f ′ extends to L01
m

. Moreover, L01
m

is perfect, because L01 is Kaplansky. Now,
we can extend f ′ to L1, by using liftings of the residue fields and of the value groups.
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This construction is the same as the construction in the proof of the theorem of Ax-
Kochen-Ershov in the case of Kaplansky fields of positive characteristic or in the case
of fields of residue characteristic 0 (cf. [7], Proposition 5.15). �

In particular, these theorems apply to theories of finitely ramified fields with fixed
(or bounded) residue characteristic and ramification index.

In the same way as we proved Theorem 3.2 in the case of Kaplansky fields of
positive characteristic, we may prove the following.

Theorem 3.3

Let:

- T be an enriched theory of valued fields having the residue-value extension pro-

perty with residue lifting and value lifting,

- T1 be the restriction of the theory T to LV F -formulas,

- T ′ be the expansion of T to separated pairs (K ⊂ L, v) such that vL/vK is

torsion-free, and (K ⊂ L, v) contains a lifting of the pair of residue fields, where

the lifting of every subfield is contained in this subfield.

Assume that T1 is a theory of algebraically maximal Kaplansky fields of positive

characteristic.

Then T ′ satisfies the residue-value extension property with residue lifting and

value lifting.

Theorem 3.4

Let T be an enriched theory of valued fields with perfect residue fields and having

the residue-value extension property.

Let T1 be the restriction of T to LV F -formulas, and T ′ be the expansion of T to

the separated pairs (K ⊂ L, v) such that vL/vK is torsion-free. Assume that either T1

is a theory of algebraically maximal Kaplansky fields of positive characteristic or that

the class of all the valued fields which are between two models of T1 has uniqueness of

the maximal immediate algebraic extensions.

Let (K ⊂ L, v) and (K ′ ⊂ L′, v′) be two separated pairs with (K, v), (K ′, v′)
models of T and (L, v), (L′, v′) models of T1. Assume that:

1) (K ⊂ L, v) ⊂ (K ′ ⊂ L′, v′)
2) (Kv ⊂ Lv) ≺ (K ′v′ ⊂ L′v′) in LRF (T ′)
3) (vK ⊂ vL) ≺ (v′K ′ ⊂ v′L′) in LV G(T ′)
4) (K, v) is a substructure of (K ′, v′) having the linear disjointness property

5) v′L′/v′K ′ is torsion-free.

Then (K ⊂ L, v) ≺ (K ′ ⊂ L′, v′) in L(T ′).
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Proof. L and K ′ are linearly disjoint over K because (Kv ⊂ Lv) ≺ (K ′v′ ⊂ L′v′) and
(K ⊂ L, v) is separated. So (K ⊂ L, v) is a substructure of (K ′ ⊂ L′, v′) having the
linear disjointness property. Now, the expansion of T to separated pairs verifying 5)
has the residue-value extension property (cf. Theorem 3.1). The result follows from
Theorem 2.6 and Theorem 2.13. �

Corollary 3.5

Let (K ⊂ L, v) and (K ′ ⊂ L′, v′) be two separated pairs of algebraically maximal

Kaplansky fields of positive characteristic, such that:

- (K ⊂ L, v) ⊂ (K ′ ⊂ L′, v′),
- (vK ⊂ vL) ≺ (v′K ′ ⊂ v′L′) in LG ∪ {E}, where E is interpreted by E(x) ⇔ x ∈
vK (resp. v′K ′),

- (Kv ⊂ Lv) ≺ (K ′v′ ⊂ L′v′) in LF ∪ {E}, where E is interpreted by E(x) ⇔ x ∈
Kv (resp. K ′v′),

- v′L′/v′K ′ is torsion-free.

Then (K ⊂ L, v) ≺ (K ′ ⊂ L′, v′) in LV F ∪ {E}, where E is interpreted by

E(x) ⇔ x ∈ K (resp. K ′).

Theorem 3.6

Let T be an enriched theory of algebraically maximal valued fields with perfect

residue fields and having the residue-value extension property (resp. with value lifting).

