Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 53, 1 (2002), 49-53
(c) 2002 Universitat de Barcelona

Gonality and Clifford index for real algebraic curves

E. Ballico
Department of Mathematics, University of Trento, 38050 Povo (TN) Italy
E-mail: ballico@science.unitn.it

Received May 8, 2001. Revised September 19, 2001

Abstract

Let X be a smooth connected projective curve of genus g defined over \mathbb{R}. Here we give bounds for the real gonality of X in terms of the complex gonality of X.

1. Introduction

Let X be a smooth connected projective curve of genus g defined over \mathbb{R}. The real gonality, $\operatorname{gon}(X, \mathbb{R})$, of X is the minimal integer k such that there is $L \in \operatorname{Pic}(X)$ with $\operatorname{deg}(L)=k, h^{0}(X, L)=2$ and L defined over \mathbb{R}. Notice that any real line bundle computing $\operatorname{gon}(X, \mathbb{R})$ is spanned because the base locus of a real line bundle is a real divisor. We will give an example (see Example 2.2) of smooth real curve X with $X(\mathbb{R})=\emptyset$ and such that there is a real line bundle L on X with $h^{0}(X, L)>2$ and $\operatorname{deg}(L)<\operatorname{gon}(X, \mathbb{R})$. If $X(\mathbb{R}) \neq \emptyset$, then this phenomenon cannot occur (see Lemma 2.1). For any $R \in \operatorname{Pic}(X)$, set $\operatorname{Cliff}(R)=\operatorname{deg}(R)-2\left(h^{0}(X, R)\right)+2$; the integer $\operatorname{Cliff}(R)$ is called the Clifford index of R. The real Clifford index, $\operatorname{Cliff}(X, \mathbb{R})$, of X is the minimal integer Cliff (L), where L is a real line bundle on X with $h^{0}(X, L) \geq 2$ and $h^{1}(X, L) \geq 2$. The real Clifford dimension of X is the minimal integer $n \geq 1$ such that there is a real line bundle L on X with $h^{0}(X, L) \geq 2, \operatorname{deg}(L) \leq 2 g-2$, $\operatorname{Cliff}(L)=\operatorname{Cliff}(X, \mathbb{R})$ and $h^{0}(X, L)=n+1$. If we drop the word "real" in the previous definitions we obtain respectively the usual notion of gonality, of Clifford index and of Clifford dimension. See [8] and [7], Theorem 2.1, for more on the Clifford index of complex projective curves. We will write $\operatorname{gon}(X)$ (resp. Cliff (X)) for the usual complex gonality (resp. complex Clifford index) of X. By [7], Theorem 2.1, we have $\operatorname{Cliff}(X)+2 \leq \operatorname{gon}(X) \leq \operatorname{Cliff}(X)+3$. In this paper we will see that relation between $\operatorname{gon}(X, \mathbb{R})$ and $\operatorname{Cliff}(X, \mathbb{R})$ is quite different. Here we prove the following results.

[^0]
Theorem 1.1

Let X be a smooth projective curve of genus $g \geq 3$ defined over \mathbb{R}. Set $k:=\operatorname{gon}(X)$ and assume $\operatorname{gon}(X, \mathbb{R})>k$. If $X(\mathbb{R})=\emptyset$ assume $g-k$ even. Then $\operatorname{Cliff}(X, \mathbb{R}) \leq 2 k-4$. If $X(\mathbb{R}) \neq \emptyset$ we have $\operatorname{gon}(X, \mathbb{R}) \leq 2 k-2$.

Theorem 1.2

Let X be a smooth projective curve of genus $g \geq 3$ defined over \mathbb{R} and with $X(\mathbb{R}) \neq \emptyset$. Set $k:=\operatorname{gon}(X)$ and assume $\operatorname{gon}(X, \mathbb{R})>k$ and $(k-1)(2 k-3)-g$ odd. Then $\operatorname{gon}(X, \mathbb{R}) \leq 2 k-3$.

