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Abstract

Let Σ ⊂ PN be a smooth connected arithmetically Cohen-Macaulay surface.
Then there are at most finitely many complete linear systems on Σ, not of the type
|kH − K| (H hyperplane section and K canonical divisor on Σ), containing
integral arithmetically Gorenstein curves.

Introduction

The aim of this note is to prove the following.

Theorem

Let Σ ⊂ PN be a smooth connected arithmetically Cohen-Macaulay surface. Then

there are at most finitely many complete linear systems on Σ, not of the type |kH−K|
(H hyperplane section and K canonical divisor on Σ), containing integral arithmeti-

cally Gorenstein curves.

This result is proved in §1 by two fundamental steps. The first one (Lemma 1.4)
translates the existence of subcanonical curves on a smooth connected arithmetically
Cohen-Macaulay surface in terms of certain divisors called lone and minimal (see 1.2
for definitions). This is similar to results obtained in case of subcanonical surfaces in
PN (see [3; 1.2], [6; 1.8], [5; 3]). The second step (Lemma 1.5) consists in proving a
result of finitedness (up to linear equivalence) for some particular minimal divisors on
a regular surface: this is closely related for ideas and methods to a result proved in
case of arithmetically Cohen-Macaulay surfaces in [9; 8.6].
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In §2 we consider the cases of rational and K3 arithmetically Gorenstein surfaces
as examples of explicit description of the possible arithmetically Gorenstein curves on
an arithmetically Cohen-Macaulay surface (see 2.6 and 2.10). In both cases the goal
is fulfilled by studying the lone divisors on them.

This note was initially written for rational and K3 arithmetically Gorenstein sur-
faces. The referee observed that, by means of [9; 8.6], it would have been possible to
extend the proof to all arithmetically Gorenstein surfaces and suggested to indagate
the phenomenon in the more general case of arithmetically Cohen-Macaulay ones. This
is what I have tried to do. Furthermore, after finishing the present version, I was in-
formed of [2; Theorem 3.2], where similar facts are considered in an algebraic context:
compared to those the present methods are new and of geometric type.

Acknowledgement. I thank the referee of this note for some useful suggestions.

§1. Proof of the Theorem

In this paper we work over a fixed algebraically closed field K of characteristic 0. All
schemes are locally Cohen-Macaulay without embedded components.

1.1. Basic notions. Let V be a closed subscheme of dimension v ≥ 1 in PN , IV be
its sheaf of ideals and M i(V ) := ⊕t∈ZH

i(IV (t)). V is said to be

• arithmetically Cohen-Macaulay (aCM for short): if the length of a minimal free
resolution of

SV :=
K[X0, ..., XN ]

M0(V )

as an K[X0, ..., XN ]-module is N − v; equivalently M i(V ) = 0 for any 1 ≤ i ≤ v

(see for instance [10; 1.2.2 and 1.2.3]);
• arithmetically Gorenstein (aG for short): if it is aCM and the last free module

of a minimal free resolution of SV has rank 1;

Any aG scheme V is subcanonical, i.e. ωV 
 OV (γ) for some integer γ, equiva-
lently K ∼ γH, with K = KV , H = HV the canonical divisor and the hyperplane
divisor respectively (see for instance [10; 4.1.5]). To point out the integer γ we say
that V is γ-subcanonical or γ-arithmetically Gorenstein (γ-aG for short).

1.2. Lone and minimal divisors. An effective divisor Y �= 0 on a smooth connected
projective surface S is said to be

• lone: if h0(OΣ(Y )) = 1
• minimal with respect to an ample effective divisor H:

if Y ∼ H or h0
(
OΣ(Y −H)

)
= 0.
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Fixed an ample effective divisor H on S, for any effective divisor X �= 0 there is
a pair (k, Y ) with k ≥ 0 and Y minimal with respect to H such that X ∼ Y + kH. It
is easy to see that if (k′, Y ′) is another pair with the same property, then k = k′ and
Y ∼ Y ′, hence Y is uniquely determined by X up to linear equivalence. We refer to
Y as the minimal divisor, associated to X, with respect to H.

