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Abstract

We seek to demonstrate a connection between refinable quasi-affine systems and
the discrete wavelet transform known as the à trous algorithm. We begin with an
introduction of the bracket product, which is the major tool in our analysis. Using
multiresolution operators, we then proceed to reinvestigate the equivalence of the
duality of refinable affine frames and their quasi-affine counterparts associated with
a fairly general class of scaling functions that includes the class of compactly sup-
ported scaling functions. Our methods show that for negative scales only one of the
generalized Smith-Barnwell equations is actually needed to establish the additivity
property of the quasi-affine multiresolution operators. This fact is then identified
with the à trous algorithm thereby illustrating the connection with quasi-affine sys-
tems. We then introduce the notion of a generalized quasi-affine (GQA) system,
in which separate generating wavelets are used for non-negative and negative dila-
tions. Sufficient conditions are described for two GQA systems to constitute dual
frames, providing a means for the construction of frames from appropriate à trous
systems. We conclude with a brief discussion of examples of GQA frames associ-
ated with two different biorthogonal wavelet systems. The novelty of this work is
the connection established between the à trous algorithm and refinable quasi-affine
systems together with the notion of GQA systems, which are introduced to exploit
this connection.

1. Introduction

Throughout this analysis the dilation matrixM will be a fixed n×nmatrix with integer
entries such that each eigenvalue λ ofM satisfies |λ| > 1, i.e. M is an expanding lattice-
preserving n×nmatrix. The unitary dilation operator on L2(Rn) induced byM will be
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denoted D and is defined by Df(x) := |detM |1/2f(Mx) for f ∈ L2(Rn). Similarly, we
use M to define an alternative dilation operator ∆, by ∆f(x) := f

(
(MT )−1x), where

MT denotes the transpose ofM . We are also interested in the translation operator, Tu,
u ∈ R

n, defined by Tuf(x) := f(x− u). Lastly, we will adopt the following definition
for the Fourier transform, f̂ , of f ∈ L2(Rn),

f̂(ξ) =
∫

Rn

f(x)e−i〈ξ,x〉dx.

We now recall the definition of an affine system.

Definition 1. The affine system generated by Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), denoted
X(Ψ), is the collection

X(Ψ) = {ψ
;j,k : 1 ≤ � ≤ L, j ∈ Z, k ∈ Z
n},

where ψ
;j,k := DjTkψ
.
Examples of affine systems are numerous. We are interested here in affine systems
that are based on the notion of a multiresolution analysis (MRA). In one-dimension,
we have the 2-band orthonormal MRA wavelets as in [12] and [8] as well as the 2-band
biorthogonal MRA wavelets found in [5]. M -band biorthogonal MRA wavelets have
also been studied in one-dimension [17], [11]. In n-dimensions, orthonormal [3, 4] and
tight-frame [2] MRA wavelets relative to expanding, lattice-preserving dilations have
been described. By means of separable products the one-dimensional methods also
provide examples of refinable affine systems in n-dimensions.

Closely related to affine systems are the quasi-affine systems introduced by Ron
and Shen in [16] as a means for applying the theory of shift-invariant spaces to the
characterization of affine frames. We have the following definition.

Definition 2. The quasi-affine system generated by Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn),
denoted Xq(Ψ), is the collection

Xq(Ψ) := {ψq

;j,k : 1 ≤ � ≤ L, j ∈ Z, k ∈ Z

n},
where

ψq

;j,k :=

{
DjTkψ
, j ≥ 0

|detM |j/2TkDjψ
, j < 0.
The reader should note the use of the superscript q in Definition 2. We will apply
this notational tool to other objects below in order to distinguish between the quasi-
affine and affine dilation structures. We now state the characterization of affine systems
achieved by Ron and Shen [16] under a weak decay assumption that was later overcome
in the work of Chui, Shi, and Stöeckler [7].

Theorem 1
Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn).

(a) X(Ψ) is a Bessel system if and only if Xq(Ψ) is a Bessel system. Moreover, the
Bessel bounds are the same in either case.

(b) X(Ψ) is a frame if and only if Xq(Ψ) is a frame. Moreover, the frame bounds are
the same in either case.
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For completeness we review the definitions of Bessel systems and frames for a
Hilbert space, H.

Definition 3. The collection {hj}j∈J ⊂ H is a frame for H if there exist constants
A,B > 0 such that for all f ∈ H

A‖f‖2
H
≤

∑
j∈J

∣∣〈f, hj〉H

∣∣2 ≤ B‖f‖2
H
. (1)

The constants A and B are referred to as the lower and upper frame bounds, respec-
tively. In the case that A = B the frame is said to be tight. If only the right inequality
of (1) holds, the system is called a Bessel system and in this case B is referred to as
the Bessel bound. We say two frames for H, {hj}j∈J and {h̃j}j∈J , are dual if for each
f ∈ H we have

f =
∑
j∈J

〈f, h̃j〉hj . (2)

Finally, let us give a qualitative description of the à trous algorithm introduced
in the work [10]. Simply put, the à trous algorithm is a variation on the discrete
wavelet transform (DWT) that results in an integer-shift invariant representation of
a discrete signal. The deviation from the ordinary DWT may be explained in two
equivalent ways. First, one can view the à trous algorithm as a DWT in which the
downsampling and upsampling stages are removed. Alternatively, one can realize the
à trous algorithm as the analog of the DWT for the system obtained by reversing the
order of the dilation and translation operators. This latter formulation is in accord
with the quasi-affine scenario. The difference between à trous wavelets and quasi-affine
systems lies in the fact that the originators of the à trous algorithm make no mention
of positive scales because they were interested only in applications, where the scale
j = 0 corresponds to the resolution of discrete signals. Besides [10], one may find a
treatment of the à trous algorithm in [13] as well as an interesting application of the
à trous algorithm to edge-detection in [14].

2. The bracket product

In this section we shall introduce the bracket product, developing basic facts relevant to
our study of refinable affine and quasi-affine systems. Most, if not all, of this material
can be found elsewhere in the literature, see e.g. [15] or [16], but we include it here for
completeness. We have the following definition.

Definition 4. The bracket product of f and g, f, g ∈ L2(Rn), is denoted [f, g] and is
defined for a.e. x ∈ R

n by

[f, g](x) =
∑
k∈Zn

f(x+ 2πk)g(x+ 2πk). (3)
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Notice that the bracket product is 2πZ
n periodic. We present some elementary pro-

perties of the bracket product.

Lemma 2
Let f, g ∈ L2(Rn).

(a)
∣∣[f̂ , ĝ]∣∣ ≤ [f̂ , f̂ ]1/2[ĝ, ĝ]1/2.

(b)
1

(2π)n

∫
Tn

[f̂ , ĝ](ξ)dξ = 〈f, g〉.