2. Proofs and examples

For any real algebraic scheme Y, σ will denote the complex conjugation on the set $Y(\mathbb{C})$. Thus $Y(\mathbb{R})=\{P \in Y(\mathbb{C}): \sigma(P)=P\}$.

Lemma 2.1

Let X be a smooth projective curve defined over \mathbb{R} and with $X(\mathbb{R}) \neq \emptyset$. Assume the existence of a real line bundle L on X with $h^{0}(X, L) \geq 3$. Then there exists a real line bundle M on X with $h^{0}(X, M)=2$, $\operatorname{deg}(M) \leq \operatorname{deg}(L)-h^{0}(X, L)+2$ and M spanned by its global sections.

Proof. Set $x:=h^{0}(X, L)-2$. For a general $P \in X(\mathbb{C})$ (i.e. for all points of $X(\mathbb{C})$ except at most finitely many ones) we have $h^{0}(X, L(-P))=h^{0}(X, L)-1$. Since $X(\mathbb{R})$ is infinite, the same is true if we take as P a sufficiently general point of any connected component of $X(\mathbb{R})$. Iterating this trick we see that for any connected component T of $X(\mathbb{R})$ there are $P_{1}, \ldots, P_{x} \in T$ such that $h^{0}\left(X, L\left(-P_{1}-\ldots-P_{x}\right)\right)=2$. The line bundle $L\left(-P_{1}-\ldots-P_{x}\right)$ is real and $\operatorname{deg}\left(L\left(-P_{1}-\ldots-P_{x}\right)\right)=\operatorname{deg}(L)-h^{0}(X, L)+2$. Let M be the subsheaf of spanned by $h^{0}\left(X, L\left(-P_{1}-\ldots-P_{x}\right)\right)$. We have $\operatorname{deg}(M) \leq$ $\operatorname{deg}\left(L\left(-P_{1}-\ldots-P_{x}\right)\right)$ and $h^{0}(X, M)=h^{0}\left(X, L\left(-P_{1}-\ldots-P_{x}\right)\right)=2$. Since the base locus of a real line bundle is defined over \mathbb{R}, M is real.

Proof of 1.1. Take $L \in \operatorname{Pic}(X)(\mathbb{C})$ computing gon (X). Hence $\operatorname{deg}(L)=k, h^{0}(X, L)=2$ and L is spanned by its global sections. Since $\operatorname{gon}(X, \mathbb{R})>k, L$ is not defined over \mathbb{R}. We have $\operatorname{deg}\left(\sigma^{*}(L)\right)=k, h^{0}\left(X, \sigma^{*}(L)\right)=2$ and $\sigma^{*}(L)$ is spanned by its global sections. Set $M:=L \otimes \sigma^{*}(L)$. The line bundle M has degree $2 k$ and it is spanned by its global sections.

First claim: The line bundle M is defined over \mathbb{R}.
Proof. By its very definition M is σ-invariant. If $X(\mathbb{R}) \neq \emptyset$ this implies that M is defined over \mathbb{R} (see e.g. [2], Proposition 4.1.2 (i)). In the general case we take a σ-invariant open covering $\left\{U_{i}\right\}_{i \in I}$ of $X(\mathbb{C})$ such that $L \mid U_{i}$ is trivial. For all indices $i, j \in I$ with $i \neq j$, let $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathbb{C}^{*}$ a cocycle defining L. Since $\left\{U_{i}\right\}_{i \in I}$ is σ-invariant, $\sigma^{*}(L)$ has as $\left\{U_{i}\right\}_{i \in I}$ trivializing open covering of $X(\mathbb{C})$ with $\sigma\left(g_{i j}\right)$ as associated cocycle. Hence M has $\left\{U_{i}\right\}_{i \in I}$ as trivializing open covering with $\left|g_{i j}\right|^{2}$ as cocycle. Since $\left|g_{i j}\right|^{2}$ is real, M is real.

Second claim: We have $h^{0}(X, M) \geq 4$.