Assume that for any two models (K, v), (K ′, v′) of T if vK ≡ v′K ′ and Kv ≡ K ′v′,

then (K, v) ≡ (K ′, v′).
Let T1 be the restriction of T to LV F -formulas, and T ′ be the expansion of T

to the separated pairs (K ⊂ L, v) such that vL/vK is torsion-free. Assume that

the class of all valued fields which are between two models of T1 has uniqueness of

maximal immediate algebraic extensions (resp. T1 is a theory of algebraically maximal

Kaplansky fields of positive characteristic).

Then for any two models (K ⊂ L, v), (K ′ ⊂ L′, v′) of T ′, such that (vK ⊂ vL) ≡
(v′K ′ ⊂ v′L′) and (Kv ⊂ Lv) ≡ (K ′v′ ⊂ L′v′), we have (K ⊂ L, v) ≡ (K ′ ⊂ L′, v′).

Proof. We can assume that (K, v) and (K ′, v′) are ω1-saturated. Hence the family
of all isomorphisms between countable elementary substructures of (K, v) and (K ′, v′)
has the back and forth property. By Theorem 2.5, there exists an isomorphism f0

from K0 onto K ′
0 such that (K0, v) (resp. (K ′

0, v
′)) is a countable L(T )-substructure

of (K, v) (resp. (K ′, v′)), having the linear disjointness property, whith vK0 ≺ vK,
v′K ′

0 ≺ v′K ′, K0v ≺ Kv and K ′
0v

′ ≺ K ′v′. The isomorphism f0 can be extended to
some (K1 ⊂ L1, v) like in the proof of Theorems 3.1 and 3.2. Now, we conclude by
Theorem 2.7. �

This holds if T is the theory of all unramified fields with perfect residue field, or
a theory of unramified formally ℘-adic fields with fixed residue field.
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3.2 Dense pairs

Theorem 3.7

Let T be an LV F -theory of algebraically maximal valued fields having the residue-

value extension property (resp. the residue-value extension property with value lifting).

Assume that for every immediate pair (M ⊂ N, v) of valued fields, if N |= T , then

the maximal immediate algebraic extension of (M, v) is uniquely determined up to

valuation preserving isomorphism. Then the theory of dense pairs (K ⊂
�= L, v) of

models of T has the residue-value extension property (resp. the residue-value extension

property with value lifting).

Proof. This proof is the same as F. Delon’s proof in the case of valued fields of residue
characteristic 0 (see [17], proof of Théorème 2.1). �

Theorem 3.8

Let T be a theory of valued fields having the residue-value extension property

(resp. the residue-value extension property with value lifting). Assume that for every

immediate pair (M ⊂ N, v) of valued fields, if N |= T , then the maximal immediate

algebraic extension of (M, v) is uniquely determined up to valuation preserving iso-

morphism. Let (K ⊂
�= L, v) and (K ′ ⊂

�= L′, v′) be two dense pairs of models of T such

that:

- (K ⊂
�= L, v) ⊂ (K ′ ⊂

�= L′, v′)
- L and K ′ are linearly disjoint over K

- Kv ≺ K ′v′

- vK ≺ v′K ′.

Then (K ⊂ L, v) ≺ (K ′ ⊂ L′, v′).

Proof. Follows from Theorems 3.7, 2.6 and Theorem 2.13. �

These results apply to any theory of algebraically maximal Kaplansky fields, to
any theory of algebraically maximal finitely ramified fields with perfect residue field
with fixed residue characteristic, and bounded ramification index.

Theorem 3.9

Let T be a theory of valued fields with residue-value extension property. Assume

that for any two models (K, v), (K ′, v′) of T , if vK ≡ v′K ′ and Kv ≡ K ′v′, then

(K, v) ≡ (K ′, v′).
Let T ′ be the expansion of T to dense pairs (K ⊂

�= L, v). Assume that for every

immediate pair (M ⊂ N, v) of valued fields, if N |= T , then the maximal immediate

algebraic extension of (M, v) is uniquely determined up to valuation preserving isomor-

phism. Then for any two models (K ⊂ L, v), (K ′ ⊂ L′, v′) of T ′, such that vK ≡ v′K ′

and Kv ≡ K ′v′, we have (K ⊂ L, v) ≡ (K ′ ⊂ L′, v′).
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Proof. The proof is the same as the proof of Theorem 3.6, by taking Theorem 3.7
instead of Theorems 3.1 and 3.2. �

3.3 Application to n-tuples and to some neither dense nor separated pairs

Proposition 3.10

Assume that either T is a theory of algebraically maximal Kaplansky fields of

positive characteristic or the class of all valued fields which are between two models

of T1 has uniqueness of the maximal immediate algebraic extensions. Let Ttrip be the

theory of all 3-tuples (K ⊂
�= M ⊂ L, v) of valued fields with K, L and M models of T

and such that:

- (K ⊂
�= M, v) is dense

- (M ⊂ L, v) is separated

- vL/vK is torsion-free.

Then Ttrip has the residue-value extension property.

Proof. Follows from Theorems 3.7, 3.1 and 3.2. �

Proposition 3.11

Assume that either T is a theory of algebraically maximal Kaplansky fields of

positive characteristic or the class of all the valued fields which are between two models

of T1 has uniqueness of the maximal immediate algebraic extensions. Let (K ⊂
�= M ⊂

L, v) ⊂ (K ′ ⊂
�= M ′ ⊂ L′, v′) be 3-tuples of models of T , let αi, i ∈ N, be relations in M ,

and α′
i, i ∈ N, be relations in M ′.

Assume that:

1) αi, α
′
i, i ∈ N are liftings of residue relations

2) (K ⊂M, v) and (K ′ ⊂M ′, v′) are dense

3) (M ⊂ L, v) and (M ′ ⊂ L′, v′) are separated

4) (vK ⊂ vL) ≺ (v′K ′ ⊂ v′L′)
5) (Kv ⊂ Lv, αi/v, i ∈ N) ≺ (K ′v′ ⊂ L′v′, α′

i/v
′, i ∈ N)

6) vL/vK is torsion-free

7) M and K ′ are linearly disjoint over K.

Then (K ⊂M ⊂ L, v, αi, i ∈ N) ≺ (K ′ ⊂M ′ ⊂ L′, v′, α′
i, i ∈ N).

Proof. By Proposition 3.10, Ttrip has the residue-value extension property. By Propo-
sition 2.8, the theory T1 obtained by adding the relations αi, i ∈ N, also has the residue-
value extension property. The elementary inclusion follows from Theorem 2.6. �

Proposition 3.12

Let T be either a theory of algebraically maximal Kaplansky fields of positive

characteristic or a theory of unramified fields with perfect residue fields. Let (K ⊂
�= M ⊂

L, v) and (K ′ ⊂
�= M ′ ⊂ L′, v′) be 3-tuples of models of T , let αi, i ∈ N, be relations in

M , and α′
i, i ∈ N, be relations in M ′.
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Assume that:

1) αi, α
′
i, i ∈ N are liftings of residue relations

2) (K ⊂M, v) and (K ′ ⊂M ′, v′) are dense

3) (M ⊂ L, v) and (M ′ ⊂ L′, v′) are separated

4) (vK ⊂ vL) ≡ (v′K ′ ⊂ v′L′)
5) (Kv ⊂ Lv, αi/v, i ∈ N) ≡ (K ′v′ ⊂ L′v′, α′

i/v
′, i ∈ N)

6) vL/vK is torsion-free.

Then (K ⊂M ⊂ L, v, αi, i ∈ N) ≡ (K ′ ⊂M ′ ⊂ L′, v′, α′
i, i ∈ N).

Proof. Follows from Theorems 3.9, 3.6 and 2.7. �

Remark 3.13. Propositions 3.10, 3.11 and 3.12 remain valid in the case of separated
n-tuples.

In [17], the dense closure was defined in the case of henselian fields of residue
characteristic 0. But the proofs only need general properties of valuations. So we may
generalize it, by means of the following proposition.