(c) [f̂ , ĝ] ∈ L1(Tn), but in general, [f̂ , ĝ] /∈ L2(Tn).

(d) 〈f, Tkg〉 =
1

(2π)n

∫
Tn

[f̂ , ĝ](ξ)ei[k,ξ]dξ, i.e.
∑
k∈Zn

〈f, Tkg〉e−i〈k,ξ〉 is the Fourier series

of [f̂ , ĝ].
(e) [µf̂ , ĝ] = µ[f̂ , ĝ] = [f̂ , µĝ] when µ is 2πZ

n periodic.

Lemma 3
Let ψ,ϕ ∈ C := {f ∈ L2(Rn) : [f̂ , f̂ ] ∈ L∞(Tn)}.

(a) [ψ̂, ϕ̂] ∈ Lp(Tn), 1 ≤ p ≤ ∞. If, in addition, ψ and ϕ have compact support then
[ψ̂, ϕ̂] is a trigonometric polynomial.

(b) For all f ∈ L2(R), [f̂ , ϕ̂] ∈ L2(Tn) with∥∥[f̂ , ϕ̂]
∥∥
L2(Tn)

≤
∥∥[ϕ̂, ϕ̂]

∥∥1/2

∞ ‖f‖. (4)

Proof. (a) The first claim follows from Lemma 2 (a) and the definition of C. We observe
by Lemma 2 (d) that since ψ and ϕ are of compact support only finitely many Fourier
coefficients of [ψ̂, ϕ̂] will be non-zero and, hence, [ψ̂, ϕ̂] is a trigonometric polynomial.

(b) We simply compute the norm of [f̂ , ϕ̂], using Lemma 2 (a)∥∥[f̂ , ϕ̂]
∥∥2

L2(Tn)
≤ 1

(2π)n

∫
Tn

[f̂ , f̂ ](ξ) [ϕ̂, ϕ̂](ξ)dξ

≤
∥∥[ϕ̂, ϕ̂]

∥∥
∞ ‖f‖2. �

For ϕ̃, ϕ ∈ C, let Rϕ̃,ϕ be the operator mapping f ∈ L2(R) to

Rϕ̃,ϕf =
∑
k∈Zn

〈f, Tkϕ̃〉Tkϕ. (5)

We will see shortly that Rϕ̃,ϕ is bounded on L2(Rn) and we will obtain a characteriza-
tion of Rϕ̃,ϕ in terms of the Fourier transforms of ϕ and ϕ̃ that will play an important
role in the next section.

Proposition 4
Let ϕ̃, ϕ ∈ C and f ∈ L2(Rn).

(a) ̂(
Rϕ̃,ϕf

)
= [f̂ , ˆ̃ϕ]ϕ̂.

(b) ‖Rϕ̃,ϕf
∥∥
L2(Rn)

≤
∥∥[ϕ̂, ϕ̂]

∥∥1/2

∞
∥∥[f̂ , ˆ̃ϕ]

∥∥
L2(Tn)

.

(c) Consequently, Rϕ̃,ϕ is a bounded operator on L2(Rn) with

‖Rϕ̃,ϕ
∥∥ ≤

∥∥[ˆ̃ϕ, ˆ̃ϕ]
∥∥1/2

∞
∥∥[ϕ̂, ϕ̂]

∥∥1/2

∞ .
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Proof. We first show that [f̂ , ˆ̃ϕ]ϕ̂ ∈ L2(Rn). By Lemma 3 (b) we have∥∥[f̂ , ˆ̃ϕ]ϕ̂
∥∥2 =

∫
Tn

∣∣[f̂ , ˆ̃ϕ](ξ)
∣∣2 ∣∣[ϕ̂, ϕ̂](ξ)

∣∣dξ
≤ (2π)n

∥∥[ˆ̃ϕ, ˆ̃ϕ]
∥∥
∞

∥∥[f̂ , ˆ̃ϕ]
∥∥2

L2(Tn)

≤ (2π)n
∥∥[ϕ̂, ϕ̂]

∥∥
∞

∥∥[ˆ̃ϕ, ˆ̃ϕ]
∥∥
∞‖f‖2.

Thus, [f̂ , ˆ̃ϕ]ϕ̂ ∈ L2(Rn). (a) follows once we have established the fact that ̂(
Rϕ̃,ϕf

)
=

[f̂ , ˆ̃ϕ]ϕ̂. We have for each g ∈ L2(Rn)

1
(2π)n

〈
[f̂ , ˆ̃ϕ]ϕ̂, ĝ

〉
=

1
(2π)n

∫
Rn

[f̂ , ˆ̃ϕ](ξ) ϕ̂(ξ)ĝ(ξ)dξ

=
1

(2π)n

∫
Tn

[f̂ , ˆ̃ϕ](ξ) [ϕ̂, ĝ](ξ)dξ

=
〈
[f̂ , ˆ̃ϕ], [ĝ, ϕ̂]

〉
L2(Tn)

=
∑
k∈Zn

〈f, Tkϕ̃〉 〈g, Tkϕ〉

=
〈
Rϕ̃,ϕf, g

〉
With (a) proven, (b) and (c) follow from the above observations. �

3. Another look at affine and quasi-affine systems

Due to the relative importance of refinable wavelet systems in applications we offer
a separate examination of the affine, quasi-affine phenomenon in this context. The
results of Ron and Shen in [16] and Chui, Shi, and Stöeckler in [7], such as Theorem 1,
suggest that affine and quasi-affine systems function in the same way. We would like
to understand, at least in the context of refinable systems, if there are any significant
differences in the behavior of the two systems and, if so, whether they can be exploited
in any useful way. We will introduce and study multiresolution operators for both
the affine and quasi-affine systems along the lines of many previous works on refinable
systems. Our methods will differ mainly in that we will be applying multiresolution
operators to quasi-affine systems as well as affine systems, but also in the use of the
bracket product as a tool for efficiently describing each of the multiresolution operators
involved.