Suppose now S ⊂ PN . We say that a divisor is minimal, if it is minimal with
respect to the hyperplane section of S. Any lone divisor is also minimal.

Minimal divisors on aCM surfaces in PN are studied in [9; Chapter 8]; lone
divisors (sometimes called fixed or unique) on subcanonical surfaces in PN are discussed
in [3], [6], [5] in relation to subcanonical curves.

1.3. Some known facts about divisors on aCM surfaces. a) Any effective
divisor D �= 0 on a smooth connected surface Σ ⊂ PN can be viewed as a subscheme
both of Σ and PN , the ideal sheaf ID,Σ of D in Σ is isomorphic to OΣ(−D) and, for
any integer t, we have the exact sequence:

0 → IΣ(t) → ID(t) → OΣ(tH −D) → 0

If Σ is aCM, then we get

H1
(
ID(t)

)

 H1

(
OΣ(tH −D)

)

for any integer t and if D′ ∼ D + rH is another effective non-zero divisor, then

H1
(
ID′(t)

)

 H1

(
ID(t− r)

)

for any t.

b) Let Σ ⊂ PN be a smooth connected aCM surface then any non-zero divisor C ∈
|αH −K| is α-aG (see [9; 5.4, 5.5, 5.6] and [10; 4.2.8]). In particular it is known that
|αH − K| on a Castelnuovo surface and on a Bordiga surface in P4 contain smooth
connected aG curves for all α ≥ 0 and all α ≥ 1 respectively. The corresponding
minimal divisors are a plane smooth cubic in case of Castelnuovo surface and a curve
of degree 8 genus 5 in case of Bordiga surface (see [9; Chapter 8] p. 73 (xxxvi) and
p. 74 (xxvi) respectively). In both cases |αH − K|, α ≥ 0 or α ≥ 1, give infinitely
many complete linear systems of integral aG curves. Finally note that if, moreover, Σ
is β-aG, then |αH − KΣ| = |(α − β)H|, hence the linear systems above are multiple
of the hyperplane one, and give, for α > β, infinitely many complete linear systems of
integral aG curves, with minimal curve H.

Lemma 1.4

Let C be an α-subcanonical integral curve on a smooth connected aCM surface

Σ ⊂ PN . We have:

i) if αdeg(C) < C ·K, then C is a lone divisor on Σ;

ii) if αdeg(C) = C · K, then 1 ≤ h0(OΣ(C)) ≤ 2, in particular C is minimal on Σ
(and not lone if moreover Σ is α-aG);

iii) if αdeg(C) > C ·K, then either C ∼ αH −K or C ∼ Y + αH −K, where Y is a

lone non-zero divisor on Σ with C · Y = 0 and α = (K · Y − Y 2)/deg(Y ).
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Proof. By adjunction,

OΣ(C) ⊗OC 
 ωC ⊗OΣ(−K) 
 OΣ(αH −K) ⊗OC ,

hence we have the exact sequence:

0 → OΣ → OΣ(C) → OΣ(αH −K) ⊗OC → 0

Note that h1(OΣ) = h2(IΣ) = 0. Now the degree of OΣ(αH−K)⊗OC is: C·(αH−K) =
αdeg(C)−C ·K. In case (i) this is negative, hence h0(OΣ(C)) = 1, i.e. C is lone. The
degree is 0 in case (ii). This implies h0(OΣ(C)) ≤ 2, with equality if K ∼ αH. In any
case C is minimal, otherwise C ∼ X +H, with X an effective or zero divisor, therefore
h0(OΣ(C)) > 2.

