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Abstract

In this paper, we show that if (un)n≥0 and (vn)n≥0 are two non-degenerate
binary recurrent sequences of integers such that (vn)n≥0 satisfies some technical
assumptions, then the diophantine equation |vn| = φ(|um|) has only finitely
many effectively computable positive integer solutions (m,n). Here, for a non-
zero integer k we use φ(k) to denote the Euler function of k.

1. Introduction

Let r and s be two non-zero integers with r2 + 4s > 0. A binary recurrence sequence
(un)n≥0 is a sequence such that u0 and u1 are integers and

un+2 = run+1 + sun for all n ≥ 0.

Clearly, un is an integer for all n ≥ 0. Let α and β denote the two roots of the equation

x2 − rx− s = 0.

It is well known that

(1) un = aαn + bβn for all n ≥ 0

where a and b are two constants which can be determined using formula (1) with
n = 0, 1. The binary recurrence sequence (un)n≥0 is called nondegenerate if ab �= 0
and α/β is not a root of unity.
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If (r, s) = 1, u0 = 0 and u1 = 1, then (un)n≥0 is called a Lucas sequence of the
first kind. For such sequences, formula (1) is

(2) un =
αn − βn

α− β
for all n ≥ 0.

If (r, s) = 1, u0 = 2 and u1 = r, then (un)n≥0 is called a Lucas sequence of the second
kind. For such sequences, formula (1) is

(3) un = αn + βn for all n ≥ 0.

Let (un)n≥0 and (vn)n≥0 be two nondegenerate binary recurrence sequences. As-
sume that

(4) un+2 = r1un+1 + s1un for n ≥ 0

and

(5) vn+2 = r2vn+1 + s2vn for n ≥ 0

where r21 + 4s1 > 0 and r22 + 4s2 > 0. Let α1, β1 and α2, β2 be the roots of the
characteristic equation

x2 − r1x− s1 = 0

and
x2 − r2x− s2 = 0,

respectively. Assume that |α1| > |β1| and that |α2| > |β2|. In particular, |αi| > 1 for
i = 1, 2.

In what follows, we shall work with pairs of binary recurrence sequences (un)n≥0

and (vn)n≥0 satisfying at least one of the following assumptions:

Assumptions

A1) Not all four numbers α1, β1, α2, β2 are integers.
A2) log |α1| and log |α2| are linearly independent over Q.
A3) |α1| > max (|β1|2, |β2|2) > 1.

For any positive integer k, let φ(k) be the Euler totient function of k. Our main result
is the following:

Theorem
Let (un)n≥0 be a nondegenerate binary recurrence sequence. Let (vn)n≥0 be a

binary recurrence sequence satisfying one of the following two conditions:

(i) (vn)n≥0 is a Lucas sequence of the second kind;
(ii) (vn)n≥0 is such that (r2, s2) is odd and s2 is even.

Moreover, assume that the pair of sequences (un)n≥0 and (vn)n≥0 satisfies at least
one of the assumptions A1-A3.

Let a and b be two nonzero integers. Then, the equation

(6) φ
(
|aum|

)
= |bvn|

has finitely many solutions (m, n). Moreover, there exists a computable constant C
depending only on a, b and the sequences (un)n≥0 and (vn)n≥0 such that all solutions
of equation (6) satisfy max(m, n) < C.
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It would be nice if one could prove the above theorem without any of the assump-
tions A1-A3. Unfortunately, as the following example suggests, such a result would be
very hard to prove.

Example 1: Let vn = un = 2n − 1 for all n ≥ 0. Let a = 1 and b = 2. Equation (6)
becomes

(7) φ
(
2n − 1

)
= 2

(
2m − 1

)
.

Notice that if n = p is a prime such that up = 2p − 1 is a prime (that is, if up is a
Mersenne prime), then equation (7) is satisfied for n = p and m = p− 1. However, it
is not known that there are only finitely many Mersenne primes. In fact, the classical
conjecture is that there are infinitely many Mersenne primes.

We also present the following results:

Proposition 1

The only solutions of the equation

(8) φ
(
a · 10m − 1

9

)
= b · 10n − 1

9
1 ≤ a, b ≤ 9 and m, n ≥ 1

are given by m = n = 1 and b = φ(a).

Notice that Proposition 1 asserts that the only positive integers x such that both
x and φ(x), have only one distinct digit (when represented in the decimal system), are
precisely the integers x having only one digit.

Proposition 2

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 0. Also let (Ln)n≥0 be the Lucas sequence given by L0 =
2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. Then, the only solutions of the

equation

(9) φ(Lm) = Ln

are (m, n) = (0, 1), (1, 1), (2, 0), (3, 0).
Moreover, the only solutions of the equation

(10) φ(Fm) = Ln

are (m, n) = (1, 1), (2, 1), (3, 1), (4, 0), (5, 3), (6, 3).



136 Luca

It also follows, by the theorem, that there are only finitely many Fibonacci and Lu-
cas numbers whose Euler totient function has only one distinct digit when represented
in the decimal system. That is, each one of the equations

(11) φ(Fm) = b · 10n − 1
9

1 ≤ b ≤ 9

and

(12) φ(Lm) = b · 10n − 1
9

1 ≤ b ≤ 9

has only finitely many solutions (m, n, b). In fact, following the idea of the proof of
the Theorem, one can compute upper bounds for all the solutions of equations (11)
or (12). The upper bounds obtained in such a way are, most likely, very large. An
elementary treatment of the above two equations would certainly be of interest.