Let us fix scaling functions ϕ, ϕ̃ ∈ C with associated 2πZ
n periodic low-pass filters

m0 and m̃0 such that

ϕ̂(MT ξ) = m0(ξ)ϕ̂(ξ) and ˆ̃ϕ(MT ξ) = m̃0(ξ)ˆ̃ϕ(ξ) (6)

for a.e. ξ ∈ R
n. Letm1, . . . ,mL and m̃1, . . . , m̃L be two sets of 2πZ

n periodic high-pass
filters and define Ψ := {ψ1, . . . , ψL}, Ψ̃ := {ψ̃1, . . . , ψ̃L} by the refinement identities

ψ̂
(MT ξ) = m
(ξ)ϕ̂(ξ) and ˆ̃
ψ
(M

T ξ) = m̃
(ξ)ˆ̃ϕ(ξ) (7)
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for 1 ≤ � ≤ L. For notational convenience, let us define ψ0 = ϕ and ψ̃0 = ϕ̃. We will
assume hereafter that the filters satisfy the generalized Smith-Barnwell equations for
the dilation M , namely for 0 ≤ p ≤ m− 1 we have

L∑

=0

m
(ξ)m̃
(ξ + 2π(MT )−1ϑp) = δ0,p a.e. ξ ∈ T
n, (8)

where {ϑp}m−1
p=0 is a complete set of distinct coset representatives of Z

n/MT
Z
n, m :=

|detM |, and δ0,p is the Kronecker delta. We assume ϑ0 = 0. The following lemma,
which is proven in [9], facilitates the derivation of the generalized Smith-Barnwell
equations and will also aid our analysis of multiresolution operators below.

Lemma 5

Let M be an expanding, lattice-preserving n × n matrix and let {ϑp}m−1
p=0 be a

complete set of distinct coset representatives of Z
n/MT

Z
n, where m = |detM |. For

each k ∈ Z
n, we have

m∑
p=1

e−2πi
〈
(MT )−1ϑp,k

〉
=

{
m, k ∈MZ

n

0, k /∈MZ
n.

(9)

At this point, a few observations regarding the filters and the wavelets are in order.
If we restrict our filters to the class L∞(Tn), then the wavelets ψ
, ψ̃
 will belong to C.
To see this, we observe

[ψ̂
, ψ̂
](ξ) =
∑
k∈Zn

∣∣∣ψ̂
(ξ + 2πk)
∣∣∣2

=
∑
k∈Zn

∣∣∣m
((MT )−1(ξ + 2πk)
)∣∣∣2∣∣ϕ̂(

(MT )−1(ξ + 2πk)
)∣∣∣2

=
m−1∑
p=0

∣∣m
((MT )−1(ξ + 2πϑp)
)∣∣2[ϕ̂, ϕ̂]

(
(MT )−1(ξ + 2πϑp)

)
,

from which we conclude
∥∥[ψ̂
, ψ̂
]

∥∥
∞ ≤ m‖m
‖2

∞
∥∥[ϕ̂, ϕ̂]

∥∥
∞. Similar reasoning leads to

the conclusion that if f ∈ C then Djf ∈ C for each j ∈ Z. These classes of scaling
functions and filters are sufficiently general, since in practice it is likely that we would
restrict the filters to the subclass of L∞(Tn) consisting of trigonometric polynomials,
in which case the scaling functions and wavelets would belong to the subclass of C
corresponding to the compactly supported functions in L2(Rn).

We are now equipped to introduce multiresolution operators associated with the
proposed dual affine and quasi-affine systems generated by Ψ and Ψ̃. At each scale j we
will have one operator that essentially approximates a given function by incorporating
information from all scales coarser than j and another operator that captures the
variation of the function at the scale j. In the affine orthonormal wavelet setting these
soon to be defined operators become orthogonal projections, but in general this is
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not true although the inspired intuition remains useful. The affine approximation and
detail operators at the scale j ∈ Z, Pj and Qj , respectively, act on f ∈ L2(Rn) by

Pjf :=
∑
k∈Zn

〈f, ϕ̃j,k〉ϕj,k and Qjf :=
L∑

=1

∑
k∈Zn

〈f, ψ̃
;j,k〉ψ
;j,k, (10)

whereas the quasi-affine approximation and detail operators at the scale j, Pq
j and

Q
q
j , respectively, are defined similarly by

P q
j f :=

∑
k∈Zn

〈f, ϕ̃q
j,k〉ϕ

q
j,k and Qq

jf :=
L∑

=1

∑
k∈Zn

〈f, ψ̃q

;j,k〉ψ

q

;j,k. (11)

By definition, P q
j = Pj and Qq

j = Qj for each j ≥ 0. Note that we have again used the
superscript q to distinguish the quasi-affine objects from their affine counterparts.

Proposition 6
Let ψ
, ψ̃
 ∈ C for 0 ≤ � ≤ L. For each j ∈ Z, the operators Pj , Qj , P

q
j , and Qq

j

are bounded on L2(Rn) and we have

(a) Pj = DjRψ̃0,ψ0
D−j , j ∈ Z,

(b) Qj =
L∑

=1

DjRψ̃�,ψ�
D−j , j ∈ Z,

(c) P q
j = |detM |jRDj ψ̃0,Djψ0

, j < 0,

(d) Qq
j =

L∑

=1

|detM |jRDj ψ̃�,Djψ�
, j < 0.

Proof. The boundedness of the operators follows from Proposition 4 (a) and the
above remarks once we establish the claimed formulas for Pj , Qj , P

q
j , and Qq

j . We
will demonstrate only the characterizations of Pj and Pq

j as the other two follow by
analogy. Fix j ∈ Z and let f ∈ L2(Rn). We have

Pjf =
∑
k∈Zn

〈f, ϕ̃j,k〉ϕj,k

=
∑
k∈Zn

〈f,DjTkϕ̃〉DjTkϕ

= Dj
( ∑
k∈Zn

〈D−jf, Tkϕ̃〉Tkϕ
)

= DjRψ̃0,ψ0
D−jf.

We now perform a similar calculation for P q
j , j < 0.

P q
j f =

∑
k∈Zn

〈f, ϕ̃q
j,k〉ϕ

q
j,k

=
∑
k∈Zn

〈f, TkDjϕ̃〉TkDjϕ

= |detM |jRDj ψ̃0,Djψ0
f. �
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Recall the operator ∆ from the first section, where ∆f̂(ξ) = f̂
(
(MT )−1ξ

)
. Notice

that ∆j f̂ = |detM |j/2 ̂(Djf) for each j ∈ Z. It follows that for any linear operator R,

̂(DjRD−jf) = ∆jR̂∆−j f̂ , (12)

where R̂ is defined by R̂f̂ := ̂(Rf). Together with Proposition 6 this observation puts
us in the position to describe the multiresolution operators via the characterization of
Proposition 4 (c). We pause for an elementary lemma.

