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Abstract

The dual of the weighted harmonic Bergman space hpα(B) is shown to be the
harmonic Bloch space under certain volume integral paring for 0 < p < 1 and
−1 < α <∞ on the unit ball of R

n.

1. Introduction

Let B denote the open unit ball in R
n, n ≥ 2. The weighted harmonic Bergman space

hpα = hpα(B) for p > 0 and α > −1 is the space of harmonic functions in Lp(B, dνα),
where dνα(x) = (1 − |x|2)αdx and dx is the normalized Lebesgue measure in B. For
any f ∈ Lp(B, dνα), write

||f ||p,α =
[∫

B

|f(x)|pdνα(x)
]1/p

.

If p = ∞, we denote h∞ the set of all bounded harmonic functions in B. It is a subset
of harmonic Bloch space B, which consists of all harmonic function f on B such that

||f ||B = sup
x∈B

(
1 − |x|2

)∣∣∇f(x)
∣∣ <∞.
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To study the weighted harmonic Bergman spaces in the unit ball, Coifman and
Rochberg [4] constructed the continuous projection Pα of Lp(B, dνα) onto hpα for p ∈
(1,∞) and α ∈ N. (For the case of α ∈ (−1,∞) or more general weights, we refer to
see [5] and [3].) As a consequence, the following duality can be obtained (see [3] for
example):

hpα
∗ = hqα

for p ∈ (1,∞) and q = p/(p− 1), under the paring

< f, g >=
∫

B

f(x)g(x)dνα(x), f ∈ hpα, g ∈ hqα.

By extending the result of Coifman and Rochberg to the case of p = 1, Djrbashian
and Shamoian [5] proved that h1

α
∗ = B; see also [13].

The purpose of this paper is to consider the remaining cases, namely identifying
the dual spaces of hpα when p ∈ (0, 1) and α ∈ (−1,∞).

Let 0 < p < 1 and −1 < α < ∞. The space Lp(B, dνα) is a quasi-Banach space;
i.e. it is a complete metric space with the metric d(f, g) = ||f − g||pp,α satisfying the
properties d(f, g) = d(f−g, 0) and d(λf, 0) = |λ|pd(f, 0) for λ ∈ C. The Bergman space
hpα is closed in Lp(B, dνα). Let hpα

∗ denote the space of all bounded linear functionals
on hpα. Then hpα

∗ is a Banach space with the norm

||F || = sup{|F (f)| : ||f ||p,α ≤ 1}.

Our main result is the following theorem.

Theorem A

Suppose 0 < p < 1 and −1 < α <∞. Then

hpα
∗ = B

under the integral paring

< f, g >= lim
r→1−

∫
B

f(rx)g(x)(1 − |x|2)−n+(n+α)/pdx

where f ∈ hpα and g ∈ B.

We refer to [14] and [4] for the version of holomorphic Bergman spaces.
To prove the main result, we need to establish some basic results in the theory of

weighted harmonic Bergman spaces and harmonic Bloch space in the unit ball. These
will be included in Sections 2-5.
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2. Bergman projections

In this section, we show that Bloch space appears as the image of the bounded functions
under the weighted Bergman projections, which extends the result of Stroethoff [13]
in the unweighted case.

We shall be using the following notation: for x, y ∈ B, we will write in polar
coordinates by x = |x|x′ and y = |y|y′.

We denote by P (x, y′) the Poisson kernel in B. It is known that

P (x, y) =
1 − |x|2|y|2
||y|x− y′|n

=
∑
m,j

|x|m|y|mY m
j (x′)Y m

j (y′), x ∈ B, y ∈ B,

where Y m
j is real function and {Y k

j }j is the real orthogonal basis on ∂B of spherical
harmonics of degree k (see [2]). Any harmonic function on B can be represented as

f(x) =
∑
m,j

fm,j |x|mY m
j (x′), (2.1)

where fm,j ∈ C and the convergence is uniform on compacts in B.
For −2 < β <∞ and x, y ∈ B, we define the weighted Bergman kernels

Qβ(x, y) =
∑
m,j

Γ(β + 1 +m+ n/2)
Γ(m+ n/2)

|x|m|y|mY m
j (x′)Y m

j (y′). (2.2)

Note that
Qβ(x, y) = Qβ(y, x), Qβ(x, y) = Qβ(y, x).