It might be worth mentioning that one can conclude that an equation such as
(6) has only finitely many solutions even in instances when none of the assumptions
A1-A3 is satisfied. For example, in [3], we found all solutions of the equation

(13) φ
(
|xm + ym|

)
=

∣∣xn + yn
∣∣

where x and y are integers and m and n are positive integers. Aside from some trivial
solutions for which m = n = 1 and |x + y| = 1 and from two parametric families of
solutions for which x = y ∈ {2, 3} and m = n + 1, the only solution of equation (13)
is (x, y, m, n) = (3, 1, 2, 1). Using considerations similar to the ones employed in
[3], we also found all solutions of the equation

(14) φ
(
xm − ym

)
= xn + yn

where x, y, m, n are positive integers (see [4]).
As related results, we mention that all solutions of the equation

φ(Fm) = 2n

or
φ(Lm) = 2n

were found in [5]. In fact, in [5], we also found all members of either the Fibonacci or
the Lucas sequence for which the divisor sum is a power of 2. Finally, in [6], we found
all solutions of the equation

(15) φ

((
m

k

))
= 2n

where m ≥ 2k. Equation (15) has no solutions for k ≥ 4.
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2. Preliminary results

The proof of the Theorem uses estimations of linear forms in logarithms of algebraic
numbers.

For any non-zero algebraic number ζ let H(ζ) be the height of ζ. Let ζ1, ..., ζl
be algebraic numbers, not 0 or 1, of heights not exceeding A1, ..., Al, respectively. We
assume Am ≥ e for m = 1, ..., l. Put Ω = logA1... logAl. Let F = Q(ζ1, ..., ζl) and
let dF = [F : Q]. Let n1, ..., nl be integers, not all 0, and let B ≥ max |nm|. We
assume B ≥ e. The following result is due to Baker and Wüstholz.

Theorem BW ([1])

If ζn1
1 ...ζnl

l �= 1, then

(16)
∣∣ζn1

1 ...ζnl

l − 1
∣∣ > exp

(
−(17(l + 1)dF)2l+7Ω logB

)
.

In fact, Baker and Wüstholz showed that if log ζ1, ..., log ζl are any fixed values
of the logarithms and Λ = n1 log ζ1 + . . .+ nl log ζl �= 0, then

(17) log |Λ| > −
(
16ldF

)2(l+2)Ω logB.

Now (16) follows easily from (17) via an argument similar to the one used by Shorey
et al. in their paper ([7], p. 66).

We also need the following p-adic analogue of Theorem BW which is due to Yu
(see Theorem 4 in [9]).

Theorem Y ([9])†
Let π be a prime ideal of F lying above a prime integer p. Assume that ordπζi = 0

for i = 1, ..., l. If ζn1
1 . . . ζnl

l �= 1, then there exist computable absolute constants C1

and C2 such that

(18) ordπ

(
ζn1
1 ...ζnl

l − 1
)
<

(
C1ldF

)C2l pdF

log2 p
Ω log

(
d2

F
B

)
.

Let now (un)n≥0 be a nondegenerate binary recurrence sequence given by formula
(1). Assume that |α| > |β|. Then

Theorem S ([8])

There exist computable numbers C1, C2 and C3 depending only on a and b such

that

(19) |α|n+C1 > |un| > |α|n−C2 log n for all n ≥ C3.

† Here we use Theorem 4 on page 275 in [9]. However, in [9] the bound is quadratic in log(d2
F
B).

Kunrui Yu has informed us that the dependence of the bound is, in fact, linear in log(d2
F
B), and that the

apparent quadratic dependence of the bound in [9] on this term is just a misprint.
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Let now (un)n≥0 and (vn)n≥0 be two nondegenerate binary recurrence sequences
given by recurrences (4) and (5) respectively.

The following Technical Lemma is essential in the proof of the theorem.

Technical Lemma
Let (un)n≥0 and (vn)n≥0 be the two nondegenerate binary recurrence sequences

given by formulae (4) and (5). Let γ1 ≥ 1, γ2 > 0, γ3 > 0 and γ4 ≥ 0 be fixed

constants. Let A be a positive rational number and let m and n be positive integers

satisfying the following four conditions:

(20) γ1 <
|um|
|vn|

< γ2,

(21) logH(A) < γ3(logm)γ4 ,

(22) |Aum| > |vn|

and

(23) A|a1||α1|m �= |a2||α2|n.

Then, there exists a computable constant C depending only on the numbers γi for

i = 1, . . . , 4 and on the sequences (un)n≥0 and (vn)n≥0 such that, if m > C, then

(24)
|Aum| − |vn|

|vn|
> exp(−(logm)γ4+2).

Proof of the Technical Lemma

By C1, C2, ... we denote positive computable constants depending only on the
constants γi for i = 1, ..., 4 and on the sequences (un)n≥0 and (vn)n≥0. By Theorem
S and inequalities (20), it follows that there exist computable numbers C1, C2, C3, C4

and C5 such that, if n > C1, then

(25) log γ1 < log |um| − log |vn| < (m+ C2) log |α1| − (n− C3 log n) log |α2|

and

(26) (m− C4 logm) log |α1| − (n+ C5) log |α2| < log |um| − log |vn| < log γ2.

In particular, there exist constants C6, C7, C8, C9, C10, C11 and C12 such that,
if min(n, m) > C6, then

(27) −C7 − C8 logm < m log |α1| − n log |α2| < C9 + C10 logm
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and

(28) C11m < n < C12m.

For m > C6 we may write

|um| = |a1||α1|m + ε1|b1||β1|m

and
|vn| = |a2||α2|n + ε2|b2||β2|n

where ε1, ε2 ∈ {−1, 1}. Therefore

(29) |Aum| − |vn| =
(
A|a1||α1|m − |a2||α2|n

)
+

(
Aε1|b1||β1|m − ε2|b2||β2|n

)
> 0.