Lemma 7

For all f, g ∈ L2(Rn) and j ∈ Z,

[f̂ , ĝ] =
m−1∑
p=0

T2πϑp∆[∆−1f̂ ,∆−1ĝ]. (13)

Proof. It will be helpful to note the following elementary identity,

Tu∆j = ∆jT(MT )−ju,

where u ∈ R
n. Applying the definition of the bracket product we have

[f̂ , ĝ] =
∑
k∈Zn

T2πkf̂T2πkĝ

= ∆
( ∑
k∈Zn

T2π(MT )−1k∆
−1f̂ T2π(MT )−1k∆

−1ĝ
)

= ∆
(m−1∑
p=0

∑
k∈Zn

T2π(MT )−1ϑp+2πk∆
−1f̂ T2π(MT )−1ϑp+2πk∆

−1ĝ
)

=
m−1∑
p=0

∆T2π(MT )−1ϑp
[∆−1f̂ ,∆−1ĝ]

=
m−1∑
p=0

T2πϑp∆[∆−1f̂ ,∆−1ĝ]. �

Proposition 8

For each j ∈ Z, we have

(a) Pj +Qj = Pj+1,

(b) P q
j +Qq

j = P q
j+1.
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Proof. (a) Let f ∈ L2(Rn). The remarks preceding Lemma 7 combined with Proposi-
tions 4 and 6 lead us to ̂(Pjf) = ∆j [∆−j f̂ , ˜̂ϕ]ϕ̂, (14)

with a similar formula for ̂(Qjf). We observe that the scaling equations (7) can be
written as

∆−1ψ̂
 = m
ϕ̂ and ∆−1 ˆ̃
ψ
 = m̃
 ˆ̃ϕ (15)

for 0 ≤ � ≤ L. Now we compute ̂(Pjf)+ ̂(Qjf) incorporating the (14), (15), Lemma 7,
and the filter equations (8).

̂(Pjf) + ̂(Qjf) =
L∑

=0

∆j [∆−j f̂ , ˆ̃ψ
] ∆jψ̂


=
L∑

=0

∆j
(m−1∑
p=0

T2πϑp∆[∆−(j+1)f̂ , m̃
 ˆ̃ϕ]
)

∆j+1
(
m
ϕ̂

)
= ∆j

(m−1∑
p=0

T2πϑp
∆[∆−(j+1)f̂ , ˆ̃ϕ]

)
∆j+1ϕ̂ ∆j+1

( L∑

=0

T2π(MT )−1ϑp
m̃
m


)
= ∆j+1[∆−(j+1)f̂ , ˆ̃ϕ] ∆j+1ϕ̂

= ̂(Pj+1f).

(b) First we note that when j ≥ 0 (b) follows from (a) since the quasi-affine
multiresolution operators agree with the corresponding affine operators at these scales.
Fix j < 0 and let f ∈ L2(Rn). We follow the proof of (a), but with less sleight of hand,

̂(P q
j f) + ̂(Qq

jf) =
L∑

=0

[f̂ ,∆j ˆ̃ψ
] ∆jψ̂


=
L∑

=0

[f̂ ,∆j+1
(
m̃
 ˆ̃ϕ

)
] ∆j+1

(
m
ϕ̂

)
= [f̂ ,∆j+1 ˆ̃ϕ] ∆j+1ϕ̂ ∆j+1

( L∑

=0

m̃
m


)
= [f̂ ,∆j+1 ˆ̃ϕ] ∆j+1ϕ̂

= ̂(P q
j+1f). �

Proposition 8 uncovers an important feature of the behavior of the quasi-affine
multiresolution operators for scales j < 0. In the proof of (b), we only made use of the
p = 0 case of the generalized Smith-Barnwell equations (7). We will see in the next
section how this is reminiscent of the à trous algorithm and in Section 5 we will offer
a generalized version of quasi-affine systems that takes advantage of this fact.

In light of Proposition 8, for each f ∈ L2(Rn) and J ≥ 0 we have

P−Jf +
J−1∑
j=−J

Qjf = PJf = P q
J f = P q

−Jf +
J−1∑
j=−J

Qq
jf. (16)
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We will now examine the behavior of the approximation operators acting on L2(Rn)
functions as the scale j tends to −∞.

Proposition 9

Let ϕ̃, ϕ ∈ C. Then for each f ∈ L2(Rn) ‖Pjf‖ → 0 and ‖P q
j f‖ → 0 as j → −∞.

Proof. By an approximation argument it is sufficient to prove each result for f a charac-
teristic function of some compact set K ⊂ R

n. We begin with the affine approximation
operator, Pj . We have by (14) and Proposition 4 (b)

‖ ̂(Pjf)‖2 =
∥∥∆j

(
[∆−j f̂ , ˆ̃ϕ]ϕ̂

)∥∥2

= |detM |j
∥∥[∆−j f̂ , ˆ̃ϕ]ϕ̂

∥∥2

=
∥∥[D̂−jf, ˆ̃ϕ]ϕ̂

∥∥2

≤ (2π)n
∥∥[D̂−jf, ˆ̃ϕ]

∥∥2

L2(Tn)

∥∥[ϕ̂, ϕ̂]
∥∥
∞.

Now, as a consequence of Lemma 2 (d) we see that∥∥[D̂−jf, ˆ̃ϕ]
∥∥2

L2(Tn)
=

∑
k∈Zn

∣∣〈f, ϕj,k〉∣∣2,
but ∑

k∈Zn

∣∣〈f, ϕj,k〉∣∣2 ≤ CK
∑
k∈Zn

∫
K

|detM |j |ϕ̃(M jx− k)|2dx

= CK
∑
k∈Zn

∫
MjK

|ϕ̃(x− k)|2dx

= CK
∑
k∈Zn

∫
MjK−k

|ϕ̃(x)|2dx.

Since ϕ̃ ∈ L2(Rn), this expression tends to 0 as j → −∞ by the dominated convergence
theorem and we conclude that ‖Pjf‖ → 0 as j → −∞.

The quasi-affine approximation operator will be handled in a similar fashion. Re-

call that ̂(Pq
j f) = [f̂ ,∆j ˆ̃ϕ]∆jϕ̂. Our next step is to apply Proposition 4 (b), but we

first note that when j < 0,
∥∥[∆jϕ̂,∆jϕ̂]

∥∥
∞ ≤

∥∥[ϕ̂, ϕ̂]
∥∥
∞. Hence,∥∥ ̂(P q

j f)
∥∥2 ≤ (2π)n

∥∥[ϕ̂, ϕ̂]
∥∥
∞

∥∥[f̂ ,∆j ˆ̃ϕ]
∥∥2

L2(Tn)
,

but Lemma 2 (d) reveals the fact that∥∥[f̂ ,∆j ˆ̃ϕ]
∥∥2

L2(Tn)
=

∥∥[f̂ , |detM |j/2 ̂(Djϕ̃)]
∥∥2

L2(Tn)

=
∑
k∈Zn

∣∣〈f, |detM |j/2TkDjϕ̃〉
∣∣2

=
∑
k∈Zn

∣∣〈f, ϕ̃q
j,k〉

∣∣2.
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Finally, we estimate the squared sum of the sequence of inner products,∑
k∈Zn

∣∣∣〈f, ϕ̃q
j,k〉

∣∣∣2 ≤ CK
∑
k∈Zn

∫
K

|detM |2j
∣∣ϕ̃(
M j(x− k)

)∣∣2dx
= CK

∑
k∈Zn

∫
Mj(K−k)

|detM |j
∣∣ϕ̃(x)

∣∣2dx
= CK

∫
Rn

gj(x)dx,

where gj(x) is given by

gj(x) =
∑
k∈Zn

|detM |j
∣∣ϕ̃(x)

∣∣2χSj,k
(x)

and Sj,k is defined to be
Sj,k :=M j(K − k).

