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Abstract

Let X be a smooth connected projective curve of genus g defined over R. Here
we give bounds for the real gonality of X in terms of the complex gonality of X .

1. Introduction

Let X be a smooth connected projective curve of genus g defined over R. The real
gonality, gon(X,R), of X is the minimal integer k such that there is L ∈ Pic(X) with
deg(L) = k, h0(X,L) = 2 and L defined over R. Notice that any real line bundle
computing gon(X,R) is spanned because the base locus of a real line bundle is a real
divisor. We will give an example (see Example 2.2) of smooth real curve X with
X(R) = ∅ and such that there is a real line bundle L on X with h0(X,L) > 2 and
deg(L) < gon(X,R). If X(R) �= ∅, then this phenomenon cannot occur (see Lemma
2.1). For any R ∈ Pic(X), set Cliff(R) = deg(R) − 2(h0(X,R)) + 2; the integer
Cliff(R) is called the Clifford index of R. The real Clifford index, Cliff(X,R), of X is
the minimal integer Cliff(L), where L is a real line bundle on X with h0(X,L) ≥ 2
and h1(X,L) ≥ 2. The real Clifford dimension of X is the minimal integer n ≥ 1
such that there is a real line bundle L on X with h0(X,L) ≥ 2, deg(L) ≤ 2g − 2,
Cliff(L) = Cliff(X,R) and h0(X,L) = n+1. If we drop the word “real” in the previous
definitions we obtain respectively the usual notion of gonality, of Clifford index and
of Clifford dimension. See [8] and [7], Theorem 2.1, for more on the Clifford index
of complex projective curves. We will write gon(X) (resp. Cliff(X)) for the usual
complex gonality (resp. complex Clifford index) of X. By [7], Theorem 2.1, we have
Cliff(X) + 2 ≤ gon(X) ≤ Cliff(X) + 3. In this paper we will see that relation between
gon(X,R) and Cliff(X,R) is quite different. Here we prove the following results.
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Theorem 1.1
Let X be a smooth projective curve of genus g ≥ 3 defined over R. Set k := gon(X)

and assume gon(X,R) > k. If X(R) = ∅ assume g−k even. Then Cliff(X,R) ≤ 2k−4.
If X(R) �= ∅ we have gon(X,R) ≤ 2k − 2.

Theorem 1.2
Let X be a smooth projective curve of genus g ≥ 3 defined over R and with

X(R) �= ∅. Set k := gon(X) and assume gon(X,R) > k and (k − 1)(2k − 3) − g odd.
Then gon(X,R) ≤ 2k − 3.

2. Proofs and examples

For any real algebraic scheme Y, σ will denote the complex conjugation on the set
Y (C). Thus Y (R) = {P ∈ Y (C) : σ(P ) = P}.

Lemma 2.1
Let X be a smooth projective curve defined over R and with X(R) �= ∅. Assume

the existence of a real line bundle L on X with h0(X,L) ≥ 3. Then there exists a real
line bundle M on X with h0(X,M) = 2, deg(M) ≤ deg(L) − h0(X,L) + 2 and M
spanned by its global sections.

Proof. Set x := h0(X,L) − 2. For a general P ∈ X(C) (i.e. for all points of X(C)
except at most finitely many ones) we have h0(X,L(−P )) = h0(X,L)− 1. Since X(R)
is infinite, the same is true if we take as P a sufficiently general point of any connected
component of X(R). Iterating this trick we see that for any connected component T
of X(R) there are P1, . . . , Px ∈ T such that h0(X,L(−P1 − . . . − Px)) = 2. The line
bundle L(−P1 − . . .−Px) is real and deg(L(−P1 − . . .−Px)) = deg(L)−h0(X,L)+ 2.
Let M be the subsheaf of spanned by h0(X,L(−P1 − . . . − Px)). We have deg(M) ≤
deg(L(−P1 − . . .−Px)) and h0(X,M) = h0(X,L(−P1 − . . .−Px)) = 2. Since the base
locus of a real line bundle is defined over R,M is real. �

Proof of 1.1. Take L ∈ Pic(X)(C) computing gon(X). Hence deg(L) = k, h0(X,L) = 2
and L is spanned by its global sections. Since gon(X,R) > k,L is not defined over R.
We have deg(σ∗(L)) = k, h0(X,σ∗(L)) = 2 and σ∗(L) is spanned by its global sections.
Set M := L⊗ σ∗(L). The line bundle M has degree 2k and it is spanned by its global
sections.