We now analyse the expression

(30) |A|a1||α1|m − |a2||α2|n| = A|a1||α1|m
∣∣∣1 −

( |a2|
A|a1|

)
|α1|−m|α2|n

∣∣∣
which is non-zero by (23). Let C13 ≥ C6 be such that if m > C13, then

γ3(logm)γ4 > log
(
H

( |a2|
|a1|

))
.

In this case,

max
(
H(A), H

( |a2|
|a1|

))
< γ3(logm)γ4 .

Since |a2|/|a1| is algebraic of degree at most 4 and A is rational, it follows that

(31) logH
( |a2|
A|a1|

)
≤ 5 · max

(
logH(A), log

(
H

( a2

|a1|
)))

< 5γ3(logm)γ4

for m > C13. Let C14 be an upper bound for logH(|α1|) · logH(|α2|). Let Ω =
5γ3C14(logm)γ4 . Finally, let B = max(m, n). From now on, assume that m > C15 =
max(C12, C13). It follows, by inequality (28), that n < m2. Hence, logB < 2 logm.
From formula (30) and Theorem BW, it follows that

(32) |A|a1||α1|m − |a2||α2|n| > A|a1||α1|m · exp
(
−27213 · 6γ3 · C14(logm)γ4+1

)
.

Moreover, since A is rational, it follows that

(33) A >
1

H(A)
> exp

(
−γ3(logm)γ4

)
> exp

(
−γ3(logm)γ4+1

)
.

From inequalities (32) and (33), it follows that

|A|a1||α1|m − |a2||α2|n| > |a1||α1|m exp
(
−γ3 · (27213 · 6 · C14 + 1) · (logm)γ4+1

)
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or

(34) |A|a1||α1|m − |a2||α2|n| > |a1||α1|m exp
(
−C16(logm)γ4+1

)
for m > C15

where C16 = γ3 · (27213 · 6 ·C14 + 1). One can show, by using a similar argument, that

(35) |A|a1||α1|m − |a2||α2|n| > |a2||α2|n exp
(
−C17(logm)γ4+1

)
for m > C18.

Now let C19 = max(C18, C15) and let C20 = max(C16, C17). From equations (34) and
(35), it follows that

(36) |A|a1||α1|m − |a2||α2|n| > max(|a1||α1|m, |a2||α2|n) · exp
(
−C20(logm)γ4+1

)
for m > C19. We now show that if

(37) A|a1||α1|m − |a2||α2|n < 0,

then m is bounded. Indeed, assume that inequality (37) happens. From inequality
(29), it follows that

(38) |A|a1||α1|m − |a2||α2|n| = −(A|a1||α1|m − |a2||α2|n) < A|b1||β1|m + |b2||β2|n.

Assume, for example, that A|b1||β1|m ≥ |b2||β2|n. In this case, from inequalities (36)
and (38), it follows that

|a1||α1|m exp
(
−C20(logm)γ4+1

)
< 2A|b1||β1|m

or ∣∣∣α1

β1

∣∣∣m < 2A|b1||a1|−1 exp
(
C20(log(m)γ4+1

)
or

(39) m log
∣∣∣α1

β1

∣∣∣ < logA+ C21 + C20(logm)γ4+1

for m > C19 where C21 = max(0, log(2|b1||a1|−1)). Since A is rational, it follows that
A ≤ H(A). Therefore

(40) logA ≤ logH(A) < γ3(logm)γ4 .

Inequality (39) implies that

(41) m log
∣∣∣α1

β1

∣∣∣ < C21 + γ3(logm)γ4 + C20(logm)γ4+1.

Inequality (41) implies that m < C22. The case A|b1||β1|m < |b2||β2|n can be treated
similarly.
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In conclusion, there exists a constant C23 such that, if m > C23, then

(42) A|a1||α1|m − |a2||α2|n > 0.

We now show that

(43) |Aum| − |vn| >
1
2
|a2|α2|n exp

(
−C20(logm)γ4+1

)
for m enough large. Indeed, by formula (29) and inequalities (36) and (42) for m > C23,
it follows that

|Aum| − |vn| = |A|a1||α1|m − |a2||α2|n| +
(
Aε1|b1||β1|m − ε2|b2||β2|n

)
> |a2||α2|n · exp

(
−C20(logm)γ4+1

)
+

(
Aε1|b1||β1|m − ε2|b2||β2|n

)
.

Hence, in order to prove that inequality (43) holds when m is large enough, it suffices
to show that the inequality

(44)
1
2
|a2||α2|n · exp

(
−C20(logm)γ4+1

)
> |Aε1|b1||β1|m − ε2|b2||β2|n|

holds when m is large enough.
Assume, for example, that A|b1||β1|m ≤ |b2||β2|n. Then, it suffices to show that

1
2
|a2||α2|n · exp

(
−C20(logm)γ4+1

)
> 2|b2||β2|n

or ∣∣∣α2

β2

∣∣∣n > 4|b2||a2|−1 exp
(
C20(logm)γ4+1

)
or that

(45) n log
∣∣∣α2

β2

∣∣∣ > C24 + C20(logm)γ4+1

for m large enough where C24 = max(0, log(4|b2||a2|−1)). Using inequality (27), one
concludes easily that inequality (45) is satisfied for m > C25. It follows that inequality
(43) is also satisfied for m > C25 in this case.