SinceK is compact there exists someN > 0, independent of j, such that Sj,k0 intersects
at most N of the sets Sj,k, k ∈ Z

n. This implies that |gj | ≤ N |ϕ̃|2, providing a
dominating function for the collection {gj}j<0. Since gj → 0 a.e. as j → −∞ we
conclude by the dominated convergence theorem that ‖P q

j f‖ → 0 as j → −∞. �
With the help of Theorem 1 (a) we obtain an equivalence between dual refinable

affine and quasi-affine frames. We should note that the following result is a special
case of those given in [7].

Theorem 10

Let ϕ̃, ϕ ∈ C and m
, m̃
 ∈ L∞(Tn), 0 ≤ � ≤ L, such that (6) and (8) hold and

suppose that Ψ̃ = {ψ̃1, . . . , ψ̃L} and Ψ = {ψ1, . . . , ψL} are defined by (7). Then X(Ψ)
and X(Ψ̃) are dual frames for L2(Rn) if and only if Xq(Ψ) and Xq(Ψ̃) are dual frames

for L2(Rn).

Proof. We begin with the (⇒) implication, supposing that X(Ψ) and X(Ψ̃) are dual
frames for L2(Rn). By definition, we have for each f ∈ L2(Rn)

f =
L∑

=0

∑
j∈Z,k∈Zn

〈f, ψ̃
;j,k〉ψ
;j,k =
∑
j∈Z

Qjf.

Letting J → ∞ in (16) we see that

f = lim
J→∞

J∑
j=−J

Qq
jf.

By Theorem 1 (a), Xq(Ψ̃) and Xq(Ψ) are Bessel systems and, thus, the convergence
of the above sum is unconditional and we have the dual reproducing formula

f =
L∑

=0

∑
j∈Z,k∈Zn

〈f, ψ̃q

;j,k〉ψ

q

;j,k,
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for all f ∈ L2(Rn). It remains only to demonstrate the lower frame bounds for Xq(Ψ̃)
and Xq(Ψ) and for this we make use of a standard argument involving the reproducing
formula and the Bessel bounds. We have

‖f‖2 =
L∑

=0

∑
j∈Z,k∈Zn

〈f, ψ̃q

;j,k〉 〈ψ

q

;j,k, f〉

≤
( L∑

=0

∑
j∈Z,k∈Zn

|〈f, ψ̃q

;j,k〉|2

)1/2 ( L∑

=0

∑
j∈Z,k∈Zn

|〈f, ψq

;j,k〉|2

)1/2

≤ C‖f‖
( L∑

=0

∑
j∈Z,k∈Zn

|〈f, ψq

;j,k〉|2

)1/2

,

from which we conclude

1
C2

‖f‖2 ≤
L∑

=0

∑
j∈Z,k∈Zn

|〈f, ψq

;j,k〉|2.

The lower frame bound for Xq(Ψ̃) follows by analogy. Moreover, the reverse implica-
tion follows from a completely similar argument. �

4. The à trous connection

In order to better illustrate the connection between the à trous algorithm and the
multiresolution operators associated with quasi-affine systems we will take another
look at Proposition 8 (b). We will provide another proof of the result in the case that
j < 0 that is an adaptation of the usual à trous algorithm found in [10] and [13] to the
case of n dimensions and a more general dilation matrix M , as described above.

Let us assign coefficient representations to the filters of the last section,

m
(ξ) =
∑
k∈Zn

α
;ke
−i〈ξ,k〉 and m̃
(ξ) =

∑
k∈Zn

α̃
;ke
−i〈ξ,k〉,

which for all intents and purposes we may think of as trigonometric polynomials. An
elementary computation with the refinement relationships (6) and (7) reveals

|detM |−1/2ψ
;j−1,k =
∑
r∈Zn

α
;r ϕj,r+Mk and |detM |−1/2ψ̃
;j−1,k =
∑
r∈Zn

α̃
;r ϕ̃j,r+Mk,

for 0 ≤ � ≤ L, where we recall the convention that ψ0 = ϕ and ψ̃0 = ϕ̃. We would like
to write these formulas in terms of the quasi-affine dilation structure. When j ≥ 0 the
difference is just the cosmetic addition of brackets in the subscripts, but for j < 0 we
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obtain something altogether different. Indeed, for j < 0, k ∈ Z
n, and 0 ≤ � ≤ L we

have

ψq

;j−1,k = |detM |(j−1)/2TkD

j−1ψ


= |detM |(j−1)/2Tkψ
;j−1,0

= |detM |j/2
∑
r∈Zn

α
;r Tkϕj,r

= |detM |j/2
∑
r∈Zn

α
;r TkD
jTrϕ

=
∑
r∈Zn

α
;r ϕ
q
j,M−jr+k(x).

Notice that the sum in the last line of this calculation includes only the translates of
the scaling function in the sub-lattice M−j

Z
n + k rather than Z

n. It is this fact that
connects quasi-affine systems with the à trous algorithm of Holschneider, Kronland-
Martinet, Morlet, and Tchamitchian [10]. We follow their lead, defining for each scale
j < 0 upsampled filter coefficients

α
;j,r :=

{
α
;Mjr r ∈M−j

Z
n

0 r /∈M−j
Z
n,

where 0 ≤ � ≤ L. Inserting the upsampled coefficients into the preceding formula,
we achieve the desired replacements for the affine scaling equations in the quasi-affine
theory,

ψq

;j−1,k =

∑
r∈Zn

α
;j,r ϕ
q
j,r+k and ψ̃q


;j−1,k =
∑
r∈Zn

α̃
;j,r ϕ̃
q
j,r+k,

where j < 0, k ∈ Z
n, and 0 ≤ � ≤ L. The last piece of information we require comes

from the computation of the rth Fourier coefficient (r ∈ Z
n) of the filter equation (8)

in the case that p = 0,

δ0,r =
1

(2π)n

∫
Tn

L∑

=0

m
(ξ)m̃
(ξ)e−i〈ξ,r〉dξ

=
1

(2π)n

∫
Tn

L∑

=0

( ∑
k∈Zn

α
;ke
i〈ξ,k〉

)( ∑
k′∈Zn

α̃
;k′e
−i〈ξ,k′〉

)
e−i〈ξ,r〉dξ

=
1

(2π)n

∫
Tn

L∑

=0

∑
k∈Zn

α
;kα̃
;k−rdξ

=
L∑

=0

∑
k∈Zn

α
;kα̃
;k−r.