Suppose now αdeg(C) > C ·K. This implies in particular K not linearly equivalent
to αH (i.e. Σ not α-subcanonical). The sequence above gives:

0 → OΣ(K − αH) → OΣ(C + K − αH) → OC → 0

By Serre duality

h1
(
OΣ(K − αH)

)
= h1

(
OΣ(α)) = h2(IΣ(α)

)
= 0

and we have also h0(OΣ(K − αH)) = 0. Indeed, if not, |K − αH| would contain
an effective divisor X, with X �= 0 (since otherwise K ∼ αH) and X · C ≥ 0: for
this inequality it suffices to write X = tC + X ′, with t ≥ 0 and X ′ effective, not
containing C, remembering that C2 = αdeg(C)−C ·K > 0. The condition X ·C ≥ 0
gives C · K − αdeg(C) ≥ 0: a contradiction, therefore h0(OΣ(K − αH)) = 0 and so
h0(OΣ(C+K−αH)) = 1. Hence either C ∼ αH−K or C ∼ Y +αH−K, where Y is a
lone divisor: the unique effective divisor in |C+K−αH|. Finally for C ∼ Y +αH−K

we have C2 = Y · C + αdeg(C) − C · K, but C2 = αdeg(C) − C · K by adjunction,
therefore Y · C = 0. Hence we get

0 = Y · C = Y · (Y + αH −K) = Y 2 + αdeg(Y ) − Y ·K,

i.e.

α =
K · Y − Y 2

deg(Y )
. �

Lemma 1.5

Let S be a smooth connected regular (i.e. h1(OS) = 0) projective surface and

fix an ample effective divisor H. Then for every divisor D there exist at most finitely

many divisors Y , up to linear equivalence, which are minimal with respect to H and

such that h1(OS(tH− Y −D)) = 0 for any t ∈ Z.
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Proof. We follow the proof [9; 8.6], where it is essentially proved that on a smooth
connected aCM surface Σ ⊂ PN , fixed a graded K[X0, ..., XN ]-module M of finite
length, there are only finitely many minimal curves Y , up to linear equivalence, with
M1(Y ) 
 M up to shift. Note that the result of [9] with M = 0 is the result of this
Lemma in case of an aCM surface S = Σ ⊂ PN , with H = H, D = 0 and Y a minimal
curve. Indeed Σ is regular and, as in 1.3 (a), h1(IY (t)) = h1(OΣ(tH − Y )).

Since S is regular, linear equivalence and algebraic equivalence generate the same
relation. Moreover since the quotient group of divisors, which are numerically equiva-
lent to zero, modulo algebraic equivalence is finite, it suffices to prove the finitedness
of the number of such Y ’s up to numerical equivalence. Finally recall that the group
Num(S) of divisors up to numerical equivalence is a finitely generated free Z-module
(for all this standard material see [7; Chapter 19, in particular 19.3.1]). The numerical
equivalence will be denoted by “≡”. We recall the following fact on the generation of
Num(S).

Claim. There are r := rk(Num(S)) effective non-zero divisors L1, ...Lr such that
{L1, ...Lr} gives a base of the Q-vector space VS := Num(S) ⊗Z Q and the image of
the canonical injection Num(S) → VS is contained in

⊕
j≥1(1/β)ZLj for some integer

β �= 0.

Proof of the Claim. Let D1, ...Dr be divisors such that Num(S) =
⊕

j≥1 ZDj . If all Dj

are effective, it suffices to put Lj = Dj and β = 1. Otherwise choose an integer e ≥ 2
such that every |Dj + eH| contains effective non-zero divisors and fix Lj ∈ |Dj + eH|.
{L1, ...Lr} gives a base of VS : it suffices to prove that L1, ...Lr are linearly independent.
If, in VS ,

∑
j≥1 pjLj = 0, pj ∈ Q not all zero, then we get a relation of the form∑

j≥1 zjLj ≡ 0, with zj ∈ Z not all zero, therefore

0 ≡
∑
j≥1

zj(Dj + eH) =
∑
j≥1

zjDj + ezH,

where z =
∑

j≥1 zj . Now H ≡ ∑
j≥1 hjDj for some hj ∈ Z, so:

∑
j≥1

zjDj + ez
∑
j≥1

hjDj ≡ 0

and this implies zj = −ezhj for all j, therefore z �= 0, because zi �= 0 for some i. Hence
the relation

∑
j≥1 zjLj ≡ 0 gives ez

∑
j≥1 hjLj ≡ 0 and therefore

∑
j≥1 hjLj ≡ 0. Now

0 ≡
∑
j≥1

hjLj ≡
∑
j≥1

hj(Dj + eH) ≡
∑
j≥1

hjDj + ehH

with h =
∑

j≥1 hj . Therefore H + ehH ≡ 0, i.e. (1 + eh)H ≡ 0, so eh = −1, but this
is impossible because e, h ∈ Z and e ≥ 2.

Now we must prove the statement on the image of Num(S). We have

H ≡
∑
j≥1

hjDj ≡
∑
j≥1

hj(Lj − eH) ≡
∑
j≥1

hjLj − ehH,
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therefore (1 + eh)H ≡ ∑
j≥1 hjLj , as above 1 + eh �= 0 and H =

∑
j≥1[hj/(1 + eh)]Lj

in VS . Put β := 1 + eh, so for any divisor X ≡ ∑
j≥1 xjDj , with xj ∈ Z, we get

X ≡ ∑
j≥1 xj(Lj − eH) and therefore in VS :

X =
∑
j≥1

xjLj − ex
∑
j≥1

hj

β
Lj =

∑
j≥1

(
xj − ex

hj

β

)
Lj ,

where x :=
∑

j≥1 xj and this concludes the Claim.

From now on we fix a set L1, ...Lr as in the Claim and put ∆ = (δij), where
δij = Li · Lj . Note that rk(∆) = r, because the intersection pairing is non-degenerate
on Num(S). Suppose that such a divisor Y exists and that Y /∈ |H|. We distinguish
two cases.

1st case: there is an index i such that Li−D−Y is linearly equivalent to an effective
or zero divisor. We have (Li−D−Y ) ·H ≥ 0, therefore Y ·H ≤ Li ·H−D ·H and we
conclude because the set of effective divisors on S with assigned intersection product
with H is a finite set up to numerical equivalence (see for instance [8; V, ex 1.11]).

2nd case: for all i, Li−Y −D is not effective and not zero. We write Y =
∑

j≥1 yjLj

in VS , where yj ∈ (1/β)Z for some integer β. It suffices to prove that the n-tuple
(y1, ..., yr) belongs to a bounded subset B ⊂ Qr: indeed in this case (1/β)Zr ∩ B is
finite. Look at the exact sequence:

0 → OS(−Y −D) → OS(Li − Y −D) → OLi
(Li − Y −D) → 0.

This implies
h0

(
OLi

(Li − Y −D)
)
≤ h1

(
OS(−Y −D)

)
= 0.

Therefore

Li · (Li − Y −D) + 1 − pa(Li) = χ
(
OLi(Li − Y −D)

)
≤ h0

(
OLi(Li − Y −D)

)
= 0,

hence
L2
i − Li · Y −D · Li + 1 − pa(Li) ≤ 0.

Now remembering that the intersection product extends to divisors with rational co-
efficients:

(∗)
∑
j≥1

δijyj ≥ ki := δii −D · Li + 1 − pa(Li)

for any i, 1 ≤ i ≤ r.
On the other hand for any integer i, 1 ≤ i ≤ r, we define

qi := min{t ∈ Z /− Li −K −D + (t− 1)H is effective}

and q := max{qi / 1 ≤ i ≤ r} (note that q does not depend on Y ). Now Y +D− qH+
K + Li is not effective, indeed, otherwise, since −Li − K − D + (q − 1)H is effective
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by definition of q, the divisor Y +D− qH+K +Li −Li −K −D + (q− 1)H = Y −H
should be effective, but this is impossible, because Y /∈ |H| and it is minimal with
respect to H. This gives

0 = h0
(
OS(Y + D − qH + K + Li)

)
= h2

(
OS(−Y −D + qH− Li)

)
.