The case A|b1||β1|m > |b2||β2|n can be treated using a similar argument.
Assume therefore that inequality (43) holds when m > C25.
From inequality (43) and Theorem S, it follows that

|Aum| − |vn|
|vn|

>
1
2
|a2||α2|−C3 log n exp

(
−C20(logm)γ4+1

)
= exp

(
C26 − C3 log |α2| log n− C20(logm)γ4+1

)
for m > C25 where C26 = max(0, log(|a2|/2)). Hence, in order to prove that inequality
(24) holds when m is large enough, it suffices to show that

(46) exp
(
C26 − C3 log |α2| log n− C20(logm)γ4+1

)
> exp(−(logm)γ4+2)
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holds when m is large enough. Notice that inequality (46) is equivalent to

(logm)γ4+2 > C20(logm)γ4+1 + C3 log |α2| log n− C26

which, by inequality (27), is certainly true for m > C27.
The technical lemma is therefore proved. �

For any non-zero integer k and any prime number p, let ordp(k) be the power at
which p appears in the prime factor decomposition of k.

Lemma 1

Let (un)n≥0 be a nondegenerate binary recurrence sequence. Then, there exist

three computable constants C1, C2 and C3 depending only on the sequence (un)n≥0

such that, if p is a prime number and um �= 0, then

(47) ordp(um) < min
(
C1m+ C2, C3

p2

log p
log(4m)

)
.

Proof of Lemma 1

Assume that un is given by formula (1) for all n ≥ 0. Let |α| > |β|. Denote
µ = ordp(um). By Theorem S it follows that

2µ ≤ pµ ≤ |um| < |α|m+C1

where C1 depends only on a and b. Hence,

µ < (m+ C1) log2 |α| = m · C2 + C3

where C2 = log2 |α| and C3 = C1 log2 |α|.
The fact that

ordp(um) < C3
p2

log p
log(4m)

for some computable constant C3 follows immediately from Theorem Y. �

Lemma 2

Let n be a positive integer and let t be a real number such that ord2(φ(n)) ≤ t.

Then

(48)
φ(n)
n

≥ 1
t+ 2

.

Proof of Lemma 2

See, for example, [3]. �

Lemma 3

Let (vn)n≥0 be a nondegenerate binary recurrence sequence satisfying either one

of the following two conditions:
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(1) (vn)n≥0 is a Lucas sequence of the second kind.

(2) (vn)n≥0 is such that (r, s) is odd and s is even.

In this case, there exist two computable constants C1 and C2 such that

(49) ord2(vn) < C1 for all n > C2.

Proof of Lemma 3

Throughout this proof, we assume that (vn)n≥0 is given by the recurrence relation

vn+2 = rvn+1 + svn for n = 0, 1, ...

Assume first that (vn)n≥0 is a Lucas sequence of the second kind and that s is
odd. We distinguish 2 cases.

Case 1. r is even. We first show that un is even for all n ≥ 0. Indeed this follows
easily by induction using the recurrence formula and the fact that both v0 = 2 and
v1 = r are even. We now show that

ord2(vn) =

{
1 if n ≡ 0 (mod 2),

ord2(r) if n ≡ 1 (mod 2).

Assume, for example, that 2 | n. Then,

vn = αn + βn = (αn/2 + βn/2)2 − 2αn/2βn/2 = v2
n/2 ± 2sn/2 ≡ 2 (mod 4)

because s is odd and un/2 is even. Hence, ord2(vn) = 1 if n is even. Now write r = 2µr′

where µ ≥ 1 and r′ ≡ 1 (mod 2). We prove, by induction, that ord(v2k+1) = µ for
all k ≥ 0. This is certainly true for k = 0. Assume that this is true for k. From the
recurrence relation, we conclude that

(50) v2(k+1)+1 = rv2(k+1) + sv2k+1 = 2µ+1r′
v2(k+1)

2
+ 2µs

v2k+1

2mu
.

By the previous arguments and the induction hypothesis both numbers

r′
v2(k+1)

2
and s

v2k+1

2mu

are odd integers. From formula (50) it follows that ord2(v2(k+1)+1) = µ. The induction
is therefore complete.

Case 2. r is odd. Reducing the recurrence formula of (vn)n≥0 modulo 2, it follows
that

vn+2 ≡ vn+1 + vn (mod 2).

Since v0 = 2 ≡ 0 (mod 2) and v1 = r ≡ 1 (mod 2), it follows that vn ≡ Fn (mod 2)
where Fn is the n’th term of the Fibonacci sequence. It is well known that 2 | Fn

if and only if 3 | n. Hence, ord2(vn) = 0 if 3 � | n. Assume now that n = 3k. Let
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wk = (α3)k + (β3)k. Notice that (wn)n≥0 is a Lucas sequence of the second kind
satisfying the recurrence

wn+2 = (r3 + 3rs)wn+1 + s3wn for all n > 0.

Since r3 + 3rs ≡ 0 (mod 2), it follows, by Case 1, that

ord2(v3k) =

{
1 if k ≡ 0 (mod 2),

ord2(r2 + 3s) if k ≡ 1 (mod 2).

Assume now that (vn)n≥0 is such that (r, s) is odd and s is even. Let F = Q(α)
and let π be a prime ideal of F lying above the prime number 2. Since π divides s

but π does not divide r, it follows that π divides exactly one of the ideals [α] and [β].
Assume that π | [α]. Let γ be an upper bound for ordπ(b). Finally, let C1 > γ be such
that vn �= 0 for n > C1 (the existence of such a constant is guaranteed by Theorem
S). If n > C1, then

ordπ(vn) = ordπ(aαn + bβn) = ordπ(bβn) = ordπ(b) < γ.