Proposition 3.14

Let (K ⊂ L, v) be a pair of algebraically maximal Kaplansky fields of positive

characteristic such that vK is cofinal in vL. For l ∈ L, let I(K, l) = {v(l − x) | x ∈
K,x 	= l}, and let K∗ be the definable set K∗ = {l ∈ L | I(K, l) = vK}. Then:

a) K∗ is a subfield of L,

b) (K ⊂ K∗, v) is dense,

c) every subfield L1 of L, such that (K ⊂ L1, v) is dense, is contained in K∗,

d) (K∗, v) is an algebraically maximal Kaplansky field.

Proof.

a), b), c): cf. [17], Theorem 3.3.4.
d) K∗ is Kaplansky because K∗v = Kv and vK∗ = vK.

Let (xα) be a pseudo-Cauchy sequence in K∗ of algebraic type and without a
pseudo-limit in K∗, with P (X) = anX

n + · · · + a1X + a0 for a minimal polynomial.
L is an algebraically maximal Kaplansky field, hence (xα) admits a pseudo-limit l

in L such that P (l) = 0. Since (K ⊂ K∗, v) is dense, we have I(K∗, l) = I(K, l).
So we can assume that (xα) is a pseudo-Cauchy sequence of K. Recall that the
hypothesis “(xα) without pseudo-limit in K” implies that (vα) is cofinal in I(K, l),
(with vα = v(xα − xα+1)). We can also assume that v(l) ≥ 0 (this is possible by
multiplying l by an element of K), and that v(ai) ≥ 0, 0 ≤ i ≤ n.

If I(K, l) = vK, then by the definition of K∗, l ∈ K∗. So we may assume that
I(K, l) is not cofinal in vK.

We form a Taylor expansion for the polynomial P :

P (x)− P (xα) = (x− xα)P(1)(xα) + · · ·+ (x− xα)nP(n)(xα),
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where P(i) is the ith formal derivative of P . The sequence (v(P(i)(xα))) is eventually
constant, let vP(i) be the asymptotic value. Then by [13], Lemma 8, there exists some
ph such that for all sufficiently large α

vP (xα) = vP(ph) + phvα < min
i �=ph

vP(i) + ivα, and vP(i)(l) = vP(i).

Let g′ and g be elements of vK such that g′ > I(K, l) and g > max(vP(i) + ig′).
Let Pg(X) = an,gX

n + · · · + a1,gX + a0,g be a polynomial in K[X] such that, for
1 ≤ i ≤ n, v(ai − ai,g) ≥ g. The sequences ai,gx

i
α are increasing, but, a priori,

this doesn’t imply that the sequence vPg(xα) is increasing. Now, by hypothesis, for
1 ≤ i ≤ n, v(P(i) − Pg,(i)) ≥ g. Therefore, for all sufficiently large α and for all i,
1 ≤ i ≤ n, vPg,(i) + ivα = vP(i) + ivα. So vPg(xα) = vPg,(ph) + phvα. This shows
that the sequence vPg(xα) is increasing, and (xα) is of algebraic type in K. Since K
is algebraically maximal, there exists a pseudo-limit xg ∈ K of (xα). Then for all α,
v(l − xg) > v(l − xα). Consequently v(l − xg) > I(K, l): a contradiction. Therefore,
I(K, l) = vK, and l ∈ K∗. �

Definition 3.15 ([17], Définition 3.3.4). Let (K ⊂ L, v) be a pair of algebraically
maximal fields with vK cofinal in vL. Then the set K∗ = {l ∈ L | I(K, l) = vK} will
be called the dense closure of (K, v) in (L, v).

Before to prove Theorem 3.16, observe the following. Let (K, v) be an algebraically
maximal valued field and w be a valuation on K, with w coarser than v (i.e. Rv ⊂ Rw).
Then, it is routine to prove that (K,w) and (Kw, v/w) are algebraically maximal.

In the same way, by means of general properties of valued fields, one can prove
that if (K, v) is a valued field and u, w are valuations coarser than v, then:

If p · vK = vK, then p · wK = wK and p · (v/w)(Kw) = (v/w)(Kw).
If any equation Xpn

+ an−1X
pn−1

+ · · ·+ a1X
p + a0X + b with coefficients in Kw

has a root in Kw, then any equation Xpn

+ an−1X
pn−1

+ · · ·+ a1X
p + a0X + b with

coefficients in Kv has a root in Kv.
Hence if (K, v) and (K,w) are Kaplansky fields and w < u < v (i.e. Rw ⊃ Ru ⊃

Rv), then (K,u), (Kw, u/w), (Ku, v/u), and (Kw, v/w) also are Kaplansky fields.