Now look at the exact sequence:

0 → OS(qH− Y −D − Li) → OS(qH− Y −D) → OLi(qH− Y −D) → 0.

We get
h1(OLi

(
qH− Y −D)

)
≤ h1

(
OS(qH− Y −D)

)
= 0,

hence h1(OLi
(qH− Y −D)) = 0, so:

Li · (−Y −D + qH) + 1 − pa(Li) = χ
(
OLi

(qH− Y −D)
)

= h0
(
OLi(qH− Y −D)

)
≥ 0,

i.e., −Y · Li −D · Li + qH · Li + 1 − pa(Li) ≥ 0, and this gives

(∗∗)
∑
j≥1

δijyj ≤ k′
i := −D · Li + qH · Li + 1 − pa(Li)

for any i, 1 ≤ i ≤ r.
Now the 2r bounds (∗) and (∗∗), together with the fact that ∆ has rank r, imply

that (y1, ..., yr) belongs to a bounded set of Qr. �

1.6. Final step of the Proof of the Theorem. Let C be an integral aG curve on
Σ and suppose that C /∈ |αH − K|. If C is minimal, then, since h1(OΣ(tH − C)) =
h1(IC(t)) = 0 for any t ∈ Z (remember 1.3 (a)), we conclude by means of 1.5 with
H = H and D = 0 (or with [9; 8.6] with M = 0). If C is not minimal, then by 1.4 we
have: C ∼ Y +

(
K·Y−Y 2

deg(Y )

)
H − K, with Y a lone divisor on Σ. Again by 1.3 (a), for

any t ∈ Z we have

0 = h1
(
IC(t)

)
= h1

(
OΣ(tH − C)

)
= h1

(
OΣ

(
(t− K · Y − Y 2

deg(Y )
)H − Y + K

))
,

and the result follows from 1.5 with H = H and D = −K.

§2. The cases of rational and K3 Gorenstein surfaces

As examples of explicit description of the possible aG curves on an aCM surface we
consider the cases of rational and K-3 aG surfaces, i.e. γ-aG surfaces with γ ≤ 0.
In both cases the goal is fulfilled by means of the characterization of lone divisors on
them. First of all we note that, in case of an aG surface the Theorem and Lemma 1.4
can be easily restated respectively as follows

Proposition 2.1
Let Σ ⊂ PN be a smooth connected aG surface. Then there are at most finitely

many complete linear systems on Σ, not of the type |tH|, containing integral aG
curves.
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Lemma 2.2

Let C be an α-subcanonical integral curve on a smooth connected β-aG surface

Σ ⊂ PN . We have:

i) if α < β, then C is a lone divisor on Σ;

ii) if α = β, then h0(OΣ(C)) = 2 and C is minimal, not lone on Σ;

iii) if α > β, then either C ∼ (α − β)H or C ∼ Y + (α − β)H, where Y is a lone

non-zero divisor on Σ with C · Y = 0 and α = −Y 2/(deg(Y )) + β.

2.3. Planes and quadrics. Let Σ ⊂ PN be a smooth connected β-subcanonical
surface. By Castelnuovo’s theorem (see for instance [1; V.1]) Σ is rational if and only
if β ≤ −1. Moreover it is easy to see that β ≥ −3 with β = −3 if and only if Σ is a
plane and β = −2 if and only if Σ is a quadric surface.

Any curve C on a plane Π is linearly equivalent to deg(C)L, where L is a line (i.e.
a hyperplane section of Π) and C is complete intersection in PN of type (d, 1, ..., 1︸ ︷︷ ︸

N−2

).