When β = −1, we know that Q−1(x, y) = P (x, y). When β = 0, we denote Q(x, y) =
Q0(x, y) and it is known in [2] that

Q(x, y) =
(n− 4)|x|4|y|4 + (8x · y − 2n− 4)|x|2|y|2 + n

2||y|x− y′|n+2
. (2.3)

But in general Qβ(x, y) has no explicit formula in closed form.
For −1 < β < ∞, we consider the corresponding integral operators, so called the

weighted Bergman projections,

Pβf(x) = Cβ

∫
B

Qβ(x, y)f(y)dνβ(y),

where Cβ = 2
nΓ(β+1) .

Theorem 2.1 ([4], [5])

Suppose 1 < p <∞, −1 < α <∞ and β > (1+α)/p−1. Then Pβ is a continuous

projection from Lp(B, dνα) onto hpα.
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Theorem 2.2

For any β ∈ (−1,∞), Pβ is bounded from L∞(B) onto B.

Proof. The boundedness of Pβ from L∞(B) to B is given by Theorems 7.6 and 7.5 in [5].
In particular PβL

∞(B) ⊂ B. When β = 0, Stroethoff [13] proved that B ⊂ P0L
∞(B).

We shall show that B ⊂ PβL
∞(B) for any β ∈ (−1,∞).

To prove this we use Green’s formula in the form
∫

B

(u�v − v�u)dV =
∫
∂B

(
u
∂v

∂n
− v

∂u

∂n

)
dS,

where dV denotes the Lebesgue volume measure on B, dS denotes the surface-area
measure on ∂B, and ∂/∂n stands for differentiation with respect to the outward unit
normal.

Assume u, v ∈ h∞. Since β + 2 > 1, by Green’s formula we have
∫

B

v(y)�
(
(1 − |y|2)β+2u(y)

)
dy = 0.

By the direct computation

�
(
(1 − |y|2)β+2u(y)

)
= −4(β + 2)(1 − |y|2)β

[
(1 − |y|2)Rsu(y) − (β + 1)u(y)

]
,

where Rs = R+ sI, s = β+ 1 +n/2, I is the identity operator, and Ru(y) = ∇u(y) · y
is the radial derivative. Consequently,

∫
B

v(y)
[
(1 − |y|2)Rsu(y) − (β + 1)u(y)

]
dνβ(y) = 0.

Now taking v(y) = Qβ(x, y) for fixed x ∈ B we get

Pβ

[
(1 − |x|2)Rsu(x) − (β + 1)u(x)

]
= 0.

Namely,

u(x) = Pβ

[
1

β + 1
(
(1 − |x|2)Rsu(x)

)]
, x ∈ B, u ∈ h∞. (2.4)

Since |Ru(x)| ≤ |∇u(x)|, we find that 1
β+1 (1 − |x|2)Rsu(x) is bounded in B for any

u ∈ h∞. This proves h∞ ⊂ PβL
∞(B), which yields the result B ⊂ PβL

∞(B) by
applying the same approach as in the case of β = 0 ([13, p. 59]). More precisely,
let u ∈ B and apply (2.4) to its dilates ur, defined by ur(x) = u(rx). Note that
Rsu = su+Ru and (Rsu)r = Rsur, as pointed in [13],

