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ABSTRACT

Let X be a smooth connected projective curve of genus g defined over R. Here
we give bounds for the real gonality of X in terms of the complex gonality of X.

1. Introduction

Let X be a smooth connected projective curve of genus g defined over R. The real
gonality, gon(X,R), of X is the minimal integer k such that there is L € Pic(X) with
deg(L) = k,h°(X,L) = 2 and L defined over R. Notice that any real line bundle
computing gon(X,R) is spanned because the base locus of a real line bundle is a real
divisor. We will give an example (see Example 2.2) of smooth real curve X with
X(R) = () and such that there is a real line bundle L on X with hR°(X,L) > 2 and
deg(L) < gon(X,R). If X(R) # 0, then this phenomenon cannot occur (see Lemma
2.1). For any R € Pic(X), set Cliff(R) = deg(R) — 2(h°(X, R)) + 2; the integer
Cliff(R) is called the Clifford index of R. The real Clifford index, Cliff(X,R), of X is
the minimal integer Cliff(L), where L is a real line bundle on X with h°(X,L) > 2
and h!'(X,L) > 2. The real Clifford dimension of X is the minimal integer n > 1
such that there is a real line bundle L on X with h°(X,L) > 2, deg(L) < 2g — 2,
Cliff(L) = Cliff(X,R) and h°(X, L) = n+ 1. If we drop the word “real” in the previous
definitions we obtain respectively the usual notion of gonality, of Clifford index and
of Clifford dimension. See [8] and [7], Theorem 2.1, for more on the Clifford index
of complex projective curves. We will write gon(X) (resp. Cliff(X)) for the usual
complex gonality (resp. complex Clifford index) of X. By [7], Theorem 2.1, we have
Clff(X) + 2 < gon(X) < Cliff(X) + 3. In this paper we will see that relation between
gon(X,R) and Cliff(X,R) is quite different. Here we prove the following results.
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Theorem 1.1

Let X be a smooth projective curve of genus g > 3 defined over R. Set k := gon(X)
and assume gon(X,R) > k. If X(R) = () assume g— k even. Then CIff( X,R) < 2k —4.
If X(R) # () we have gon(X,R) < 2k — 2.

Theorem 1.2

Let X be a smooth projective curve of genus g > 3 defined over R and with
X(R) # 0. Set k := gon(X) and assume gon(X,R) > k and (k — 1)(2k — 3) — g odd.
Then gon(X,R) < 2k — 3.

2. Proofs and examples

For any real algebraic scheme Y, o will denote the complex conjugation on the set
Y(C). Thus Y(R) ={P € Y(C) : o(P) = P}.

Lemma 2.1

Let X be a smooth projective curve defined over R and with X (R) # (). Assume
the existence of a real line bundle L on X with h®(X, L) > 3. Then there exists a real
line bundle M on X with h®(X, M) = 2, deg(M) < deg(L) — h°(X,L) + 2 and M
spanned by its global sections.

Proof. Set z := h%(X,L) — 2. For a general P € X(C) (i.e. for all points of X(C)
except at most finitely many ones) we have h®(X, L(—P)) = h%(X, L) — 1. Since X (R)
is infinite, the same is true if we take as P a sufficiently general point of any connected
component of X (R). Iterating this trick we see that for any connected component T'

of X(R) there are Py,...,P, € T such that h°(X,L(—P; — ... — P,)) = 2. The line
bundle L(—P; — ... — P,) is real and deg(L(—P; —...— P,)) = deg(L) — h°(X, L) + 2.
Let M be the subsheaf of spanned by h%(X,L(—P; — ... — P.)). We have deg(M) <
deg(L(—P; —...— P,)) and h°(X, M) = h°(X, L(—P; — ... — P,)) = 2. Since the base

locus of a real line bundle is defined over R, M is real. [J

Proof of 1.1. Take L € Pic(X)(C) computing gon(X ). Hence deg(L) = k, h°(X, L) = 2
and L is spanned by its global sections. Since gon(X,R) > k, L is not defined over R.
We have deg(o*(L)) = k, h°(X,0*(L)) = 2 and o*(L) is spanned by its global sections.
Set M := L ® 0*(L). The line bundle M has degree 2k and it is spanned by its global
sections.

First claim: The line bundle M is defined over R.

