Collect. Math. **53**, 1 (2002), 49–53 © 2002 Universitat de Barcelona

Gonality and Clifford index for real algebraic curves

E. Ballico

Department of Mathematics, University of Trento, 38050 Povo (TN) Italy E-mail: ballico@science.unitn.it

Received May 8, 2001. Revised September 19, 2001

Abstract

Let X be a smooth connected projective curve of genus g defined over \mathbb{R} . Here we give bounds for the real gonality of X in terms of the complex gonality of X.

1. Introduction

Let X be a smooth connected projective curve of genus g defined over \mathbb{R} . The real gonality, $gon(X, \mathbb{R})$, of X is the minimal integer k such that there is $L \in Pic(X)$ with $\deg(L) = k, h^0(X, L) = 2$ and L defined over \mathbb{R} . Notice that any real line bundle computing $gon(X,\mathbb{R})$ is spanned because the base locus of a real line bundle is a real divisor. We will give an example (see Example 2.2) of smooth real curve X with $X(\mathbb{R}) = \emptyset$ and such that there is a real line bundle L on X with $h^0(X,L) > 2$ and $\deg(L) < \gcd(X,\mathbb{R})$. If $X(\mathbb{R}) \neq \emptyset$, then this phenomenon cannot occur (see Lemma 2.1). For any $R \in \text{Pic}(X)$, set $\text{Cliff}(R) = \deg(R) - 2(h^0(X,R)) + 2$; the integer Cliff(R) is called the Clifford index of R. The real Clifford index, $\text{Cliff}(X,\mathbb{R})$, of X is the minimal integer Cliff(L), where L is a real line bundle on X with $h^0(X,L) \geq 2$ and $h^1(X,L) > 2$. The real Clifford dimension of X is the minimal integer n > 1such that there is a real line bundle L on X with $h^0(X,L) \geq 2$, $\deg(L) \leq 2g-2$, $\operatorname{Cliff}(L) = \operatorname{Cliff}(X, \mathbb{R})$ and $h^0(X, L) = n + 1$. If we drop the word "real" in the previous definitions we obtain respectively the usual notion of gonality, of Clifford index and of Clifford dimension. See [8] and [7], Theorem 2.1, for more on the Clifford index of complex projective curves. We will write gon(X) (resp. Cliff(X)) for the usual complex gonality (resp. complex Clifford index) of X. By [7], Theorem 2.1, we have $\operatorname{Cliff}(X) + 2 \leq \operatorname{gon}(X) \leq \operatorname{Cliff}(X) + 3$. In this paper we will see that relation between $gon(X,\mathbb{R})$ and $Cliff(X,\mathbb{R})$ is quite different. Here we prove the following results.

Keywords: Real algebraic curves, real line bundles, gonality, real gonality.

MSC2000: 14H51, 14P99, 14H50.

This research was partially supported by MURST (Italy).

50 Ballico

Theorem 1.1

Let X be a smooth projective curve of genus $g \geq 3$ defined over \mathbb{R} . Set k := gon(X) and assume $\text{gon}(X,\mathbb{R}) > k$. If $X(\mathbb{R}) = \emptyset$ assume g - k even. Then $\text{Cliff}(X,\mathbb{R}) \leq 2k - 4$. If $X(\mathbb{R}) \neq \emptyset$ we have $\text{gon}(X,\mathbb{R}) \leq 2k - 2$.

Theorem 1.2

Let X be a smooth projective curve of genus $g \geq 3$ defined over \mathbb{R} and with $X(\mathbb{R}) \neq \emptyset$. Set k := gon(X) and assume $\text{gon}(X, \mathbb{R}) > k$ and (k-1)(2k-3) - g odd. Then $\text{gon}(X, \mathbb{R}) \leq 2k-3$.

2. Proofs and examples

For any real algebraic scheme Y, σ will denote the complex conjugation on the set $Y(\mathbb{C})$. Thus $Y(\mathbb{R}) = \{P \in Y(\mathbb{C}) : \sigma(P) = P\}$.

Lemma 2.1

Let X be a smooth projective curve defined over \mathbb{R} and with $X(\mathbb{R}) \neq \emptyset$. Assume the existence of a real line bundle L on X with $h^0(X,L) \geq 3$. Then there exists a real line bundle M on X with $h^0(X,M) = 2$, $\deg(M) \leq \deg(L) - h^0(X,L) + 2$ and M spanned by its global sections.