(1 − |x|2)Rsur(x) −→ (1 − |x|2)Rsu(x)

in L2(B, dνα) as r → 1−. In fact, we consider the integral
∫

B

∣∣(1 − |x|2)Rsu(rx) − (1 − |x|2)Rs(u)
∣∣2 dνα(x)
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and split the integral into two parts: δB and B\δB. Since (1−|x|2)Rsu(x) ∈ L2(B, dνα),
we can make the integral over B \ δB arbitrary small by choosing δ close enough
to 1. Once δ is fixed, the integral over δB clearly approaches 0 as r → 1−. Take
α ∈ (−1,−1 + p(β + 1)). By the boundedness of Pβ on L2(B, dνα) and the fact that
ur → u, we see that (2.4) holds for any u ∈ B. This completes the proof. �

3. Fractional derivatives

In order to identify the dual space of hpα when 0 < p < 1, we need to introduce a
certain type of fractional differentiation and integration.

Let h(B) denote the space of all harmonic functions in B and equip h(B) with the
topology of uniform convergence on compact subsets. Thus, a linear operator T on
h(B) is continuous if and only if Tfn → Tf uniformly on compact subsets whenever
fn → f uniformly on compact subsets.

Lemma 3.1

For every β ∈ (−1,∞), there exists a unique continuous linear operator Dβ on

h(B) such that

Dβ
x [Q(x, y)] = Qβ(x, y), x, y ∈ B.

Proof. Recall that

Qβ(x, y) =
∑
m,j

Γ(β + 1 +m+ n/2)
Γ(m+ n/2)

|x|m|y|mY m
j (x′)Y m

j (y′)

and

Q(x, y) =
∑
m,j

Γ(1 +m+ n/2)
Γ(m+ n/2)

|x|m|y|mY m
j (x′)Y m

j (y′).

If we define on monomials by

Dβ
(
|x|mY m

j (x′)
)

=
Γ(β + 1 +m+ n/2)

Γ(1 +m+ n/2)
|x|mY m

j (x′) (3.1)

for all m and j, and extend Dβ linearly to the whole space h(B), then the resulting op-
erator Dβ has the desired properties. The uniqueness follows from the series expansion
of harmonic functions. This completes the proof. �

It is easy to see that the operator Dβ can also be represented by

Dβf(x) = lim
r→1−

2
n

∫
B

Qβ(x, y)f(ry)dy, x ∈ B.

In fact, this can be verified on monomials and so that on any harmonic functions by
applying the polar coordinates formula in integration:

∫
B

f(x)dx = n

∫ 1

0

rn−1

∫
∂B

f(rη)dσ(η)dr,
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where dσ is the normalized surface measure on ∂B. In particular, the limit above
always exists. If f ∈ h∞, then

Dβf(x) =
2
n

∫
B

Qβ(x, y)f(y)dy.

Lemma 3.2

For every β ∈ (−1,∞), the operator Dβ is invertible on h(B).

Proof. We define an operator Dβ on monomials by

Dβ

(
|x|mY m

j (x′)
)

=
Γ(1 +m+ n/2)
Γ(β +m+ n/2)

|x|mY m
j (x′)

and extend Dβ linearly to the whole space h(B). Then the operator Dβ is continuous
linear operator on h(B), and it is the inverse of Dβ . �

When β > 0, the operator Dβ and Dβ can be considered as a fractional derivative
and integral of order β respectively.

Lemma 3.3

Suppose −1 < β <∞ and f, g are bounded harmonic functions in B. Then

∫
B

f(x)g(x)dx =
1

Γ(β + 1)

∫
B

Dβf(x)g(x)(1 − |x|2)βdx.

Proof. The desired identity follows from the integral form of Dβ , the reproducing
property of Pβ , and Fubini’s theorem. �

4. Estimate of Bergman kernels

In this section, we present the estimates on the gradient of fractional derivative of
weighted Bergman kernels. These improve and extend the corresponding results in [5]
and [10].

Theorem 4.1

Let −1 < α, β <∞. There exists a positive constant C such that for any x, y ∈ B

(i) |Dβ
xQα(x, y)| ≤ C||y|x− y′|−(n+α+β);

(ii) |∇xD
β
xQα(x, y)| ≤ C||y|x− y′|−(n+α+β+1)

.