Hence, ord2(vn) ≤ 2ordπ(vn) < 2γ for n > C1. The lemma is, therefore, completely
proved. �

Lemma 4

Let 0 < xi < 1 for i = 1, ..., s be real numbers. Then,

(51) 1 − (1 − x1)(1 − x2)...(1 − xs) ≤ x1 + x2 + ...+ xs.

Proof of Lemma 4

We proceed by induction on s. If s = 1, then inequality (51) becomes equality.
Assume that inequality (51) holds for some s ≥ 1. Then,

1 − (1 − x1)...(1 − xs)(1 − xs+1) =
(
1 − (1 − x1)...(1 − xs)

)
+ xs+1(1 − x1) . . . (1 − xs)

< x1 + ...+ xs + xs+1. �

3. The proofs

We are now ready to prove the theorem.

Proof of the Theorem

By C1, C2,... we denote computable positive constants depending only on a, b
and the sequences (un)n≥0 and (vn)n≥0. Let (m, n) be a pair of positive integers
satisfying equation (6). We may replace the sequence (un)n≥0 by (aun)n≥0 and the
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sequence (vn)n≥0 by (bvn)n≥0. From Theorem S, it follows that |um| > 1 for m > C1.
From Lemma 3, it follows that there exist two constants C2 and C3 such that

(52) ord2(vn) < C2 for n > C3.

We may assume that C2 is an integer. Let C4 > C1 be such that if m > C4, then
n > C3. Assume that m > C4. Write

(53) |um| = pµ1
1 pµ2

2 ...pµt

t

where p1 < p2 < . . . < pt are prime numbers. Since at least t− 1 of the above primes
are odd, it follows that

t− 1 ≤ ord2

(
φ(|um|)

)
= ord2

(
|vn|

)
< C2.

Hence,

(54) t ≤ C2.

From Lemma 2, it follows that

1 >
φ(|um|)
|um| ≥ 1

C2 + 2
.

Hence,

(55) 1 <
|um|
|vn|

≤ C2 + 2 < C2 + 3 = C5 for m > C4.

We now find upper bounds for the primes pi for i = 1, ..., t. We use induction to
prove that there exists a constant C6 such that, if m > C6, then

(56) pi < 2(logm)2i.

Let i = 1. Write

(57)
|vn|
|um| =

φ(|um|)
|um| =

t∏
i=1

(pi − 1)
pi

.

Hence,

(58) 1 −
t∏

i=1

(
1 − 1

pi

)
= 1 − |vn|

|um| =
|um| − |vn|

|vn|
.

From Lemma 4, it follows that

(59)
C2

p1
≥ t

p1
≥ 1

p1
+ ...+

1
pt

≥ 1 −
t∏

i=1

(
1 − 1

pi

)
=

|um| − |vn|
|um| .
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We first assume that:

(60) |a1||α1|m �= |a2||α2|n.

We shall return later on and prove that inequality (60) holds when m is large enough.
From inequalities (60) and (55), it follows that the hypothesis of the Technical Lemma
are satisfied for γ1 = 1, γ2 = C5, A = 1, γ3 = 1 and γ4 = 0. By the Technical Lemma
and inequality (59), it follows that

C2

p1
≥ |um| − |vn|

|um| > exp
(
−(logm)2

)
for m > C4.

Hence,

(61) log p1 < (logm)2 + logC2 < 2(logm)2 for m > C6.

Assume now that there exists i with 1 ≤ i < t and a computable constant C7 such
that

(62) log pj < 2(logm)2j for j = 1, ..., i and m > C7.

Let

(63) Ai =
i∏

j=1

(pj − 1)
pj

.

Formula (57) may be rewritten as

|vn|
|um| = Ai

t∏
j=i+1

(pj − 1)
pj

or

(64) 1 −
t∏

j=i+1

(
1 − 1

pj

)
= 1 − |vn|

Ai|um| =
Ai|um| − |vn|

Ai|um| .

From Lemma 4, it follows that

C2

pi+1
>

t− i

pi+1
≥ 1

pi+1
+ . . .+

1
pt

> 1 −
t∏

j=i+1

(
1 − 1

pj

)

=
Ai|um| − |vn|

Ai|um| .(65)

Assume, for the time being, that

(66) Ai|a1||α1|m �= |a2||α2|n.
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We shall return later on and prove that inequality (66) holds when m is large enough.
We apply the Technical Lemma with γ1 = 1, γ2 = C5 and A = Ai. From the induction
hypothesis and the formula of Ai, it follows that

logH(Ai) = log
i∏

j=1

pj =
i∑

j=1

pj <

i∑
j=1

2(logm)2j = 2(logm)2 · (logm)2i − 1
(logm)2 − 1

=
2(logm)2

(logm)2 − 1
·
(
(logm)2i − 1

)
< 3(logm)2i for m > C8.

Thus, we may take γ3 = 3 and γ4 = 2i. Since

1
Ai

=
i∏

j=1

pj
pj − 1

> 1,

it follows, by inequality (65) and the Technical Lemma, that

C2

pi+1
>

Ai|um| − |vn|
Ai|um| > exp

(
−(logm)2i+2

)
or

log pi+1 < (logm)2(i+1) + logC2 < 2(logm)2(i+1) for m > C9.

The induction is, therefore, complete.
We now use Theorem BW to show that m is bounded. Rewrite equation (53) as

a1α
m
1 + b1β

m
1 = pµ1

1 ...pµt

t

or

(67)
∣∣∣ b1
a1

∣∣∣∣∣∣β1

α1

∣∣∣m =
∣∣∣1 − 1

a1
α−m

1 pµ1
1 ...pµt

t

∣∣∣.
Let C9 be such that inequalities (56) hold for i = 1, ..., t and m > C9. Let C10 be an
upper bound for both H(a1) and H(α1). Let

Ω = H(a1)H(α1)
t∏

i=1

log pi.