Theorem 3.16
Let (K ⊂ L, v) and (K ′ ⊂ L′, v′) be two pairs of algebraically maximal Kaplansky

fields of characteristic p > 0 such that:

- the valued fields (K, 0), (L, 0), (K ′, 0) and (L′, 0) are Kaplansky fields, where 0 is
the trivial valuation defined by: ∀x, 0(x) = 0,

- vL/vK is torsion-free,
- (Kv ⊂ Lv) ≡ (K ′v′ ⊂ L′v′).

Assume that there exist valuations v = v0 > v1 > · · · > vn > vn+1 = 0 in
(K ⊂ L, v) (resp. v′ = v′0 > v′1 > · · · > v′n > v′n+1 = 0 in (K ′ ⊂ L′, v′)) such that for
all i, 2 ≤ i ≤ n + 1:

a) (wiKvi ⊂ wiLvi) ≡ (w′
iK

′v′i ⊂ w′
iL

′v′i), where wi = vi−1/vi and w′
i = v′i−1/v

′
i,

b) either wiKvi is cofinal in wiLvi, or wiKvi = 0,
c) ((Kvi)∗, wi) = (Kvi, wi) iff ((K ′v′i)

∗, wi) = (K ′v′i, w
′
i),

d) ((Kvi)∗ ⊂ Lvi, wi) and ((K ′v′i)
∗ ⊂ L′v′i, w

′
i) are separated.

Then (K ⊂ L, v) ≡ (K ′ ⊂ L′, v′).
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Proof. Observe that from hypothesis it follows that for or all i, j, 0 ≤ i < j ≤ n + 1,
(Kvj , vi/vj), (Lvj , vi/vj), (K ′v′j , v

′
i/v

′
j) and (L′v′j , v

′
i/v

′
j) are algebraically maximal

Kaplansky fields. By Proposition 3.14, ((Kvi+1)∗, wi+1) and ((K ′v′i+1)
∗, w′

i+1) are
algebraically maximal Kaplansky fields. By Proposition 3.12

(Kv1 ⊂ (Kv1)∗ ⊂ Lv1, w1) ≡ (K ′v′1 ⊂ (K ′v1′)∗ ⊂ L′v′1, w
′
1).

Now, assume that

(Kvi ⊂ (Kvi)∗ ⊂ Lvi, v0/vi, · · · , wi) ≡ (K ′v′i ⊂ (K ′v′i)
∗ ⊂ L′v′i, v0/v

′
i, · · · , w′

i).

By Proposition 3.12,

(Kvi+1 ⊂ (Kvi+1)∗ ⊂ Lvi+1, v0/vi+1, · · · , wi+1) ≡
(K ′v′i+1 ⊂ (K ′v′i+1)

∗ ⊂ L′v′i, v
′
0/v

′
i+1, · · · , w′

i+1).

If i = n, we have in particular (K ⊂ L, v) ≡ (K ′ ⊂ L′, v′). �

Corollary 3.17
Let (K ⊂

�= L, v) and (K ′ ⊂
�= L′, v′) be two immediate pairs of algebraically maximal

Kaplansky fields of characteristic p > 0 such that:

- the valued fields (K, 0), (L, 0), (K ′, 0) and (L′, 0) are Kaplansky fields, where 0 is
the trivial valuation defined by ∀x, 0(x) = 0,

- vK and v′K ′ are p-divisible,
- Kv ≡ K ′v′.

Assume that there exist valuations v = v0 > v1 > · · · > vn > vn+1 = 0 (resp.
v′ = v′0 > v′1 > · · · > v′n > v′n+1 = 0 in (K ′ ⊂ L′, v′)) such that for all i, 2 ≤ i ≤ n + 1:

a) (wi)(Kvi) ≡ (w′
i)(K

′v′i) where wi = vi−1/vi and w′
i = v′i−1/v

′
i

b) ((Kvi)∗, wi) = (Kvi, wi) iff ((K ′v′i)
∗, w′

i) = (K ′v′i, w
′
i)

c) ((Kvi)∗ ⊂ Lvi, wi) and ((K ′v′i)
∗ ⊂ L′v′i, w

′
i) are separated.