To prove this theorem, we need some lemmas.
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Lemma 4.2

Let 0 < δ < λ. Then, for any points x and y in B,

∫ 1

0

(1 − t)δ−1

|t|y|x− y′|λ dt ≤
8λ

δ(λ− δ)
1

||y|x− y′|λ−δ
.

Proof. Note that for any t ∈ [0, 1] and x, y ∈ B

||y|x− y′| ≤ 2|t|y|x− y′|. (4.1)

Indeed, from the triangle inequality we have

|t|y|x− y′| ≥ 1 − t,

|t|y|x− y′| ≥ ||y|x− y′| − (1 − t), (4.2)

so that summing them up to yield (4.1).
If ||y|x− y′| ≥ 1, then from (4.1) we have |t|y|x− y′| ≥ 1/2. Combining this with

the inequality ||y|x− y′| ≤ 2, we have

∫ 1

0

(1 − t)δ−1

|t|y|x− y′|λ dt ≤
2λ

δ
≤ 22λ−δ

δ

1
||y|x− y′|λ−δ

.

Now assume ||y|x − y′| < 1 and denote r = 1 − ||y|x − y′|, then 0 < r < 1 and
1 − r = ||y|x− y′|. From (4.1) and (4.2) we have

1 − rt = 1 − t+ t||y|x− y′| ≤ 3|t|y|x− y′|.

As a result
∫ 1

0

(1 − t)δ−1

|t|y|x− y′|λ dt ≤ 3λ
∫ 1

0

(1 − t)δ−1

(1 − tr)λ
dt

≤ 3λ
λ

δ(λ− δ)
1

(1 − r)λ−δ

≤ C
1

||y|x− y′|λ−δ
.

This completes the proof. �

Let F be the hypergeometric function (see [6], [12]):

F (a, b; c; s) =
∞∑
k=0

(a)k(b)k
k!(c)k

sk

for a, b, c ∈ R and c neither zero nor a negative integer, where the Pochhammer symbol
(a)0 = 1 and (a)k = a(a+ 1) · · · (a+ k− 1), k ∈ N. We need some known properties of
hypergeometric functions:

Javi
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(i) Bateman’s integral formula

F (a, b; c+ µ; s) =
Γ(c+ µ)
Γ(c)Γ(µ)

∫ 1

0

tc−1(1 − t)µ−1F (a, b; c; ts)dt (4.3)

with c, µ > 0 and s ∈ (−1, 1).
(ii) For any integer m ([12, p. 69])

F (−m, b; c; 1) =
(c− b)m

(c)m
,

F (−m, a+m; c; 1) =
(−1)m(1 + a− c)m

(c)m
. (4.4)

The following identity furnishes the hypergeometric function with an integral re-
presentation; see [11, p. 40] for the special case.

Lemma 4.3
Let t > 1, λ ∈ R and r ∈ (−1, 1), then∫ 1

−1

(1 − u2)(t−3)/2

(1 − 2ru+ r2)λ
du =

Γ( t−1
2 )Γ( 1

2 )
Γ( t

2 )
F

(
λ, λ+ 1 − t

2
;
t

2
; r2

)
. (4.5)

Proof. Let Cλ
m(u) be the Gegenbauer polynomials. They can be defined by the gener-

ating function

(1 − 2ru+ r2)−λ =
∞∑

m=0

Cλ
m(u)rm, (4.6)

where

Cλ
2m(u) = (−1)m

(λ)m
m!

F (−m,m+ λ; 1/2;u2),

Cλ
2m+1(u) = (−1)m

(λ)m
m!