From inequalities (56), it follows that

(68) Ω < C2
10

t∏
i=1

2(logm)2i = 2tC2
10(logm)t(t−1) < C11(logm)C12

where C11 = 2C2C2
10 and C12 = C2(C2 − 1). Let B be an upper bound for m and µi

for i = 1, ..., t. From Lemma 1, it follows that B < C13m+C14. From equation (67),
Theorem BW and inequality (68), it follows that

log
∣∣∣ b1
a1

∣∣∣ +m log
∣∣∣β1

α1

∣∣∣ > −
(
17(t+ 3)

)2(t+2)+7Ω logB
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or

(69) m log
∣∣∣α1

β1

∣∣∣ + log
∣∣∣a1

b1

∣∣∣ < C15 · C11(logm)C12 log(C13m+ C14)

where C15 = (17(C2 + 3))2(C2+2)+7. Inequality (69) shows that m is bounded.
Hence, the theorem is proved once we show that both inequalities (60) and (66)

hold when m is large enough. Denote A0 = 1. Assume that

(70) Ai|a1||α1|m = |a2||α2|n for some i = 0, . . . , t− 1.

We first show that if equation (70) holds, then the rational numbers Ai can take only
finitely many values. Let F = Q(α1, α2) and let dF = [F : Q]. Clearly, dF ≤ 2. Let ∆
be a common denominator of a1 and a2; that is, a positive integer such that both ∆a1

and ∆a2 are algebraic integers. Let a′1 = ∆a1 and a′2 = ∆a2. Rewrite equality (70) as

(71) Ai|a′1||α1|m = |a′2||α2|n.

Taking norms in (71) we get

(72) AdF

i NF(|a′1|)NF(|α1|)m = NF(|a′2|)NF(|α2|)n.

Using formula (63), one concludes easily that equation (72) forces

pi | NF(|a′1|)NF(|α1|).

Hence, pi < C16. From formula (63) and the fact that p1 < . . . < pi < C16, it follows
that Ai can take only finitely many rational values. For simplicity, denote A = Ai.

In order to show that m is bounded, we use the fact that the pair of sequences
(un)n≥0 and (vn)n≥0 satisfies one of the assumptions A1-A3.

Case 1. The pair of sequences (un)n≥0 and (vn)n≥) satisfies A1.

Assume that α1 �∈ Z. If |a1||α1|m ∈ Q, it follows that |a1||α1|m is invariant under
the action of the Galois group G = Gal(F/Q). Hence,

|a1||α1|m = |b1||β1|m

or

(73)
∣∣∣α1

β1

∣∣∣m =
∣∣∣ b1
a1

∣∣∣.
Equation (73) has a unique solution m. In particular, m is bounded.

Assume now that |a1||α1|m �∈ Q. From equation (70), we conclude that Q(α1) =
Q(α2). Moreover, by conjugating equation (70), we get

(74) A|b1||β1|m = |b2||β2|n.
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From formula (29), we get

(75) |Aum| − |vn| = A|b1||β1|m(ε1 − ε2).

If ε1 = ε2, we get |Aum| = |vn| which contradicts the fact that i < t. Hence, ε1−ε2 = 2
and formula (75) becomes

(76) |Aum| − |vn| = 2A|b1||β1|m.

Equation (26) shows that |b1||β1|m ∈ Q. In particular, |a1||α1|m ∈ Q which is a case
already treated.

Case 2. The pair of sequences (un)n≥0 and (vn)n≥0 satisfies A2.

Assume that both α1 and α2 are integers. Rewrite equation (70) as

(77) |α1|m|α2|−n = |a2||a1|−1A−1.

Since a1, a2 ∈ Q and A can take only finitely many rational values, it follows that the
right-hand side of equation (77) can take only finitely many rational values. Let C17

be such that

(78)
∣∣∣ordp

(
|a2||a1|−1A−1

)∣∣∣ < C17

for all the prime numbers p. Write

|α1| = qλ1
1 . . . qλl

l

and
|α2| = qν1

1 . . . qνl

l

where q1 < . . . < ql are primes and λi ≥ 0, νi ≥ 0 for i = 1, . . . , l. Equation (77) and
inequality (78) imply

(79) |λim− νin| < C17

for i = 1, . . . , l. Since log |α1| and log |α2| are linearly independent over Q, it follows
that the set {

(x, y) | |λix− νiy| < C17 for i = 1, ..., l
}

is a bounded set in the xy-plane. This shows that m is bounded.

Case 3. The pair of sequences (un)n≥0 and (vn)n≥0 satisfies A3.

From formula (29), we get

(80) A|um| − |un| = Aε1|b1||β1|m − ε2|b2||β2|n.
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Let

wm =
t∏

j=i+1

p
µj

j .

We first show that wm is a prime when m is large enough. Indeed notice that

A|um| − |vn| =
i∏

j=1

(pj − 1
pj

)
·

t∏
j=1

p
µj

j − φ(|um|)

=
i∏

j=1

p
µj−1
j (pj − 1)

(
wm − φ(wm)

)
= Aε1|b1||β1|m − ε2|b2||β2|n.(81)

Assume now that wm is not a prime. It is clear that if k is any positive integer which
is not a prime, then

k − φ(k) >
k

d

for any proper divisor d of k. Indeed, this follows, for example, by noticing that the
k/d integers

d, 2d, ...,
k

d
· d

are less than or equal to k and are not coprime to k. In particular,

wm − φ(wm) >
wm

pi+1
.