First claim: The line bundle M is defined over R.

Proof. By its very definition M is σ-invariant. If X(R) �= ∅ this implies that M
is defined over R (see e.g. [2], Proposition 4.1.2 (i)). In the general case we take a
σ-invariant open covering {Ui}i∈I of X(C) such that L|Ui is trivial. For all indices
i, j ∈ I with i �= j, let gij : Ui ∩ Uj → C

∗ a cocycle defining L. Since {Ui}i∈I is
σ-invariant, σ∗(L) has as {U i}i∈I trivializing open covering of X(C) with σ(gij) as
associated cocycle. Hence M has {Ui}i∈I as trivializing open covering with |gij |2 as
cocycle. Since |gij |2 is real, M is real.

Second claim: We have h0(X,M) ≥ 4.
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Proof of the second claim: See P
1 × P

1 as a smooth quadric surface in P
3. If L and

σ∗(L) are not isomorphic, then the morphism φ : X → P
1 × P

1 ⊂ P
3 has not as image

a smooth conic. Thus φ(X) spans P
3 and this implies h0(X,M) ≥ 4. Now assume L

and σ∗(L) isomorphic (over C). Since L is not defined over R, this is possible only if
X(R) = ∅ (see e.g. [2], Proposition 4.1.2 (i)). By [2], Proposition 4.1.2 (iii), we have
k ≡ g − 1 mod (2), contradiction.

By the two claims we have Cliff(X,R) ≤ Cliff(M) ≤ 2k−6. Since deg(M) = 2k ≤
g − 3 + h0(X,M), we have h1(X,M) ≥ 2 and hence M may be used to compute the
Clifford index. Take any P ∈ X(C). The line 〈φ(P ), φ(σ(P ))〉 ⊂ P

3 spanned by φ(P )
and φ(σ(P )) is defined over R. Hence the composition of φ with the projection from
the line 〈φ(P ), φ(σ(P ))〉 induces a morphism f : X → P

1 defined over R and with
deg(f) ≤ 2k − 2. If X(R) �= ∅ Lemma 2.1 gives the existence of a real line bundle R

on X with deg(R) ≤ 2k − 2, R spanned by its global sections and h0(X,R) = 2. �

Proof of 1.2. We use every notation introduced in the proof of Theorem 1.1. First
assume that φ is an embedding. For a general P ∈ φ(X(C)) (i.e. for all points of
φ(X(C)) except finitely many ones), the projection of X from P is a plane curve, Y ,
of degree 2k−1, birational to X and with exactly (k−1)(2k−3)−g ordinary nodes as
only singularities. If P ∈ φ(X(R)), then Y is defined over R. Since (k− 1)(2k− 3)− g

is odd and Sing(Y ) is defined over R, there is at least one real singular point of Y.

This is equivalent to the existence of a line D of P
3 defined over R, with P ∈ D and

with card(D ∩ (X(C))) = 3. The linear projection of P
3\D from D onto P

1 induces a
morphism h : X → P

1 of degree 2k − 3 and defined over R. Hence we conclude in this
case. Now assume that φ is not an embedding. First assume the existence of P1 ∈
Sing(φ(X)) ∩ P

3(R). The linear projection from P1 induces a morphism h1 : X → P
2

defined over R and with deg(h1) ≤ 2k − 2. Hence we conclude in this case by Lemma
2.1. Now assume that there is no such point P1 but that φ is birational. By assumption
there is P2 ∈ Sing(φ(X)) ∩ (P3(C)\P

3(R)). Since φ is real, σ(P2) ∈ Sing(φ(X)). We
have σ(P2) �= P2. The line D2 spanned by P2 and σ(P2) is defined over R. The linear
projection from D2 induces a morphism h2 : X → P