2uF (−m,m+ λ+ 1; 3/2;u2). (4.7)

To calculate the integral in (4.5), we apply (4.6) and (4.7). Then we deduce that it is
only needed to evaluate the integral∫ 1

−1

(1 − u2)(t−3)/2F (−m,m+ λ; 1/2;u2)du,

or rather, an integral over the interval (0, 1) by the simple change of variables t = u2.
For this integral, we first use Bateman’s integral formula (4.3) with s = 1 then apply
(4.4), so that it can be represented by Pochhammer symbols. What comes out of the
calculation of the integral in (4.5) then turns out to be a series which by the definition
is a hypergeometric function as desired. �

Lemma 4.4
Let α > −1 and β ∈ R. Then for any x ∈ B

∫
B

(1 − |y|2)α
||x|y − x′|n+α+β

dy ≈




(1 − |x|2)−β , β > 0,

log
1

1 − |x|2 , β = 0,

1, β < 0.
The notion a(x) ≈ b(x) means the ratio a(x)/b(x) has a positive finite limit as

|x| → 1.
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Proof. Denote the above integral by Jα,β(x). From Stirling’s formula we need only
to show

Jα,β(x) =
Γ(n2 + 1)Γ(α+ 1)

Γ(α+ n
2 + 1)

F

(
n+ α+ β

2
,
2 + α+ β

2
;α+

n

2
+ 1; |x|2

)
.

For any continuous function f of one variable and any η ∈ ∂B, we have the formula
(see [2, p. 216])

∫
∂B

f(< ζ, η >)dσ(ζ) =
Γ(n2 )

Γ(n−1
2 )Γ( 1

2 )

∫ 1

−1

(1 − u2)(n−3)/2f(u)du,

where the symbol < ζ, η > stands for the inner product in R
n. Taking f(u) = (1 −

2ru+ r2)−(n+α+β)/2 for fixed r ∈ (0, 1) and combining with Lemma 4.3 we have

∫
∂B

(1 − 2r < ζ, η > +r2)−(n+α+β)/2dσ(ζ) =
Γ(n2 )

Γ(n−1
2 )Γ( 1

2 )

∫ 1

−1

(1 − u2)(n−3)/2

(1 − 2ru+ r2)(n+α+β)/2
du

= F

(
n+ α+ β

2
,
2 + α+ β

2
;
n

2
; r2

)
.

Consequently, from the polar coordinates formula we get

Jα,β(x) = n

∫ 1

0

rn−1(1 − r2)α
∫
∂B

(1 − 2r|x| < x′, η > +r2|x|2)−(n+α+β)/2dσ(ζ)

= C

∫ 1

0

rn−1(1 − r2)αF
(
n+ α+ β

2
,
2 + α+ β

2
;
n

2
; r2|x|2

)
dr.

The assertion now follows from Bateman’s integral formula (4.3). �

Proof of Theorem 4.1 We first consider the case β = 0 and α = k ∈ {0} ∪ N. Since
Qα(x, y) = Qα(|y|x, y′), we may assume y ∈ ∂B.

Fix y′ ∈ ∂B and denote r = |x|. We have the induced formula

Qk+1(x, y′) =
(
r
∂

∂r
+

(
k + 1 +

n

2

))
Qk(x, y′)

and the formula
x · ∇xQk+1(x, y′) = r

∂

∂r
Qk+1(x, y′).

Recall that Q−1(x, y) = P (x, y) is the Poisson kernel. Starting from P (x, y), by
induction on k ∈ {−1, 0} ∪ N we find

| ∂
∂r
Qk(x, y′)| ≤ C|x− y′|−(n+k+1),

|Qk(x, y′)| ≤ C|x− y′|−(n+k),

|∇xQk+1(x, y′)| ≤ C|x− y′|−(n+k+1).
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It means |Qk(x, y)| ≤ C||y|x − y′|−(n+k) and |∇xQk+1(x, y)| ≤ C||y|x − y′|−(n+k+1)

for k ∈ {0} ∪ N.
For non-integer α, denote k = [α] + 1. By definition we have

Qα(x, y) =
2

Γ(k − α)

∫ 1

0

tn+2α+1(1 − t2)k−α−1Qk(tx, ty)dt

and

∇xQα(x, y) =
2

Γ(k − α)

∫ 1

0

tn+2α+1(1 − t2)k−α−1∇xQk(tx, ty)dt.