Hence,

Aε1|b1||β1|m − ε2|b2||β2|n =
i∏

j=1

p
µj−1
j (pj − 1)(wm − φ(wm))

≥
i∏

j=1

p
µj−1
j (pj − 1)

wm

pi+1
=

A|um|
pi+1

.(82)

Assume, for example, that A|b1||β1|m ≥ |b2||β2|n. From inequality (82), it follows that

(83) 2A|b1||β1|m ≥ Aε1|b1||β1|m − ε2|b2||β2|n ≥ A|um|
pi+1

.

Hence,

(84) pi+1 ≥ |um|
|b1||β1|m

.

From Theorem S, it follows that there exist three constants C18, C19 and C20 such
that

(85) |α1|m+C18 > |um| > |α1|m−C19 logm for m > C20.
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From inequalities (84) and (85), it follows that

(86) pi+1 >
∣∣∣α1

β1

∣∣∣m−C21 logm−C22

for m > C20.

On the other hand, since wm is not prime and pi+1 is the smallest prime divisor of
wm, it follows that wm ≥ p2

i+1. Hence,

(87) |α1|m+C18 > |um| ≥ |wm| ≥ p2
i+1 >

∣∣∣α1

β1

∣∣∣2m−2C21 logm−2C22

for m > C20.

By taking logarithms in inequality (87), we conclude that

(m+ C18) log |α1| > (m− C21 logm− C22) log
∣∣∣α2

1

β2
1

∣∣∣
or

(88) m log
∣∣∣α1

β2
1

∣∣∣ < C18 log |α1| + (C21 logm+ C22) log
∣∣∣α2

1

β2
1

∣∣∣.
Since |α1| > |β1|2, it follows that inequality (88) holds only for finitely many values of
m.

The case A|b1||β1|m < |b2||β2|n can be treated using similar arguments together
with inequality (27) and the fact that A can take only finitely many values.

Hence, if m > C23, then wm = pi+1. In this case, equation (81) becomes

(89) Aε1|b1||β1|m − ε2|b2||β2|n =
i∏

j=1

p
µj−1
j (pj − 1)(wm −φ(wm)) =

i∏
j=1

p
µj−1
j (pj − 1).

Since max (|β1|, |β2|) > 1, we may assume that |β1| > 1. Rewrite equation (89) as

(90) A|b1||β1|m
∣∣∣1 − ε2ε1|b1|−1A−1|b2||β2|n|β1|−m

∣∣∣ =
i∏

j=1

p
µj−1
j (pj − 1).

We know that pj ≤ pi < C16 for j = 1, ..., i. From Lemma 1, it follows that there
exists C24 such that

(91) µj < C24 log(4m) for j = 1, ..., i.

In particular,

A|b1||β1|m
∣∣∣1 − ε2ε1|b1|−1|b2||β2|n|β1|−m

∣∣∣ =
i∏

j=1

p
µj−1
j (pj − 1)

< C
tC24 log(4m)
16 = C

C25 log(4m)
16(92)
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where C25 = C2 · C24 ≥ tC24. On the other hand, let C26 be an upper bound for
log(|b1|−1A−1|b2|) · log |β1| · log |β2| and let B be an upper bound for max (m, n).
From inequality (28), we know that B < C27m. By Theorem BW, it follows that∣∣∣1 − ε2ε1|b1|−1|b2||β2|n|β1|−m

∣∣∣ > exp
(
−6813C26 logB

)
> exp

(
−6813C26 log(C27m)

)
.(93)

By combining equation (90), inequalities (92) and (93), and by taking logarithms, we
get

(94) log(A|b1|) +m log |β1| − 6813C26 log(C27m) < C25 logC16 · log(4m).

Inequality (94) shows that m is bounded.
This finishes the proof of the Theorem. �

Proof of Proposition 1

Let (un)n≥0 be the sequence

(95) un =
10n − 1

9
.

Assume that the equation

(96) φ(aum) = bun

has a solution (a, b, m, n) with m > 1 and a, b ∈ {1, . . . , 9}.
We first show that n = m− 1. Indeed, on the one hand, one has

10m − 1 ≥ aum > φ(aum) = bun ≥ un =
10n − 1

9
.

Hence, m ≥ n. We now show that m > n. Let P be the largest prime dividing um.
From a result of Carmichael (see [2]), it follows that P > m if m ≥ 12. In particular,
P > 10 for m ≥ 12. One can check that P > 10 for 2 ≤ m ≤ 12 as well. In particular,
P � | ab. If µ = ordP (um), it follows that

(97) µ = ordP (bum)

and

(98) µ− 1 = ordP

(
φ(aum)

)
.

Equations (97) and (98) show that the equation φ(aum) = bum is impossible. Hence,
m > n.

We now show that m = n+ 1. Indeed, since

(99) ord2

(
φ(aum)

)
= ord2(bun) = ord2(b) ≤ 3,
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it follows, by Lemma 2, that

9(10n − 1)
10m − 1

≥ bun
aum

=
φ(aum)
aum

≥ 1
5

or

(100) 45 · 10n − 45 > 10m − 1.

Inequality (100) shows that n ≥ m− 1. Hence, n = m− 1.
Let p1 be the smallest prime divisor of um. We show that p1 > 13.
Assume p1 = 3. Since 3 | um, it follows that 3 | m. Hence, 37 | u3 | um. It follows

that 36 | φ(aum) = bun. Since un is odd and b < 10, it follows that 3 | un. Hence,
2 | n. This contradicts the fact that m is even and n = m− 1.