We now reexamine the result of Proposition 8 (b),

(
P q
j +Qq

j

)
f =

L∑

=0

∑
k∈Zn

〈f, ψ̃q

;j,k〉ψ

q

;j,k
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=
L∑

=0

∑
k∈Zn

∑
r,s∈Zn

α
;j+1,rα̃
;j+1,s〈f, ϕ̃q
j+1,s+k〉ϕ

q
j+1,r+k

=
∑
r,s∈Zn

( L∑

=0

∑
k∈Zn

α
;j+1,r−kα̃
;j+1,s−k
)
〈f, ϕ̃q

j+1,s〉ϕ
q
j+1,r

=
∑
r,s∈Zn

Cr,s〈f, ϕ̃q
j+1,s〉ϕ

q
j+1,r.

It suffices to prove Cr,s = δr,s for each r, s ∈ Z
n. First, suppose that r−s ∈M−(j+1)

Z
n,

in which case s = r +M−(j+1)u for some u ∈ Z
n and we have

Cr,s =
L∑

=0

∑
k∈M−(j+1)Zn+r

α
;j+1,r−kα̃
;j+1,r−k+M−ju

=
L∑

=0

∑
k∈Zn

α
;kα̃
;k+u

= δ0,u = δr,s.

Secondly, if r − s /∈ M−j+1
Z
n, then the supports of the coefficient sequences

{α
;j+1,r−k}k∈Zn and {α̃
;j+1,s−k}k∈Zn are disjoint and thus Cr,s = δr,s = 0, com-
pleting the argument.

5. Generalized quasi-affine frames

In Section 3 we saw how the usual multiresolution operators can be extended to the
quasi-affine scheme. Our study revealed the fact that only the p = 0 case of the perfect
reconstruction equations (8) was needed to prove P q

j−1 + Qq
j−1 = Qq

j for j < 0. In
the last section we saw how this ties the quasi-affine multiresolution operators to the
à trous algorithm. Here, we will introduce the notion of a generalized quasi-affine
system in order to exploit this relationship, the basic idea being that we will relax the
structure of the systems for negative scales.

Definition 5. The generalized quasi-affine (GQA) system generated by

Ψ = {ψ1, . . . , ψL},Φ = {φ1, . . . , φL′} ⊂ L2(Rn),

denoted Xgq(Ψ,Φ), is the collection

Xgq(Ψ,Φ) = {ψ
;j,k : 1 ≤ � ≤ L, j ≥ 0, k ∈ Z
n}

⋃
{φq

;j,k : 1 ≤ �′ ≤ L′, j < 0, k ∈ Z

n}.

We will refer to the collections, {ψ
;j,k : 1 ≤ � ≤ L, j ≥ 0, k ∈ Z
n} and {φq


;j,k :
1 ≤ �′ ≤ L′, j < 0, k ∈ Z

n}, respectively, as the standard and à trous components of
the GQA system Xgq(Ψ,Φ).
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Throughout this section Ψ, Ψ̃, ϕ, and ϕ̃ along with the filters m0, . . . ,mL and
m̃0, . . . , m̃L remain as fixed in the Section 3, collectively defining the standard com-
ponent of a GQA system. For the à trous component, let Φ = {φ1, . . . , φL′} and
Φ̃ = {φ̃1, . . . , φ̃L′} ∈ L2(Rn) such that the refinement identities

φ̂
′(MT ξ) = µ
′(ξ)ϕ̂(ξ) and ˆ̃
φ
′(M

T ξ) = µ̃
′(ξ)ˆ̃ϕ(ξ) (17)

hold for 1 ≤ �′ ≤ L′ and a.e. ξ ∈ R
n with µ
′ , µ̃
′ ∈ L∞(Tn). In accordance with the

remarks above, we assume that these filters satisfy only

m0(ξ)m̃0(ξ) +
L′∑

′=1

µ
′(ξ)µ̃
′(ξ) = 1, (18)

for a.e. ξ ∈ T
n. Given this setup we would like to determine sufficient conditions that

Xgq(Ψ,Φ) and Xgq(Ψ̃, Φ̃) comprise dual frames for L2(Rn).

Since we are using the scaling functions ϕ, ϕ̃ in the refinement of both the standard
and à trous components it is reasonable to expect P q

j to serve in the role of the
approximation operator for the proposed dual GQA systems at the scale j. The detail
operators will differ between non-negative and negative dilations. We will denote the
GQA detail operator at the scale j by Qgq

j and define it by its action on f ∈ L2(Rn),

Qgq
j f :=



L∑

=1

∑
k∈Zn

〈f, ψ̃
;j,k〉ψ
;j,k j ≥ 0

L′∑

′=1

∑
k∈Zn

〈f, φ̃q

′;j,k〉φ

q

′;j,k j < 0.

We have already described the behavior of Qgq
j for j ≥ 0 and using the techniques

of Section 3 we obtain a complete description of Qgq
j for all scales j ∈ Z.

Proposition 11

Suppose ψ
, ψ̃
, φ
′ , φ̃
′ ∈ C for 0 ≤ � ≤ L, 1 ≤ �′ ≤ L′. Then Qgq
j is a bounded

operator on L2(Rn) for each j ∈ Z and

(a) Qgq
j =

L′∑

′=1

|detM |jRDj φ̃�,Djφ�
, j < 0,

(b) P qq
j +Qgq

j = P qq
j+1, j ∈ Z.

Finally, we would like to answer the question of when the two GQA systems are
dual frames for L2(Rn). Again, we mimic the proof of Theorem 10 from the Section 3,
but in order that the proof work out here we must additionally assume that the two
GQA systems, Xgq(Ψ,Φ) and Xgq(Ψ̃, Φ̃) are Bessel. This assumption is not overly
restrictive as weak decay properties of the scaling functions would suffice to ensure
that the two GQA systems are Bessel.
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Theorem 12

Let ϕ̃, ϕ ∈ C and m
, m̃
, µ
′ , µ̃
′ ∈ L∞(Tn), 0 ≤ � ≤ L, 1 ≤ �′ ≤ L′, such that (6),

(8), and (18) hold. Suppose that Ψ̃ = {ψ̃1, . . . , ψ̃L} and Ψ = {ψ1, . . . , ψL} are defined

by (7) and that Φ̃ = {φ̃1, . . . , φ̃L′} and Φ = {φ1, . . . , φL′} are defined by (17). Then, if

X(Ψ), X(Ψ̃) are dual frames for L2(Rn) and Xgq(Ψ,Φ), Xgq(Ψ̃, Φ̃) are Bessel systems

then Xgq(Ψ,Φ) and Xgq(Ψ̃, Φ̃) are dual frames for L2(Rn).