The desired results follow from Lemma 4.2 and the estimates on Qk and ∇Qk.
In the above, we use induction and start from P (x, y) to obtain the estimates

of Qα(x, y) and ∇xQα(x, y). In the similar way, we can use induction and start from
Qα(x, y) for given α to obtain the estimate on Rβ(x, y) ≡ Dβ

xQα(x, y) and ∇xRβ(x, y).
In fact, all the formulas above remain true if Qα(x, y) is replaced by the corresponding
Rβ(x, y). This completes the proof. �

5. An inequality

The following lemma will be needed in the proof of the main result. It is essentially
due to Fefferman and Stein [7].

Lemma 5.1

For every 0 < p ≤ 1 and −1 < α < ∞, there exists a positive constant C such

that ∫
B

|f(x)|(1 − |x|2)−n+(n+α)/pdx ≤ C||f ||p,α

for all f ∈ hpα.

To prove this result, we need to establish the subharmonic behavior of |f |p on
Möbius invariant metric balls for any harmonic function f .

For any y, w ∈ R
n, it is easy to verify

||y|w − (1 − |w|2)y′| = ||w|y − (1 − |w|2)w′|,

so that
||y|2w − (1 − |w|2)y| = |y|||w|y − (1 − |w|2)w′|. (5.1)

For any a ∈ B, denote by ϕa the Möbius transformation in B. It is an involution
automorphism of B such that ϕa(0) = a and ϕa(a) = 0, which is of the form (see [1])

ϕa(x) =
|x− a|2a− (1 − |a|2)(x− a)

||x|a− x′|2 , a, x ∈ B. (5.2)
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From (5.1) we have

|ϕa(x)| =
|x− a|

||a|x− a′| =
|x− a|

||x|a− x′| . (5.3)

By (5.2), a simple calculation yields

|ϕa(x) − a| =
|x|

||a|x− a′| (1 − |a|2). (5.4)

For any a ∈ B and δ ∈ (0, 1), we denote

E(a, δ) = {x ∈ B : |ϕa(x)| < δ},
B(a, δ) = {x ∈ B : |x− a| < δ}.

Clearly, E(a, δ) = ϕa(B(0, δ)).

Lemma 5.2

Let x,w ∈ B and y ∈ E(w, δ). Then

1 − δ

1 + δ
||x|w − x′| ≤ ||x|y − x′| ≤ 1 + δ

1 − δ
||x|w − x′|.

Proof. From (5.3) we have |ϕ y(w)| = |ϕw(y)|, so that y ∈ E(w, δ) is equivalent to
w ∈ E(y, δ). By the symmetricity, we need only to prove the right inequality. Since
||x|y − x′| ≤ ||x|(y − w)| + ||x|w − x′|, it is enough to show

|y − w| ≤ 2δ
1 − δ

||x|w − x′|

for any y ∈ E(w, δ).
Denote η = ϕw(y), then y = ϕw(η) and |η| < δ. From (5.4) and the simple

inequality 1 − |w| ≤ ||x|w − x′|, we get

|y − w| = |ϕw(η) − w| ≤ δ

1 − δ
(1 − |w|2) ≤ δ

1 − δ
2||x|w − x′|,

as desired. �

Lemma 5.3

Let δ ∈ (0, 1) and a ∈ B, then

B

(
a,
δ

2
(1 − |a|2)

)
⊂ E(a, δ) ⊂ B

(
a,

δ

1 − δ
(1 − |a|2)

)
. (5.5)

Proof. If x ∈ B
(
a, δ2 (1 − |a|2)

)
, then from (5.3)

|ϕa(x)| =
|x− a|

||a|x− a′| ≤
|x− a|
1 − |a| < δ.
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If x ∈ E(a, δ), then from (5.4)

|x− a| = |ϕa(ϕa(x)) − a| =
|ϕa(x)|

||a|ϕa(x) − a′| (1 − |a|2) < δ

1 − δ
(1 − |a|2).