Proof. Set $x:=h^0(X,L)-2$. For a general $P\in X(\mathbb{C})$ (i.e. for all points of $X(\mathbb{C})$ except at most finitely many ones) we have $h^0(X,L(-P))=h^0(X,L)-1$. Since $X(\mathbb{R})$ is infinite, the same is true if we take as P a sufficiently general point of any connected component of $X(\mathbb{R})$. Iterating this trick we see that for any connected component T of $X(\mathbb{R})$ there are $P_1,\ldots,P_x\in T$ such that $h^0(X,L(-P_1-\ldots-P_x))=2$. The line bundle $L(-P_1-\ldots-P_x)$ is real and $\deg(L(-P_1-\ldots-P_x))=\deg(L)-h^0(X,L)+2$. Let M be the subsheaf of spanned by $h^0(X,L(-P_1-\ldots-P_x))$. We have $\deg(M)\leq \deg(L(-P_1-\ldots-P_x))$ and $h^0(X,M)=h^0(X,L(-P_1-\ldots-P_x))=2$. Since the base locus of a real line bundle is defined over \mathbb{R} , M is real. \square

Proof of 1.1. Take $L \in \text{Pic}(X)(\mathbb{C})$ computing gon(X). Hence $\deg(L) = k, h^0(X, L) = 2$ and L is spanned by its global sections. Since $\text{gon}(X, \mathbb{R}) > k, L$ is not defined over \mathbb{R} . We have $\deg(\sigma^*(L)) = k, h^0(X, \sigma^*(L)) = 2$ and $\sigma^*(L)$ is spanned by its global sections. Set $M := L \otimes \sigma^*(L)$. The line bundle M has degree 2k and it is spanned by its global sections.

First claim: The line bundle M is defined over \mathbb{R} .

Proof. By its very definition M is σ -invariant. If $X(\mathbb{R}) \neq \emptyset$ this implies that M is defined over \mathbb{R} (see e.g. [2], Proposition 4.1.2 (i)). In the general case we take a σ -invariant open covering $\{U_i\}_{i\in I}$ of $X(\mathbb{C})$ such that $L|U_i$ is trivial. For all indices $i, j \in I$ with $i \neq j$, let $g_{ij} : U_i \cap U_j \to \mathbb{C}^*$ a cocycle defining L. Since $\{U_i\}_{i\in I}$ is σ -invariant, $\sigma^*(L)$ has as $\{U_i\}_{i\in I}$ trivializing open covering of $X(\mathbb{C})$ with $\sigma(g_{ij})$ as associated cocycle. Hence M has $\{U_i\}_{i\in I}$ as trivializing open covering with $|g_{ij}|^2$ as cocycle. Since $|g_{ij}|^2$ is real, M is real.

Second claim: We have $h^0(X, M) > 4$.

Proof of the second claim: See $\mathbb{P}^1 \times \mathbb{P}^1$ as a smooth quadric surface in \mathbb{P}^3 . If L and $\sigma^*(L)$ are not isomorphic, then the morphism $\phi: X \to \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ has not as image a smooth conic. Thus $\phi(X)$ spans \mathbb{P}^3 and this implies $h^0(X, M) \geq 4$. Now assume L and $\sigma^*(L)$ isomorphic (over \mathbb{C}). Since L is not defined over \mathbb{R} , this is possible only if $X(\mathbb{R}) = \emptyset$ (see e.g. [2], Proposition 4.1.2 (i)). By [2], Proposition 4.1.2 (iii), we have $k \equiv g - 1 \mod (2)$, contradiction.

By the two claims we have $\operatorname{Cliff}(X,\mathbb{R}) \leq \operatorname{Cliff}(M) \leq 2k-6$. Since $\deg(M)=2k \leq g-3+h^0(X,M)$, we have $h^1(X,M)\geq 2$ and hence M may be used to compute the Clifford index. Take any $P\in X(\mathbb{C})$. The line $\langle \phi(P),\phi(\sigma(P))\rangle\subset \mathbb{P}^3$ spanned by $\phi(P)$ and $\phi(\sigma(P))$ is defined over \mathbb{R} . Hence the composition of ϕ with the projection from the line $\langle \phi(P),\phi(\sigma(P))\rangle$ induces a morphism $f:X\to \mathbb{P}^1$ defined over \mathbb{R} and with $\deg(f)\leq 2k-2$. If $X(\mathbb{R})\neq\emptyset$ Lemma 2.1 gives the existence of a real line bundle R on X with $\deg(R)\leq 2k-2$, R spanned by its global sections and $h^0(X,R)=2$. \square