6. Examples of generalized quasi-affine frames

In this section we will study examples of generalized quasi-affine frames produced
from two separate 2-band one-dimensional biorthogonal wavelets. The first pair of
examples will be based upon a Burt-Adelson biorthogonal system presented in [5] and
arising from the well-known Burt-Adelson Laplacian Pyramid [1]. A second pair of
examples will be given that stem from a piecewise linear spline biorthogonal system,
also borrowed from [5]. We hope with these examples to demonstrate the flexibility
present in the choice of high-pass filters for the negative dilations of the GQA system
Xgq(ψ, φ). We would hope that this flexibility will allow for better design of φ and
φ̃ in terms of support, vanishing moments, or symmetry than is possible in the affine
case.

In this setting, the perfect reconstruction filter equations (8) reduce to

m0(ξ)m̃0(ξ) +m1(ξ)m̃1(ξ) = 1 (19)

and
m0(ξ)m̃0(ξ + π) +m1(ξ)m̃1(ξ + π) = 0 (20)

for a.e. ξ ∈ T
n. As discussed above, the main difference between the standard and à

trous components of a generalized quasi-affine system is the lack of downsampling on
the à trous side. Accordingly, the à trous high-pass filters, µ1, µ̃1, must satisfy only
(18) which becomes

m0(ξ)m̃0(ξ) + µ1(ξ)µ̃1(ξ) = 1 (21)

in this case. We will additionally constrain the high-pass filters to vanish at zero, in
order that the wavelets have at least one vanishing moment. Rearranging (21), we see

µ1(ξ)µ̃1(ξ) = 1 −m0(ξ)m̃0(ξ), (22)

which suggests that the family of choices for µ1 and µ̃1 are characterized by a complete
factorization of 1 −m0(ξ)m̃0(ξ).

Before proceeding to construct examples we must first consider the question of
which choices of filters will result in GQA systems with the Bessel property. The
following lemma is borrowed from [6] and describes a sufficient condition on the scaling
functions to guarantee the desired Bessel bounds. Similar techniques appear in other
articles, e.g. [5].
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Lemma 13

Suppose ϕ satisfies

sup
ξ∈R

∑
k∈Z

|ϕ̂(ξ + 2πk)|2−σ <∞

and

sup
ξ∈R

(1 + |ξ|)σ|ϕ̂(ξ)| <∞

for some σ, 0 < σ < 2. If ψ̂(2ξ) = m(ξ)ϕ̂(ξ) with m a trigonometric polynomial

satisfying m(0) = 0 then {ψj,k}j,k∈Z is a Bessel system for L2(R).

It is pointed out in [5] that both the Burt-Adelson and spline low-pass filters
considered here do give rise to scaling functions satisfying the hypotheses of Lemma 13
and, thus, the systems considered below will be Bessel and Theorem 12 will apply. As
a final preliminary remark, we note that the regularity of the à trous wavelets is
inherited from the scaling functions because each wavelet is a finite linear combination
of translates of the corresponding scaling function. With these comments, we now
proceed to consider some examples.

We begin with the Burt-Adelson case, recalling the generic form of the Burt-
Adelson low-pass filter with parameter a,

m0,a(ξ) =
(1

4
− a

2

)
ei2ξ +

1
4
eiξ + a+

1
4
e−iξ +

(1
4
− a

2

)
e−i2ξ.

We will work with a =
3
5
, in which case the low-pass filter becomes

m0(ξ) = − 1
20
ei2ξ +

1
4
eiξ +

3
5

+
1
4
e−iξ − 1

20
e−i2ξ.

The dual low-pass filter, m̃0, associated to m0 is given by

m̃0(ξ) = − 3
280
ei3ξ − 3

56
ei2ξ +

73
280
eiξ +

17
28

+
73
280
e−iξ − 3

56
e−i2ξ − 3

280
e−i3ξ.

Associated to these dual low-pass filters are the high-pass filters, m1 and m̃1, defined
in accord with (19) and (20) above as

m1(ξ) =
3

280
ei2ξ − 3

56
eiξ − 73

280
+

17
28
e−iξ − 73

280
e−i2ξ − 3

56
e−i3ξ +

3
280
e−i4ξ,

and
m̃1(ξ) = − 1

20
eiξ − 1

4
+

3
5
e−iξ − 1

4
e−i2ξ − 1

20
e−i3ξ.

Together, these four filters define the scaling functions, ϕ and ϕ̃, as well as the dual
biorthogonal wavelets, ψ and ψ̃, via the refinement equations (6) and (7), respectively.
The graphs of these four functions are given in Figure 1. This completely describes
the standard component of our dual GQA system and we now proceed to discuss the
à trous component.
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Figure 1: Thea = 3
5 Burt-Adelson biorthogonal system. (a): The scaling function,ϕ. (b): The wavelet,

ψ. (c): The dual scaling function, ϕ̃. (d): The dual wavelet, ψ̃.

As remarked above, our à trous high-pass filters will result from a factorization
of (22), which in terms of the Burt-Adelson filters becomes

1 −m0(ξ)m̃0(ξ)

=

(
e−i5ξ(−1 + eiξ)4

(
1 + 7eiξ + ei2ξ)(−3 + 9eiξ + 94ei2ξ + 9ei3ξ − 3ei4ξ

))
5600

. (23)

We are free to define µ1 by choosing terms from the factorization (23), provided we
include at least one factor of (−1 + eiξ) while simultaneously leaving at least one such
factor for µ̃1 to ensure that each à trous wavelet has a vanishing moment. Choosing
any power of eiξ from (23) for our high-pass filter will correspond to an unimportant
translation of the associated wavelet; hence, excluding these unimodular delay terms
and the factors (−1 + eiξ) we have two remaining factors that may be distributed
arbitrarily between µ1 and µ̃1. Each of these factors possesses symmetric coefficients,
thus the symmetry or anti-symmetry of the à trous wavelets will depend entirely on
the distribution of the factors (−1+ eiξ). In the original biorthogonal case, each of the
high-pass filters has two vanishing moments which implies that the biorthogonal Burt-
Adelson wavelets have a symmetry property. If we assign only one vanishing moment
to either high-pass filter, the remaining filter will have three vanishing moments and
each à trous wavelet will have an anti-symmetry property.

Example A: The simplest possible choice for µ1 would be the high-pass filter of the
Haar wavelet, which consists of a single vanishing moment. Thus, we define φA by
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means of the high-pass filter µA1 given by

µA1 (ξ) =
−1
2

(
1 − e−iξ

)
.