Suppose now that Σ ⊂ PN is a smooth connected quadric surface (of course it
is non-degenerate in some projective 3-subspace of PN ). Σ contains no lone divisor,
while, up to linear equivalence, it contains exactly three minimal divisors: H and two
skew lines L1, L2. Therefore, for any integral curve C on Σ, from 2.2 we get that C is
subcanonical if and only if it is complete intersection if and only if either C is a line
(complete intersection of type (1, ..., 1︸ ︷︷ ︸

N−1

)) or C ∼ kH, k ≥ 1 (complete intersection of

type (2, k, 1, ..., 1︸ ︷︷ ︸
N−3

)). Hence only the case β = −1 is not trivial.

2.4. Del Pezzo surfaces. Let Σ ⊂ PN be a smooth connected (−1)-subcanonical
surface, then it is a del Pezzo surface of degree n ≥ 3, non-degenerate in some projective
n-space contained in PN or some of its isomorphic projections in some projective n′-
space (5 ≤ n′ < n). We recall that a del Pezzo surface of degree n ≥ 3, non-degenerate
in Pn, is one of the following 8 types (see for instance [8; V.4.7.1]):

• one of the surfaces Sn, 3 ≤ n ≤ 9, obtained by blowing up 9−n general points
in P2 and embedded in Pn by the complete linear system corresponding to
plane cubics through such points

• S′
8 of degree 8, obtained by the 2-tuple embedding of a smooth quadric surface

in P3.

All the above surfaces are aCM (see [4; p. 63]); of course they are complete
intersections if and only if 3 ≤ n ≤ 4.

As in case of a smooth quadric surface, S′
8 contains no lone divisor, while, up

to linear equivalence, it contains exactly three minimal divisors: H, C1, C2, where
Cj is the smooth plane conic image of the line Lj through the 2-tuple embedding.
Hence a smooth connected curve C on S′

8 is subcanonical if and only if it is aG if
and only if either C is a plane conic (complete intersection of type (2, 1, 1, 1, 1, 1, 1))
or C ∼ kH, k ≥ 1.
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Lemma 2.5

Let Σ ⊂ PN be a del Pezzo surface of degree n ≥ 3.

i) If T is an integral lone divisor on Σ, then it is a line.

ii) If C ∼ kH + Y is an integral aG curve on Σ with α ≥ 0, k ≥ 1 and Y lone, then

Y is a line and k = 1, in particular deg(C) = n + 1, pa(C) = 1.

Proof. i) From the exact sequence 0 → OΣ(−T ) → OΣ → OT → 0, we get
h1(OΣ(−T )) = 0, hence, by Serre duality, h1(OΣ(T − H)) = 0. The exact sequence
0 → OΣ(T − H) → OΣ(T ) → OH(T ) → 0 implies 1 = h0(OΣ(T )) = h0(OH(T )) =
T ·H = deg(T ), indeed g(H) = 1 and h1(OH(T )) = 0.

ii) Any integral component of Y is also lone, therefore it is a line by (i). Suppose
that T1, T2 are 2 distinct integral components of Y , then either T1 and T2 are skew
lines (so T1 · T2 = 0) or they intersect in only one point (so T1 · T2 = 1). We claim:
T1 · T2 = 0. Indeed otherwise we would have OT1(T1) = OT1(−1) and OT2(T1 + T2) =
OT2 , because T 2

1 = −1 and T2 · (T1 + T2) = 0. Then from the exact sequence 0 →
OΣ → OΣ(T1) → OT1(−1) → 0, we would get h1(OΣ(T1)) = 0, hence from the exact
sequence 0 → OΣ(T1) → OΣ(T1+T2) → OT2 → 0, we would get h0(OΣ(T1+T2)) = 2, a
contradiction: indeed T1 +T2 is lone because it is contained in Y . Hence C ∼ kH +Y