Clearly, p1 �= 5.
If p1 = 7, then 7 | um; hence, 6 | m. In particular, 3 | um which is a case already

treated.
If p1 = 11, then 10 | φ(aum) = bun. This is impossible because (10, un) = 1 and

b < 10.
Finally, if p1 = 13, then 13 | um; hence, 6 | m. In particular, 3 | um which is a

case already treated.
Since p1 > 13, it follows that (um, ab) = 1. Since n = m − 1, it follows that

(um, un) = 1. In particular, (um, bun) = 1. This shows that um is square free. From
inequality (99), it follows that um is a product of at most 3 primes.

We show that um cannot be prime. Indeed if p = um, then p ≡ 1 (mod 5). This
shows that 5 | φ(aum) = bun. Since 5 � | un, it follows that 5 | b. Hence, b = 5. In this
case bun is odd. However, the only positive integers k such that φ(k) is odd are 1 and
2. This contradicts the fact that m > 1.

We now show that b is 8. This is certainly true if um is a product of 3 different
primes. On the other hand, if um = p1p2, then p1p2 = um ≡ −1 (mod 4). This shows
that at least one of the two primes p1 and p2 is congruent to 1 modulo 4. This implies
that b = 8. Since (a, um) = 1, it follows that

(101) 8um−1 = bun = φ(aum) = φ(a)φ(um).

Since φ(um) is divisible by 8 and um−1 is odd, it follows that φ(a) is odd. Hence,
φ(a) = 1. We may suppose that a = 1. Equation (101) becomes

(102) φ(um) = 8um−1.

Suppose now that um = p1p2 where p1 < p2. Then,

2 · 10m−1 + 7
9

=
10m − 1

9
− 8 · 10m−1 − 1

9
= um − 8um−1 = p1p2 − (p1 − 1)(p2 − 1)

= p1 + p2 − 1 < 2p2.(103)



154 Luca

Hence,

(104) p2 >
10m−1 + 3.5

9
.

It follows that
p1 =

um
9p2

<
10m − 1

10m−1 + 3.5
< 10

which contradicts the fact that p1 > 13.
Finally, assume that um = p1p2p3 where p1 < p2 < p3. Then,

2 · 10m−1 + 7
9

=
10m − 1

9
− 8 · 10m−1 − 1

9
= um − 8um−1

= p1p2p3 − (p1 − 1)(p2 − 1)(p3 − 1)

= p1p2 + p1p3 + p2p3 − p1 − p2 − p3 + 1 < 3p2p3.(105)

Hence,

p2p3 >
2 · 10m−1 + 7

27
.

It follows that
p1 =

um
9p2p3

<
3 · 10m − 3

2 · 10m−1 + 7
< 15

which contradicts the fact that p1 > 13. �

Proof of Proposition 2

The proof is very similar to the proof of Proposition 1. We shall treat only equation
(9) and leave equation (10) as an exercise to the reader.

One can check that the given solutions are the only ones for m ≤ 8. From now
on, assume that m > 8. Since

Lm > φ(Lm) = Ln,

it follows that m > n.
We now show that ord2(Ln) ≤ 2. Indeed, the sequence (Lk)k≥0 is periodic modulo

8 with period 12. Moreover, by investigating the values Lk for k = 0, 1, ..., 11, one
concludes easily that Lk is never a multiple of 8. Since

ord2(φ(Lm)) = ord2(Ln) ≤ 2,

it follows, by Lemma 2, that
Ln

Lm
=

φ(Lm)
Lm

≥ 1
4

or

(106) 4Ln ≥ Lm.
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From equation (106), we conclude easily that n ≥ m−2. Indeed assume that n ≤ m−3.
From inequality (106), we get

4Lm−3 ≥ 4Ln ≥ Lm = Lm−1 + Lm−2 = 2Lm−2 + Lm−3 = 3Lm−3 + 2Lm−4

or
Lm−3 ≥ 2Lm−4

or
Lm−4 + Lm−5 ≥ 2Lm−4

or
Lm−5 ≥ Lm−4

which is certainly false for m ≥ 8. Hence, n ∈ {m − 1, m − 2}. In particular,
(Lm, Ln) = 1. Hence, Lm is odd and squarefree. Since ord2(φ(Lm)) = ord2(Ln) ≤ 2,
it follows that Lm is either a prime or a product of two distinct primes.

If Lm = p1, then

Lm − Ln = Lm − φ(Lm) = p1 − (p1 − 1) = 1

or
1 = Lm − Ln ≥ Lm − Lm−1 = Lm−2

which is certainly false for m ≥ 8.
Finally, if Lm = p1p2 with p1 < p2, then

Lm − Ln = Lm − φ(Lm) = p1p2 − (p1 − 1)(p2 − 1) = p1 + p2 − 1 < 2p2

or
2p2 > Lm − Ln ≥ Lm − Lm−1 = Lm−2.

Hence,

p1 =
Lm

p2
<

2Lm

Lm−2
=

2(Lm−1 + Lm−2)
Lm−2

=
2(2Lm−2 + Lm−3)

Lm−2
< 6.

Since
L2
k − 5F 2

k = 4(−1)k for k = 0, 1, ...,

it follows that p1 �= 5. Since p1 is odd, it follows that p1 = 3. Hence,

Lm − Ln = Lm − φ(Lm) = 3p2 − 2(p2 − 1) = p2 + 2 =
Lm

3
+ 2

or

6 = 2Lm − 3Ln ≥ 2Lm − 3Lm−1 = 2Lm−1 + 2Lm−2 − 3Lm−1 = 2Lm−2 − Lm−1

= 2Lm−2 − (Lm−2 + Lm−3) = Lm−2 − Lm−3 = Lm−4.
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Hence,
Lm−4 ≤ 6 < 7 = L4

which contradicts the fact that m ≥ 8. �
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