Then (K ⊂ L, v) ≡ (K ′ ⊂ L′, v′).

4. Decidability

Let T be an enriched theory of valued fields. We will denote by FT the set of all
formulas

∧n
i=1(Ai ∨Bi) of T (n ∈ N), where:

- the Ai’s are interpretations of residue formulas such that neither Ai nor ¬Ai

belong to TRF (T ),
- the Bi’s are interpretations of value formulas such that neither Bi nor ¬Bi belong

to TV G(T ).
Note that, the hypothesis being as in Theorem 3.6 or 3.9, T ′ is complete if and

only if TRF (T ′) and TV G(T ′) are both complete. If this holds, then FT ′ = Ø.

Proposition 4.1
Let T be as in Theorem 3.9, and let T ′ be the theory of all dense pairs (K ⊂

�= L, v)
of models of T , in the language L(T ′) = L(T ) ∪ {E}, such that for every predicate
of subfield Fi of L(T ), and every l ∈ L, Fi(l) ⇒ l ∈ K. Assume that “(K, v) model
of T” can be expressed by an enumerable recursive scheme E0 of axioms. If TRF (T ′),
TV G(T ′) and FT ′ are decidable, then so is T ′.
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Proof. The sets TRF (T ′) and TV G(T ′) are interpretable in T ′, hence we can assume
that TRF (T ′) ⊂ T ′ and TV G(T ′) ⊂ T ′. “(K ⊂ L, v) dense” can be axiomatized by the
axiom Ξ: ∀l1 ∈ L, ∀l2 ∈ L, ∃x ∈ K, v(l1 − x) > v(l2).

1) Denote by S the closed under deduction theory generated by {Ξ}∪E0∪TRF (T ′)∪
TV G(T ′). Let A be a formula of the language L(T ′), such that A /∈ S and ¬A /∈ S.
Denote by FA the set of all formulas F = B1 ∧B2, with

B1 ∈ LRF (T ′), B2 ∈ LV G(T ′), B1 /∈ TRF (T ′),

¬B1 /∈ TRF (T ′), B2 /∈ TV G(T ′),¬B2 /∈ TV G(T ′),

and such that S ∪ {A} % F .
Now, we prove that S ∪ FA % A. Assume that this doesn’t hold. Hence S ∪

FA ∪ {¬A} is consistent. Let T ′′ be a complete theory containing S ∪FA ∪ {¬A}. By
Theorem 3.9, T ′′ is generated by

{Ξ} ∪ E0 ∪ TRF (T ′′) ∪ TV G(T ′′) = S ∪ (TRF (T ′′)\TRF (T ′)) ∪ (TV G(T ′′)\TV G(T ′)).

Therefore, there are formulas B1 ∈ (TRF (T ′′)\TRF (T ′)) ∪ {tautology}, B2 ∈
(TV G(T ′′)\TV G(T ′)) ∪ {tautology} such that S ∪ {B1 ∧ B2} % ¬A. Hence S ∪ {A} %
(¬B1) ∨ (¬B2). Now, T ′ ⊂ T ′′, hence TRF (T ′) ⊂ TRF (T ′′) and TV G(T ′) ⊂ TV G(T ′′).
Consequently, ¬B1 /∈ TRF (T ′) and ¬B2 /∈ TV G(T ′). It follows: (¬B1) ∨ (¬B2) ∈ FA.
Hence S ∪ FA ∪ {B1 ∧ B2} is not consistent. Now, S ∪ FA ∪ {B1 ∧ B2} ⊂ T ′′, hence
T ′′ is not consistent: a contradiction.