This completes the proof. �

Denote
dτ(w) = (1 − |w|2)−ndw,

which is a Möbius invariant measure on B; see [1]. It is easy to see

τ(E(a, δ)) = τ(B(0, δ)) = n

∫ δ

0

tn−1(1 − t2)−ndt.

Lemma 5.4

Let p ∈ (0,∞) and δ ∈ (0, 1). Then there exists a positive constant C such that

for any harmonic function f in B

|f(x)|p ≤ C

∫
E(x,δ)

|f(w)|pdτ(w), x ∈ B. (5.6)

Proof. In Lemma 5.2, we take x = y and x = w respectively, then get

C−1(1 − |w|2) ≤ 1 − |y|2 ≤ C(1 − |w|2), y ∈ E(w, δ). (5.7)

Assume f is harmonic in B. Then |f |p has subharmonic behavior by the result of
Fefferman and Stein [7]:

|f(x)|p ≤ Cr−n

∫
B(x,r)

|f |pdx,

whenever r < 1 − |x|, where C is a constant depending only on p and n. This yields
(5.6) by taking r = δ

2 (1 − |x|2) and then applying Lemma 5.3 and (5.7). �

Proof of Lemma 5.1 Assume f ∈ hpα. From Lemma 5.4

|f(x)|p ≤ C

∫
E(x,δ)

|f(w)|pdτ(w).

Since (1 − |y|2) ∼ (1 − |x|2) for y ∈ E(x, δ), we can find a positive constant C such
that

|f(x)| ≤ C(1 − |x|2)(α+n)/p||f ||p,α
for all f ∈ hpα. For 0 < p < 1, we can write

|f(x)| = |f(x)|p|f(x)|1−p
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and use the above inequality to estimate the second factor. Now integrate both sides
with respect to dνβ with β = −n+ (n+ α)/p and apply Fubini’s theorem to yield the
desired inequality. �

6. Proof of main result

With all the preparations above, now we can give the proof of the main result. Our
proof also suits to the case p = 1, with approach different from [5] and [13].

Theorem 6.1

Suppose 0 < p ≤ 1, −1 < α < ∞ and β = −n+ (n+ α)/p. Then hpα
∗ = B under

the integral paring

< f, g >= lim
r→1−

∫
B

f(rx)g(x)dνβ(x), f ∈ hpα, g ∈ B.

Proof. Assume F ∈ hpα
∗. Let f ∈ hpα and denote fr(x) = f(rx). It is easy to see

||f − fr||p,α → 0 as r → 1−,

so that
F (f) = lim

r→1−
F (fr).

Fix r ∈ (0, 1). By Theorem 2.1 we can write

fr(x) = P0fr(x) =
2
n

∫
B

fr(y)Q(x, y)dy, x ∈ B.

We claim that
F (fr) =

2
n

∫
B

fr(y)F (Q(x, y))dy,

where on the right hand side we think of F as acting with respect to the running
variable x.

In fact, the interchange of the functional F and the integral can be justified as
follows. Since fr can be uniformly approximated by polynomials as in (2.1), it suffices
to assume that fr is a monomial in (2.1). Then we consider the integral on a slightly
smaller ball sB with s ∈ (0, 1). Under these circumstances, the series expansion of
the kernel function inside F given in (2.2) easily produces the desired equality. More
precisely, let fr(x) = |x|mY m

i (x′), and fix s ∈ (0, 1). Let y ∈ sB, then Q(·, y) is
bounded harmonic in B by (2.3) or Theorem 4.1, such that