We use every notation introduced in the proof of Theorem 1.1. First assume that ϕ is an embedding. For a general $P \in \phi(X(\mathbb{C}))$ (i.e. for all points of $\phi(X(\mathbb{C}))$ except finitely many ones), the projection of X from P is a plane curve, Y, of degree 2k-1, birational to X and with exactly (k-1)(2k-3)-g ordinary nodes as only singularities. If $P \in \phi(X(\mathbb{R}))$, then Y is defined over \mathbb{R} . Since (k-1)(2k-3)-gis odd and $\operatorname{Sing}(Y)$ is defined over \mathbb{R} , there is at least one real singular point of Y. This is equivalent to the existence of a line D of \mathbb{P}^3 defined over \mathbb{R} , with $P \in D$ and with $\operatorname{card}(D \cap (X(\mathbb{C}))) = 3$. The linear projection of $\mathbb{P}^3 \setminus D$ from D onto \mathbb{P}^1 induces a morphism $h: X \to \mathbb{P}^1$ of degree 2k-3 and defined over \mathbb{R} . Hence we conclude in this case. Now assume that ϕ is not an embedding. First assume the existence of $P_1 \in$ $\operatorname{Sing}(\phi(X)) \cap \mathbb{P}^3(\mathbb{R})$. The linear projection from P_1 induces a morphism $h_1: X \to \mathbb{P}^2$ defined over \mathbb{R} and with $\deg(h_1) \leq 2k-2$. Hence we conclude in this case by Lemma 2.1. Now assume that there is no such point P_1 but that ϕ is birational. By assumption there is $P_2 \in \operatorname{Sing}(\phi(X)) \cap (\mathbb{P}^3(\mathbb{C}) \backslash \mathbb{P}^3(\mathbb{R}))$. Since ϕ is real, $\sigma(P_2) \in \operatorname{Sing}(\phi(X))$. We have $\sigma(P_2) \neq P_2$. The line D_2 spanned by P_2 and $\sigma(P_2)$ is defined over \mathbb{R} . The linear projection from D_2 induces a morphism $h_2: X \to \mathbb{P}^1$ of degree 2k-4 and defined over \mathbb{R} . Hence we conclude in this case by Lemma 2.1. Now assume that ϕ is not birational. Let $s \geq 2$ be its degree. Take two sufficiently general points Q_1, Q_2 of $X(\mathbb{R})$. The linear projection from the line spanned by $\phi(Q_1)$ and $\phi(Q_2)$ induces a morphism $h_2: X \to \mathbb{P}^1$ of degree 2k-2s and defined over \mathbb{R} . Hence we conclude in this case by Lemma 2.1. \square

EXAMPLE 2.2: Fix an integer $d \geq 4$ and let $X \subset \mathbb{P}^2$ be a smooth plane curve defined over \mathbb{R} (i.e. defined by a homogeneous polynomial with real coefficient and with no complex singular point). We have gon(X) = d-1, Cliff(X) = d-4, $O_X(1)$ is the only line bundle computing Cliff(X) and for any $R \in Pic(X)(\mathbb{C})$ with deg(R) = d-1 and $h^0(X,R) \geq 2$ there is a unique $P \in X(\mathbb{C})$ with $R \cong O_X(1)(-P)$ (see [9] or [6], p. 6, or [1] or [5]). Since $O_X(1)$ is real, we have $Cliff(X,\mathbb{R}) = Cliff(X)$. The descriptions of all line bundles on X computing gon(X) shows that $gon(X,\mathbb{R}) = gon(X)$ if and only if $X(\mathbb{R}) \neq \emptyset$. If d is odd, then $X(\mathbb{R}) \neq \emptyset$. If d is even there are curves X as above with $X(\mathbb{R}) \neq \emptyset$ and curves as above with $X(\mathbb{R}) = \emptyset$. Now assume d even, $d \geq 6$ and $X(\mathbb{R}) = \emptyset$. For any $Q \in \mathbb{P}^2(\mathbb{R})$ the linear projection $\mathbb{P}^2 \setminus \{Q\} \to \mathbb{P}^1$ induces a degree d