2) From 1) it follows that T ′ is generated by {Ξ}∪ E0 ∪TRF (T ′)∪TV G(T ′)∪FT ′ .
In order to prove that T ′ is decidable, let A be a formula of L(T ′). We derive all

the formulas deduced from {Ξ}∪E0∪TRF (T ′)∪TV G(T ′)∪FT ′ , and all the formulas of
FA and of F¬A. If A or ¬A belongs to T ′, then we deduce it from {Ξ}∪E0∪TRF (T ′)∪
TV G(T ′) ∪ FT ′ . Otherwise, FA and F¬A contain formulas that don’t belong to FT ′ .
This procedure is recursive.

Corollary 4.2
Let T1 be either a theory of algebraically maximal Kaplansky fields or a theory

of unramified fields with perfect residue fields. Let T be the expansion of T1 to dense
pairs (K ⊂

�= L, v). If TRF (T ), TV G(T ) and FT are decidable, then so is T .

“(K ⊂ L, v) separated” can be axiomatized by an enumerable recursive scheme of
axioms which expresses that all the sets v(1−A) have a maximal element, where A is
a finitely generated K-module. “vL/vK torsion-free” can also be axiomatized by an
enumerable recursive scheme of axioms. It follows that, in the same way as above (by
taking Theorem 3.6 and Proposition 3.12 respectively instead of Theorem 3.9), we can
prove the following propositions.

Proposition 4.3
Let T be as in Theorem 3.6, and let T ′ be the theory of all separated pairs

(K ⊂
�= L, v) of models of T , in the language L(T ′) = L(T ) ∪ {E}, such that for every

predicate of subfield Fi of L(T ), and every l ∈ L, Fi(l) ⇒ l ∈ K. Assume that
“(K, v) model of T” can be expressed by an enumerable recursive scheme of axioms.
If TRF (T ′), TV G(T ′) and FT ′ are decidable, then so is T ′.
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Corollary 4.4

Let T1 be either an enriched theory of algebraically maximal Kaplansky fields of

positive characteristic or an enriched theory of unramified fields with perfect residue

fields. Let T be the expansion of T1 to separated pairs (K ⊂ L, v) such that either

vL/vK is torsion-free, or (K ⊂ L, v) contains a lifting (G ⊂ H) of the pair (vK ⊂ vL)
with G = K ∩H. If TRF (T ), TV G(T ) and FT are decidable, then so is T .

Proposition 4.5

Let T1 be either an enriched theory of algebraically maximal Kaplansky fields of

positive characteristic or an enriched theory of unramified fields with perfect residue

fields. Let T be the theory of all 3-tuples (K ⊂
�= M ⊂ L, v) which are models of T1

with (K ⊂
�= M, v) dense, (M ⊂ L, v) separated and either vL/vK torsion-free, or any

(K ⊂ L, v) which is a model of T contains a lifting (G ⊂ H) of the pair (vK ⊂ vL)
such that G = K ∩H. If TRF (T ), TV G(T ) and FT are decidable, then so is T .

The same proof works in case of henselian fields of residue characteristic 0. The
tools are Théorème 2.1, Théorème 1.5.1 and Proposition 3.4.1 of [17] respectively.

Proposition 4.6

Let T be a theory of dense pairs (K ⊂
�= L, v) of henselian fields of residue charac-

teristic 0. Then the same conclusion as in Proposition 4.2 holds.

Proposition 4.7

Let T be an LV F -theory of separated pairs of henselian fields of residue character-

istic 0. Assume that either for every pair (K ⊂ L, v) which is a model of T , vL/vK is

torsion-free, or every pair (K ⊂ L, v) which is a model of T contains a lifting (G ⊂ H)
of the pair (vK ⊂ vL) such that G = K∩H. If TRF (T ), TV G(T ) and FT are decidable,

then so is T .

Proposition 4.8

Let T be a theory of 3-tuples (K ⊂
�= M ⊂ L, v) of henselian fields of residue

characteristic 0 with (K ⊂
�= M, v) dense, (M ⊂ L, v) separated. Assume either that for

any 3-tuple (K ⊂
�= M ⊂ L, v) which is a model of T , vL/vK is torsion-free, or that any

3-tuple (K ⊂
�= M ⊂ L, v) which is a model of T contains a lifting (G ⊂ H) of the pair

(vK ⊂ vL) such that G = K ∩H. If TRF (T ), TV G(T ) and FT are decidable, then so

is T .
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