with Y = h1T1 + ... + hrTr, with T1, ..., Tr mutually skew lines, but C is aCM, so
from 1.3 (a) H1(IY ) = 0, hence h0(OY ) = 1, which gives r = 1. Therefore we can
write C ∼ kH + hL, with L a line and h ≥ 1. If h ≥ 2, then the exact sequence
0 → OΣ(−hL) → OΣ[(1 − h)L] → OL[(1 − h)L] → 0 would imply h1(OΣ(−hL)) �= 0,
indeed h0(OΣ[(1−h)L]) = 0 and h0(OL[(1−h)L]) �= 0. Hence, from the exact sequence
0 → IΣ(k) → IC(k) → OΣ(−hL) → 0 (kH − C ∼ −hL), we would get h1(IC(k)) �= 0,
so C could not be aCM. Therefore C ∼ kH + L. We conclude that k = 1, because,
by 2.2 (iii), k = −L2/(deg(L)) = 1. The degree and the arithmetic genus follows from
standard computations. �

Remembering that S9 does not contain lines, the following result summarizes the
previous 2.3, 2.4, 2.5:

Proposition 2.6

If C is an integral α-aG curve, not linearly equivalent to tH, on a rational smooth

connected aG surface Σ ⊂ PN , then only one of the following cases can occur:

a) α = −2, deg(C) = 1, pa(C) = 0 and C is a line;

b) α = −1, deg(C) = 2, pa(C) = 0 and C is a smooth conic;

c) Σ is a del Pezzo surface of degree n, 3 ≤ n ≤ 8, non-degenerate in some projective

n-space contained in PN , α = 0, 3 ≤ deg(C) ≤ n + 1, pa(C) = 1 and C ∼ H + L

with L a line.
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Remark. Subcanonical, arithmetically Gorenstein and complete intersection curves on
del Pezzo surfaces are classified in [5; 10 and 14].

2.7. K3 surfaces. i) A K3 surface is an algebraic smooth connected regular 0-sub-
canonical surface. For general facts on such surfaces we refer, for instance, to [1; VIII],
[11; Chapter 3].

Suppose now Σ ⊂ PN , N ≥ 3. We have h2(IΣ(t)) = h1(OΣ(t)) = 0 for any t ∈ Z

(for t = 0 since Σ is regular and for t �= 0 by Kodaira vanishing). If Σ is a K3 aCM
surface, then deg(Σ) = 2n − 2, where n, 3 ≤ n ≤ N , is the minimum dimension of a
projective subspace of PN containing Σ. This follows from the fact that the general
hyperplane section of Σ is a canonical curve (see [11; 3.2, 3.3]). Note that for any n ≥ 3
there exists a K3 surface Σ, non degenerate in Pn of degree 2n − 2 (see [1; VIII.15])
and that this is aCM. Indeed it suffices to prove that h1(IΣ(t)) = 0 for any t ∈ Z by
induction on t, by means of the exact sequence 0 → IΣ(t− 1) → IΣ(t) → IH, P(t) → 0,
where P is a general hyperplane of Pn, by remembering that H is again a canonical
curve.

ii) Let Σ ⊂ PN , N ≥ 3, be a K3 surface and C ⊂ Σ be an integral α-subcanonical
curve and look at 2.2.

If α < 0, then either α = −2 and C is a line or α = −1 and C is a smooth conic.
In both cases C is lone on Σ.

If α = 0, then h0(OΣ(C)) = 2 and C is minimal, but not lone. Now if C is
aCM, then from Riemann-Roch and from the fact that h0(OC(1)) ≤ h0(OΣ(1)) we
get deg(C) ≤ n + 1, where n, 3 ≤ n ≤ N , is the minimum dimension of a projective
subspace of PN containing Σ.

If α > 0, then either C ∼ αH or C ∼ Y − [Y 2/(deg(Y ))]H, where Y is a lone
divisor on Σ.

Lemma 2.8

Let Y be a lone divisor on a K3 surface S. Then Y = n1T1+...+nkTk, where ni >

0 and T1, ..., Tk are distinct smooth connected rational curves such that 0 ≤ Ti ·Tj ≤ 1
for any i �= j.

Proof. First we prove the following

Claim. Let Y be as above and suppose that Y is integral. Then h1(OS(Y )) =
h1(OS(−Y )) = 0 and Y is smooth rational.