Proof of the second claim: See $\mathbb{P}^{1} \times \mathbb{P}^{1}$ as a smooth quadric surface in \mathbb{P}^{3}. If L and $\sigma^{*}(L)$ are not isomorphic, then the morphism $\phi: X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$ has not as image a smooth conic. Thus $\phi(X)$ spans \mathbb{P}^{3} and this implies $h^{0}(X, M) \geq 4$. Now assume L and $\sigma^{*}(L)$ isomorphic (over \mathbb{C}). Since L is not defined over \mathbb{R}, this is possible only if $X(\mathbb{R})=\emptyset$ (see e.g. [2], Proposition 4.1.2 (i)). By [2], Proposition 4.1.2 (iii), we have $k \equiv g-1 \bmod (2)$, contradiction.

By the two claims we have $\operatorname{Cliff}(X, \mathbb{R}) \leq \operatorname{Cliff}(M) \leq 2 k-6$. Since $\operatorname{deg}(M)=2 k \leq$ $g-3+h^{0}(X, M)$, we have $h^{1}(X, M) \geq 2$ and hence M may be used to compute the Clifford index. Take any $P \in X(\mathbb{C})$. The line $\langle\phi(P), \phi(\sigma(P))\rangle \subset \mathbb{P}^{3}$ spanned by $\phi(P)$ and $\phi(\sigma(P))$ is defined over \mathbb{R}. Hence the composition of ϕ with the projection from the line $\langle\phi(P), \phi(\sigma(P))\rangle$ induces a morphism $f: X \rightarrow \mathbb{P}^{1}$ defined over \mathbb{R} and with $\operatorname{deg}(f) \leq 2 k-2$. If $X(\mathbb{R}) \neq \emptyset$ Lemma 2.1 gives the existence of a real line bundle R on X with $\operatorname{deg}(R) \leq 2 k-2, R$ spanned by its global sections and $h^{0}(X, R)=2$.

Proof of 1.2. We use every notation introduced in the proof of Theorem 1.1. First assume that ϕ is an embedding. For a general $P \in \phi(X(\mathbb{C})$) (i.e. for all points of $\phi(X(\mathbb{C}))$ except finitely many ones), the projection of X from P is a plane curve, Y, of degree $2 k-1$, birational to X and with exactly $(k-1)(2 k-3)-g$ ordinary nodes as only singularities. If $P \in \phi(X(\mathbb{R}))$, then Y is defined over \mathbb{R}. Since $(k-1)(2 k-3)-g$ is odd and $\operatorname{Sing}(Y)$ is defined over \mathbb{R}, there is at least one real singular point of Y. This is equivalent to the existence of a line D of \mathbb{P}^{3} defined over \mathbb{R}, with $P \in D$ and with $\operatorname{card}(D \cap(X(\mathbb{C})))=3$. The linear projection of $\mathbb{P}^{3} \backslash D$ from D onto \mathbb{P}^{1} induces a morphism $h: X \rightarrow \mathbb{P}^{1}$ of degree $2 k-3$ and defined over \mathbb{R}. Hence we conclude in this case. Now assume that ϕ is not an embedding. First assume the existence of $P_{1} \in$ $\operatorname{Sing}(\phi(X)) \cap \mathbb{P}^{3}(\mathbb{R})$. The linear projection from P_{1} induces a morphism $h_{1}: X \rightarrow \mathbb{P}^{2}$ defined over \mathbb{R} and with $\operatorname{deg}\left(h_{1}\right) \leq 2 k-2$. Hence we conclude in this case by Lemma 2.1. Now assume that there is no such point P_{1} but that ϕ is birational. By assumption there is $P_{2} \in \operatorname{Sing}(\phi(X)) \cap\left(\mathbb{P}^{3}(\mathbb{C}) \backslash \mathbb{P}^{3}(\mathbb{R})\right)$. Since ϕ is real, $\sigma\left(P_{2}\right) \in \operatorname{Sing}(\phi(X))$. We have $\sigma\left(P_{2}\right) \neq P_{2}$. The line D_{2} spanned by P_{2} and $\sigma\left(P_{2}\right)$ is defined over \mathbb{R}. The linear projection from D_{2} induces a morphism $h_{2}: X \rightarrow \mathbb{P}^{1}$ of degree $2 k-4$ and defined over \mathbb{R}. Hence we conclude in this case by Lemma 2.1. Now assume that ϕ is not birational. Let $s \geq 2$ be its degree. Take two sufficiently general points Q_{1}, Q_{2} of $X(\mathbb{R})$. The linear projection from the line spanned by $\phi\left(Q_{1}\right)$ and $\phi\left(Q_{2}\right)$ induces a morphism $h_{2}: X \rightarrow \mathbb{P}^{1}$ of degree $2 k-2 s$ and defined over \mathbb{R}. Hence we conclude in this case by Lemma 2.1.