1 of degree 2k−4 and defined over
R. Hence we conclude in this case by Lemma 2.1. Now assume that φ is not birational.
Let s ≥ 2 be its degree. Take two sufficiently general points Q1, Q2 of X(R). The linear
projection from the line spanned by φ(Q1) and φ(Q2) induces a morphism h2 : X → P

1

of degree 2k−2s and defined over R. Hence we conclude in this case by Lemma 2.1. �

Example 2.2: Fix an integer d ≥ 4 and let X ⊂ P
2 be a smooth plane curve defined

over R (i.e. defined by a homogeneous polynomial with real coefficient and with no
complex singular point). We have gon(X) = d− 1, Cliff(X) = d− 4, OX(1) is the only
line bundle computing Cliff(X) and for any R ∈ Pic(X)(C) with deg(R) = d− 1 and
h0(X,R) ≥ 2 there is a unique P ∈ X(C) with R ∼= OX(1)(−P ) (see [9] or [6], p. 6,
or [1] or [5]). Since OX(1) is real, we have Cliff(X,R) = Cliff(X). The descriptions of
all line bundles on X computing gon(X) shows that gon(X,R) = gon(X) if and only
if X(R) �= ∅. If d is odd, then X(R) �= ∅. If d is even there are curves X as above
with X(R) �= ∅ and curves as above with X(R) = ∅. Now assume d even, d ≥ 6 and
X(R) = ∅. For any Q ∈ P

2(R) the linear projection P
2\{Q} → P

1 induces a degree d
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real morphism fQ : X → P
1 not associated to a complete linear system. According to

our conventions this is not sufficient to show that gon(X,R) = d. Indeed, we will see
that gon(X,R) = 2d − 4. Fix points P1, P2 ∈ X(C) with σ(P1) �= P2 and such that
the points P1, σ(P1), P2 and σ(P2) are not collinear. It is easy to check that no 3 of
the points P1, σ(P1), P2 and σ(P2) are collinear. Set D := P1 + σ(P1) + P2 + σ(P2).
Thus D is an effective Cartier divisor with deg(D) = 4 and D defined over R. Thus
OX(2)(−D) is a real line bundle of degree 2d − 4. There is a pencil of conics passing
through P1, σ(P1), P2 and σ(P2). Since d �= 5, we have h1(P2, OP2(2 − d)) = 0. Hence
from the exact sequence

0 → OP2(2 − d) → OP2(2) → OX(2) → 0 (1)

we obtain h0(X,OX(2)) = 6. Thus h0(X,OX(2)(−D)) = 2. By [5], main result at p.
6, if d − 1 < t ≤ 2d − 5 there is no complete base point free pencil of degree t on X.

Thus gon(X,R) = 2d− 4.

Example 2.3: Fix an integer d ≥ 4 and P ∈ P
2(C)\P

2(R). There is an irreducible
real curve Y ⊂ P

2 with deg(Y ) = d and Sing(Y (C)) = {P, σ(P )}. Let X be the
normalization of Y. Thus X is a real curve of genus (d− 1)(d− 2)/2 − 2. Since OY (1)
is real, we have Cliff(X,R) ≤ d − 4. We have gon(X) = d − 2 and there are exactly
two line bundles on X computing gon(X) : the one induced by the linear projection
P

2\{P} → P
1 from P and the one induced by the linear projection P

2\{σ(P )} → P
1

from σ(P ) (see the Main Lemma on p. 7 of [6]). Since none of them is real, we have
gon(X) ≥ d− 1. Every spanned degree d− 1 line bundle on X is induced by the linear
projection from a point Q ∈ Y \{P, σ(P )} (see the Main Lemma on p. 7 of [6]). Hence
gon(X,R) = d − 1 if and only if X(R) �= ∅. We have Cliff(X) = d − 4 (apply [7],
Theorem 2.1, and the Main Lemma on p. 7 of [6]). Thus Cliff(X,R) = d− 4.

Remark 3.4. There is no hope that the examples described in 3.2 are the only ones
with real Clifford dimension 2 and for which such phenomena do occur, as obvious
applying the statements and/or the proofs of [1], [6], [3], [4] and [5] to other classes of
plane integral curves defined over R and hence whose singularity scheme is σ-invariant,
say having 4 nodes or having two triple points.
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