52 Ballico

real morphism $f_Q: X \to \mathbb{P}^1$ not associated to a complete linear system. According to our conventions this is not sufficient to show that $gon(X,\mathbb{R})=d$. Indeed, we will see that $gon(X,\mathbb{R})=2d-4$. Fix points $P_1,P_2\in X(\mathbb{C})$ with $\sigma(P_1)\neq P_2$ and such that the points $P_1,\sigma(P_1),P_2$ and $\sigma(P_2)$ are not collinear. It is easy to check that no 3 of the points $P_1,\sigma(P_1),P_2$ and $\sigma(P_2)$ are collinear. Set $D:=P_1+\sigma(P_1)+P_2+\sigma(P_2)$. Thus D is an effective Cartier divisor with deg(D)=4 and D defined over \mathbb{R} . Thus $O_X(2)(-D)$ is a real line bundle of degree 2d-4. There is a pencil of conics passing through $P_1,\sigma(P_1),P_2$ and $\sigma(P_2)$. Since $d\neq 5$, we have $h^1(\mathbb{P}^2,O_{\mathbb{P}^2}(2-d))=0$. Hence from the exact sequence

$$0 \to O_{\mathbb{P}^2}(2-d) \to O_{\mathbb{P}^2}(2) \to O_X(2) \to 0$$
 (1)

we obtain $h^0(X, O_X(2)) = 6$. Thus $h^0(X, O_X(2)(-D)) = 2$. By [5], main result at p. 6, if $d-1 < t \le 2d-5$ there is no complete base point free pencil of degree t on X. Thus $gon(X, \mathbb{R}) = 2d-4$.

EXAMPLE 2.3: Fix an integer $d \geq 4$ and $P \in \mathbb{P}^2(\mathbb{C}) \setminus \mathbb{P}^2(\mathbb{R})$. There is an irreducible real curve $Y \subset \mathbb{P}^2$ with $\deg(Y) = d$ and $\operatorname{Sing}(Y(\mathbb{C})) = \{P, \sigma(P)\}$. Let X be the normalization of Y. Thus X is a real curve of genus (d-1)(d-2)/2-2. Since $O_Y(1)$ is real, we have $\operatorname{Cliff}(X,\mathbb{R}) \leq d-4$. We have $\operatorname{gon}(X) = d-2$ and there are exactly two line bundles on X computing $\operatorname{gon}(X)$: the one induced by the linear projection $\mathbb{P}^2 \setminus \{P\} \to \mathbb{P}^1$ from P and the one induced by the linear projection $\mathbb{P}^2 \setminus \{\sigma(P)\} \to \mathbb{P}^1$ from $\sigma(P)$ (see the Main Lemma on p. 7 of [6]). Since none of them is real, we have $\operatorname{gon}(X) \geq d-1$. Every spanned degree d-1 line bundle on X is induced by the linear projection from a point $Q \in Y \setminus \{P, \sigma(P)\}$ (see the Main Lemma on p. 7 of [6]). Hence $\operatorname{gon}(X,\mathbb{R}) = d-1$ if and only if $X(\mathbb{R}) \neq \emptyset$. We have $\operatorname{Cliff}(X) = d-4$ (apply [7], Theorem 2.1, and the Main Lemma on p. 7 of [6]). Thus $\operatorname{Cliff}(X,\mathbb{R}) = d-4$.

Remark 3.4. There is no hope that the examples described in 3.2 are the only ones with real Clifford dimension 2 and for which such phenomena do occur, as obvious applying the statements and/or the proofs of [1], [6], [3], [4] and [5] to other classes of plane integral curves defined over \mathbb{R} and hence whose singularity scheme is σ -invariant, say having 4 nodes or having two triple points.

References

- C. Ciliberto and R. Lazarsfeld, On the uniqueness of certain linear series on some classes of curves, *Complete Intersections, Acireale 1983*, 198–213, Lecture Notes in Math., 1092, Springer-Verlag, Berlin, 1984.
- 2. C. Ciliberto and C. Pedrini, Real abelian varieties and real algebraic curves, *Lectures in real geometry*, 167–256, de Gruyter Exp. Math. 23, Berlin, 1996.
- 3. M. Coppens, The gonality of general smooth curves with a prescribed nodal plane model, *Math. Ann.* **289** (1991), 89–93.
- 4. M. Coppens, Free linear systems on integral Gorenstein curves, J. Algebra 145 (1992), 209–218.
- 5. M. Coppens, The existence of base point free linear systems on smooth plane curves, *J. Algebraic Geom.* **4** (1995), 1–15.

- 6. M. Coppens and T. Kato, The gonality of smooth curves with plane models, *Manuscripta Math.* **70** (1990), 5–25.
- 7. M. Coppens and G. Martens, Secant spaces and Clifford's theorem, *Compositio Math.* **78** (1991), 193–212.
- 8. D. Eisenbud, H. Lange, G. Martens, and F.-O. Schreyer, The Clifford dimension of a projective curve, *Compositio Math.* **72** (1989), 173–204.
- 9. M. Namba, *Families of meromorphic functions on compact Riemann surfaces*, Lecture Notes in Mathematics 767, Springer-Verlag, Berlin, 1979.