Example 2.2: Fix an integer $d \geq 4$ and let $X \subset \mathbb{P}^{2}$ be a smooth plane curve defined over \mathbb{R} (i.e. defined by a homogeneous polynomial with real coefficient and with no complex singular point). We have $\operatorname{gon}(X)=d-1, \operatorname{Cliff}(X)=d-4, O_{X}(1)$ is the only line bundle computing $\operatorname{Cliff}(X)$ and for any $R \in \operatorname{Pic}(X)(\mathbb{C})$ with $\operatorname{deg}(R)=d-1$ and $h^{0}(X, R) \geq 2$ there is a unique $P \in X(\mathbb{C})$ with $R \cong O_{X}(1)(-P)$ (see [9] or [6], p. 6, or [1] or [5]). Since $O_{X}(1)$ is real, we have $\operatorname{Cliff}(X, \mathbb{R})=\operatorname{Cliff}(X)$. The descriptions of all line bundles on X computing gon (X) shows that $\operatorname{gon}(X, \mathbb{R})=\operatorname{gon}(X)$ if and only if $X(\mathbb{R}) \neq \emptyset$. If d is odd, then $X(\mathbb{R}) \neq \emptyset$. If d is even there are curves X as above with $X(\mathbb{R}) \neq \emptyset$ and curves as above with $X(\mathbb{R})=\emptyset$. Now assume d even, $d \geq 6$ and $X(\mathbb{R})=\emptyset$. For any $Q \in \mathbb{P}^{2}(\mathbb{R})$ the linear projection $\mathbb{P}^{2} \backslash\{Q\} \rightarrow \mathbb{P}^{1}$ induces a degree d
real morphism $f_{Q}: X \rightarrow \mathbb{P}^{1}$ not associated to a complete linear system. According to our conventions this is not sufficient to show that $\operatorname{gon}(X, \mathbb{R})=d$. Indeed, we will see that $\operatorname{gon}(X, \mathbb{R})=2 d-4$. Fix points $P_{1}, P_{2} \in X(\mathbb{C})$ with $\sigma\left(P_{1}\right) \neq P_{2}$ and such that the points $P_{1}, \sigma\left(P_{1}\right), P_{2}$ and $\sigma\left(P_{2}\right)$ are not collinear. It is easy to check that no 3 of the points $P_{1}, \sigma\left(P_{1}\right), P_{2}$ and $\sigma\left(P_{2}\right)$ are collinear. Set $D:=P_{1}+\sigma\left(P_{1}\right)+P_{2}+\sigma\left(P_{2}\right)$. Thus D is an effective Cartier divisor with $\operatorname{deg}(D)=4$ and D defined over \mathbb{R}. Thus $O_{X}(2)(-D)$ is a real line bundle of degree $2 d-4$. There is a pencil of conics passing through $P_{1}, \sigma\left(P_{1}\right), P_{2}$ and $\sigma\left(P_{2}\right)$. Since $d \neq 5$, we have $h^{1}\left(\mathbb{P}^{2}, O_{\mathbb{P}^{2}}(2-d)\right)=0$. Hence from the exact sequence

$$
\begin{equation*}
0 \rightarrow O_{\mathbb{P}^{2}}(2-d) \rightarrow O_{\mathbb{P}^{2}}(2) \rightarrow O_{X}(2) \rightarrow 0 \tag{1}
\end{equation*}
$$