∫
sB

fr(y)F (Q(x, y))dy =
∫
sB

fr(y)F


∑

k,j

(k + n/2)|x|k|y|kY k
j (x′)Y k

j (y′)


 dy

=
∫
sB

∑
k,j

(k + n/2)F
(
|x|kY k

j (x′)
)
Y k
j (y′)Y m

i (y′)|y|k+mdy.
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By the dominated convergence theorem, we can interchange the sum and the integral
above, since the series of the integrand above converges absolutely and uniformly in
B × sB, which follows directly from

|Y k
j (y′)| ≤ Ck(n−2)/2 ([2]);

|F (|x|kY k
j (x′))| ≤ C||F ||k(n−2)/2. (6.1)

Consequently, applying the polar coordinates formula in integration and the fact that
{Y k

j } is orthogonal, then letting s→ 1− we get

∫
B

fr(y)F (Q(x, y))dy = F (fr)
∫

B

(k + n/2)Y m
i (y′)Y m

i (y′)|y|2mdy =
n

2
F (fr),

which proves the claim.
Fix x ∈ B and denote

h(y) = F (Q(x, y)) y ∈ B.

By the series expansion of Q in (2.2), h is a bounded harmonic function in B. From
Lemma 3.3

F (fr) =
2
n

∫
B

fr(y)h(y)dy =
2

nΓ(β + 1)

∫
B

fr(y)Dβh(y)dνβ(y).

Let g = 2
nΓ(β+1)D

βh with β = −n+ (n+ α)/p, then

F (f) = lim
r→1−

∫
B

fr(y)g(y)dνβ(y)

for every f ∈ hpα.
It remains to show that g ∈ B. For simplicity we rewrite g = Dβh by omitting

the constant factor. Then
g(y) = Dβ

yFx(Q(x, y)).

We claim that
g(y) = F (Dβ

yQ(x, y)),

and
∂

∂yj
g(y) = F

(
∂

∂yj
Dβ

yQ

)
.

Indeed, the interchange of functional F and fractional or ordinary differentiation should
be verified. This can be proved similarly as above, namely using the series expansions
of kernel functions Q, DβQ and ∂

∂yj
DβQ. Notice that the action of Dβ on monomials

is given by (3.1), and the action of ∂
∂yj

on monomials Y m
i can be represented as the

linear combination of Y m−1
l .
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From the claim,

(
1 − |y|2

) ∣∣∣∣ ∂

∂yj
g(y)

∣∣∣∣ =
∣∣∣∣F

[
(1 − |y|2) ∂

∂yj
Dβ

yQ
]∣∣∣∣ =

∣∣F [uy]
∣∣,

where
uy(x) =

(
1 − |y|2

) ∂

∂yj
Dβ

yQ(x, y).

Since Q(x, y) = Q(y, x), by Theorem 4.1 we have

|uy(x)| ≤ C
1 − |y|2

||y|x− y′|n+β+1
.

It follows from Lemma 4.4 that
||uy||p,α ≤ C.

Therefore (
1 − |y|2

) ∣∣∣∣ ∂

∂yj
g(y)

∣∣∣∣ =
∣∣F [uy]

∣∣ ≤ ||F || ||uy||p,α ≤ C||F ||.

This implies (1 − |y|2)|∇g(y)| ≤ C||F ||.
Conversely, assume g ∈ B. We now show that the formula

F (f) = lim
r→1−

∫
B

fr(x)g(x)
(
1 − |x|2

)β
dx, f ∈ hpα,

defines a bounded linear functional in hpα, where β = −n+ (n+ α)/p.
By Theorem 2.2, there exists a function ϕ ∈ L∞(B), such that

g(x) = Pβϕ(x) = Cβ

∫
B

Qβ(x, y)ϕ(y)dνβ(y), x ∈ B.

Using Fubini’s theorem and the reproducing property of Pβ , we easily obtain

∫
B

fr(x)g(x)
(
1 − |x|2

)β
dx =

∫
B

fr(y)ϕ(y)
(
1 − |y|2

)β
dy.

By Lemma 5.1, we have

F (f) =
∫

B

f(x)ϕ(x)
(
1 − |x|2

)β
dx, f ∈ hpα,

and
|F [f ]| ≤ C||ϕ||L∞ ||f ||p,α. �
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