Indeed, arguing as in the proof of 2.4 (i), we get h1(OS(−Y )) = 0, hence
h1(OS(Y )) = 0 by Serre duality. Now, by Riemann-Roch, 1 = h0(OS(Y )) =
χ(OS(Y )) = Y 2/2 + 2, i.e. Y 2 = −2. On the other hand Y 2 = 2pa(Y ) − 2, hence
pa(Y ) = 0, so Y is smooth rational.

Now let T, T ′ be distinct components of a lone divisor Y on S. We have T ·T ′ ≥ 0,
because they are distinct. Suppose that T · T ′ > 0. Both T and T ′ are lone, hence
smooth rational, in particular T 2 = −2 and h1(OS(T ′)) = 0. Since T + T ′ is lone
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because it is contained in Y , from the exact sequence 0 → OS(T ′) → OS(T + T ′) →
OT (T + T ′) → 0, we get h0(OT (T + T ′)) = 0. Since

degsT (T + T ′) = T · (T + T ′) = −2 + T · T ′ > −2 = 2g(T ) − 2,

Riemann-Roch theorem for curves implies 0 = T · (T + T ′) + 1, i.e. T · T ′ = 1. �

Lemma 2.9

Let Σ ⊂ Pn, n ≥ 3 be a non-degenerate K3 aCM surface and C ∼ Y + αH,

α = −Y 2/(deg(Y )) be an integral α-subcanonical curve with Y lone. If h1(IC(α)) = 0,

then either α = 2 and Y is a line or α = 1 and Y is a reduced plane conic (i.e. a smooth

connected plane conic or the union of two intersecting distinct lines). In particular only

2 pairs (degree, arithmetic genus) can occur for C: (4n− 3, 4n− 2), (2n, n + 1).

Proof. Look at the exact sequences

0 → IΣ(α) → IC(α) → OΣ(αH − C) → 0

0 → IΣ → IY → OΣ(αH − C) → 0

Since Σ is aCM, we have h1(IY ) = h1(OΣ(αH−C)) = h1(IC(α)) = 0 and this implies
h0(OY ) = 1. Therefore, arguing as in the proof of Claim in Lemma 2.8, we have
h1(OΣ(Y )) = h1(OΣ(−Y )) = 0, hence Riemann-Roch gives Y 2 = −2, so pa(Y ) = 0. If
Y is integral, then it is smooth rational and, from −2 = Y 2 = −αdeg(Y ), either α = 2
and Y is a line or α = 1 and Y is a smooth plane conic. If Y is not integral, then, from
2.8, its integral components are smooth rational, so, from αdeg(Y ) = 2, we get that
α = 1, Y = T1 + T2, where T1 �= T2 are lines verifying T1 · T2 = 1 (since h0(OY ) = 1),
or Y = 2T , where T is a line. We cannot have the last case, because Y 2 = −2 and
(2T )2 = −8. The assertion on degrees and genera is just a computation, via the fact
that deg(Σ) = 2n− 2 by 2.7. �

The following result summarizes the previous 2.7, 2.8, 2.9:

Proposition 2.10

Let Σ ⊂ PN , N ≥ 3, be a K3 aCM surface, non-degenerate in some n-dimensional

projective subspace of PN . If C is an integral α-aG curve, not linearly equivalent to

tH, on Σ ⊂ PN , then one of the following cases can occur:

a) α = −2, deg(C) = 1, pa(C) = 0 and C is a line;

b) α = −1, deg(C) = 2, pa(C) = 0 and C is a smooth conic;

c) α = 0, 3 ≤ deg(C) ≤ n + 1, pa(C) = 1;

d) α = 1, deg(C) = 2n, pa(C) = n + 1 and C ∼ ∆ + H with ∆ reduced plane conic;

e) α = 2, deg(C) = 4n− 3, pa(C) = 4n− 2 and C ∼ L + 2H with L a line. �
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