we obtain $h^{0}\left(X, O_{X}(2)\right)=6$. Thus $h^{0}\left(X, O_{X}(2)(-D)\right)=2$. By [5], main result at p. 6 , if $d-1<t \leq 2 d-5$ there is no complete base point free pencil of degree t on X. Thus $\operatorname{gon}(X, \mathbb{R})=2 d-4$.
ExAmple 2.3: Fix an integer $d \geq 4$ and $P \in \mathbb{P}^{2}(\mathbb{C}) \backslash \mathbb{P}^{2}(\mathbb{R})$. There is an irreducible real curve $Y \subset \mathbb{P}^{2}$ with $\operatorname{deg}(Y)=d$ and $\operatorname{Sing}(Y(\mathbb{C}))=\{P, \sigma(P)\}$. Let X be the normalization of Y. Thus X is a real curve of genus $(d-1)(d-2) / 2-2$. Since $O_{Y}(1)$ is real, we have $\operatorname{Cliff}(X, \mathbb{R}) \leq d-4$. We have $\operatorname{gon}(X)=d-2$ and there are exactly two line bundles on X computing gon (X) : the one induced by the linear projection $\mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P and the one induced by the linear projection $\mathbb{P}^{2} \backslash\{\sigma(P)\} \rightarrow \mathbb{P}^{1}$ from $\sigma(P)$ (see the Main Lemma on p. 7 of [6]). Since none of them is real, we have $\operatorname{gon}(X) \geq d-1$. Every spanned degree $d-1$ line bundle on X is induced by the linear projection from a point $Q \in Y \backslash\{P, \sigma(P)\}$ (see the Main Lemma on p. 7 of [6]). Hence $\operatorname{gon}(X, \mathbb{R})=d-1$ if and only if $X(\mathbb{R}) \neq \emptyset$. We have $\operatorname{Cliff}(X)=d-4$ (apply [7], Theorem 2.1, and the Main Lemma on p. 7 of $[6])$. Thus $\operatorname{Cliff}(X, \mathbb{R})=d-4$.

Remark 3.4. There is no hope that the examples described in 3.2 are the only ones with real Clifford dimension 2 and for which such phenomena do occur, as obvious applying the statements and/or the proofs of [1], [6], [3], [4] and [5] to other classes of plane integral curves defined over \mathbb{R} and hence whose singularity scheme is σ-invariant, say having 4 nodes or having two triple points.

References

1. C. Ciliberto and R. Lazarsfeld, On the uniqueness of certain linear series on some classes of curves, Complete Intersections, Acireale 1983, 198-213, Lecture Notes in Math., 1092, Springer-Verlag, Berlin, 1984.
2. C. Ciliberto and C. Pedrini, Real abelian varieties and real algebraic curves, Lectures in real geometry, 167-256, de Gruyter Exp. Math. 23, Berlin, 1996.
3. M. Coppens, The gonality of general smooth curves with a prescribed nodal plane model, Math. Ann. 289 (1991), 89-93.
4. M. Coppens, Free linear systems on integral Gorenstein curves, J. Algebra 145 (1992), 209-218.
5. M. Coppens, The existence of base point free linear systems on smooth plane curves, J. Algebraic Geom. 4 (1995), 1-15.
6. M. Coppens and T. Kato, The gonality of smooth curves with plane models, Manuscripta Math. 70 (1990), 5-25.
7. M. Coppens and G. Martens, Secant spaces and Clifford's theorem, Compositio Math. 78 (1991), 193-212.
8. D. Eisenbud, H. Lange, G. Martens, and F.-O. Schreyer, The Clifford dimension of a projective curve, Compositio Math. 72 (1989), 173-204.
9. M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Mathematics 767, Springer-Verlag, Berlin, 1979.

[^0]: Keywords: Real algebraic curves, real line bundles, gonality, real gonality.
 MSC2000: 14H51, 14P99, 14H50.
 This research was partially supported by MURST (Italy).