This results in à trous wavelets with anti-symmetry properties and provides the shortest
possible analysis filter. Three vanishing moments are left for the dual wavelet, φ̃A,
defined by the corresponding dual à trous high-pass filter

µ̃A1 (ξ) =
1

2800
(
− 3ei4ξ − 3ei3ξ + 181ei2ξ + 181eiξ − 1400 + 1400e−iξ

− 181e−i2ξ − 181e−i3ξ + 3e−i4ξ + 3e−i5ξ
)
.

Each of the scaling functions, ϕ and ϕ̃, is symmetric about 0, which makes it easy to
determine the symmetry properties of the functions φA, φ̃A. Recall that equation (17)
implies that

1
2
φA

(x
2

)
=

∑
k∈Z

α1;kϕ(x− k),

where {α1;k}k are the coefficients of the filter µA1 . Thus, the anti-symmetry of µA1
with respect to k = 1

2 implies that φA is antisymmetric about x = 1
4 . The same

reasoning applies to φ̃A. The graphs of the two à trous wavelets, φA and φ̃A, are given
in Figure 2, (a) and (b), respectively.

Figure 2: Examples of Burt-Adelson à trous wavelets. (a): The wavelet, φA. (b): The dual wavelet,

φ̃A. (c): The wavelet, φB . (d): The dual wavelet, φ̃B .
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Example B: For our next example, we will choose filters such that each of the à trous
wavelets possesses two vanishing moments, but such that the analysis filter, µB1 , is as
short as possible. Let µB1 be given by

µB1 (ξ) =
−1
25

(
8eiξ − 16 + 8e−iξ

)
,

with the corresponding dual filter

µ̃B1 (ξ) =
−1

1792
(
− 3ei4ξ − 6ei3ξ + 175ei2ξ + 356eiξ

− 1044 + 356e−iξ + 175e−i2ξ − 6e−i3ξ − 3e−i4ξ
)
.

In contrast to the last example, each filter here is even, implying that the dual à trous
wavelets are symmetric about zero. The associated wavelets, φB and φ̃B , respectively,
are displayed in Figure 2, (c) and (d).

We now turn to another base biorthogonal system based on the piecewise linear
spline scaling function of [5]. In the terminology of [5] this system consists of the dual
scaling functions ϕ2, ϕ̃2,4, ψ2,4, and ψ̃2,4, which are illustrated in Figure 3. We have
the associated filters

m0(ξ) =
1
4
(
eiξ + 2 + e−iξ

)
,

m̃0(ξ) =
1

128
(
3ei4ξ − 6ei3ξ − 16ei2ξ + 38eiξ

+ 90 + 38e−iξ − 16e−i2ξ − 6e−i3ξ + 3e−i4ξ
)
,

m1(ξ) =
1

128
(
3ei3ξ + 6ei2ξ − 16eiξ − 38

+ 90e−iξ − 38e−i2ξ − 16e−i3ξ + 6e−i4ξ + 3e−i5ξ
)
,

and
m̃1(ξ) =

−1
4

(
1 − 2e−iξ + 1e−i2ξ

)
.

The factorization of (22) in terms of these spline filters becomes

1 −m0(ξ)m̃0(ξ) =

(
− e−i5ξ(−1 + eiξ)6(3 + 18eiξ + 38ei2ξ + 18ei3ξ + 3ei4ξ)

)
512

. (24)

Notice that in this case besides the delay and moment factors we have just a single
remaining factor with symmetric coefficients.
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Figure 3: The piece-wise linear spline biorthogonal system. (a): The scaling function, ϕ. (b): The

wavelet, ψ. (c): The dual scaling function, ϕ̃. (d): The dual wavelet, ψ̃.

Example C: We begin with the analog of Example A, corresponding to µC1 equal to
a multiple of the Haar high-pass filter,

µC1 (ξ) =
−3
4

(
1 − e−iξ

)
,

which forces

µ̃C1 (ξ) =
1

384
(
− 3ei4ξ − 3ei3ξ + 22ei2ξ + 22eiξ − 128 + 128e−iξ − 22e−i2ξ

− 22e−i3ξ + 3e−i4ξ + 3e−i5ξ
)
.

The resulting à trous wavelets, which possess one and five vanishing moments, respec-
tively, are depicted in Figure 4, (a) and (b). Since each scaling function is symmetric
about x = 0 we see that φC and φ̃C are anti-symmetric about x = 1

4 .
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Figure 4: Examples of spline à trous wavelets. (a): The wavelet, φC . (b): The dual wavelet, φ̃C . (c):

The wavelet, φD . (d): The dual wavelet, φ̃D .

Example D: Finally, we consider another example in which the vanishing moments
are not shared evenly between the two à trous wavelets, but with this example we will
assign two vanishing moments for µD1 with the shortest possible filter. Letting

µD1 (ξ) =
1
8
(
− 3 + 6e−iξ − 3e−i2ξ

)
,

and

µ̃D1 (ξ) =
1

192
(
3ei3ξ+6ei2ξ−16eiξ−38+90e−iξ−38e−i2ξ−16e−i3ξ+6e−i4ξ+3e−i5ξ

)
,

we obtain the à trous wavelets, φD and φ̃D, pictured in Figure 3, (c) and (d). As in
the Burt-Adelson case, by assigning even numbers of vanishing moments to the à trous
wavelets we obtain wavelets with symmetry properties, in this case about x = 1

2 .

These four examples show the flexibility present in the design of à trous wavelets
for use in the negative dilations of a generalized quasi-affine frame arising from a
given biorthogonal system. This flexibility grants us total control over the number of
vanishing moments in analysis and synthesis or the relative filter lengths and permits
the creation of symmetry properties for the à trous wavelets not present in the original
biorthogonal wavelets, ψ and ψ̃. We did notice, however, for our two biorthogonal
systems that even numbers of vanishing moments leads to symmetry properties while
odd numbers of vanishing moments yield anti-symmetry properties for the resulting à
trous wavelets.
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7. Conclusion

The main intent of this work is to establish a connection between the à trous algo-
rithm and quasi-affine systems and to demonstrate how this connection can be used
to obtain frames for L2(Rn) beginning with appropriate à trous systems. Using tech-
niques associated with the bracket product we extended the multiresolution operators
common in analyses of affine systems to the quasi-affine setting. This analysis lead
to the observation that the behavior of the quasi-affine multiresolution operators re-
sembles the à trous algorithm and, motivated by this observation, we showed that for
negative dilations the original generating wavelets could be replaced by appropriately
chosen à trous wavelets and the resulting GQA systems would constitute dual frames
for L2(Rn). Lastly, we considered examples of GQA systems for L2(R) with primary
focus on the design of the à trous wavelets in terms of a given 2-band biorthogonal
wavelet system.
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