Proof. By its very definition M is o-invariant. If X(R) # () this implies that M
is defined over R (see e.g. [2], Proposition 4.1.2 (i)). In the general case we take a
o-invariant open covering {U; }ie; of X(C) such that L|U; is trivial. For all indices
i,j € I with i # j, let g;; : U; N U; — C* a cocycle defining L. Since {U,};cs is
o-invariant, o*(L) has as {U;};er trivializing open covering of X (C) with o(g;;) as
associated cocycle. Hence M has {U,};es as trivializing open covering with |g;;|* as
cocycle. Since |g;;|? is real, M is real.

Second claim: We have h°(X, M) > 4.
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Proof of the second claim: See P! x P! as a smooth quadric surface in P3. If L and
o*(L) are not isomorphic, then the morphism ¢ : X — P! x P! C P? has not as image
a smooth conic. Thus ¢(X) spans P? and this implies h°(X, M) > 4. Now assume L
and o*(L) isomorphic (over C). Since L is not defined over R, this is possible only if
X(R) = 0 (see e.g. [2], Proposition 4.1.2 (i)). By [2], Proposition 4.1.2 (iii), we have
k=g —1 mod (2), contradiction.

By the two claims we have Cliff(X,R) < Cliff(M) < 2k — 6. Since deg(M) = 2k <
g— 3+ h%(X, M), we have h*(X, M) > 2 and hence M may be used to compute the
Clifford index. Take any P € X(C). The line (¢(P), ¢(c(P))) C P? spanned by ¢(P)
and ¢(o(P)) is defined over R. Hence the composition of ¢ with the projection from
the line (¢(P), ¢(c(P))) induces a morphism f : X — P! defined over R and with
deg(f) < 2k — 2. If X(R) # () Lemma 2.1 gives the existence of a real line bundle R
on X with deg(R) < 2k — 2, R spanned by its global sections and h°(X, R) = 2. O

Proof of 1.2.  We use every notation introduced in the proof of Theorem 1.1. First
assume that ¢ is an embedding. For a general P € ¢(X(C)) (i.e. for all points of
#(X(C)) except finitely many ones), the projection of X from P is a plane curve, Y,
of degree 2k — 1, birational to X and with exactly (k—1)(2k —3) — g ordinary nodes as
only singularities. If P € ¢(X(R)), then Y is defined over R. Since (k—1)(2k—3) — g
is odd and Sing(Y') is defined over R, there is at least one real singular point of Y.
This is equivalent to the existence of a line D of P? defined over R, with P € D and
with card(D N (X (C))) = 3. The linear projection of P2\ D from D onto P! induces a
morphism A : X — P! of degree 2k — 3 and defined over R. Hence we conclude in this
case. Now assume that ¢ is not an embedding. First assume the existence of P; €
Sing(¢(X)) NP3(R). The linear projection from P; induces a morphism h; : X — P2
defined over R and with deg(hi) < 2k — 2. Hence we conclude in this case by Lemma
2.1. Now assume that there is no such point P; but that ¢ is birational. By assumption
there is P, € Sing(¢(X)) N (P3(C)\P?(R)). Since ¢ is real, o(P,) € Sing(¢(X)). We
have o(Ps) # P». The line D5 spanned by P, and o(P2) is defined over R. The linear
projection from Dy induces a morphism hy : X — P! of degree 2k — 4 and defined over
R. Hence we conclude in this case by Lemma 2.1. Now assume that ¢ is not birational.
Let s > 2 be its degree. Take two sufficiently general points @1, @2 of X (R). The linear
projection from the line spanned by ¢(Q1) and ¢(Q>) induces a morphism hy : X — P!
of degree 2k — 2s and defined over R. Hence we conclude in this case by Lemma 2.1. [

EXAMPLE 2.2: Fix an integer d > 4 and let X C P? be a smooth plane curve defined
over R (i.e. defined by a homogeneous polynomial with real coefficient and with no
complex singular point). We have gon(X) = d —1, Cliff(X) = d —4,0x (1) is the only
line bundle computing Cliff(X) and for any R € Pic(X)(C) with deg(R) =d — 1 and
hO(X, R) > 2 there is a unique P € X (C) with R = Ox(1)(—P) (see [9] or [6], p. 6,
or [1] or [5]). Since Ox (1) is real, we have Cliff(X,R) = Cliff(X). The descriptions of
all line bundles on X computing gon(X) shows that gon(X,R) = gon(X) if and only
if X(R) # 0. If d is odd, then X(R) # (. If d is even there are curves X as above
with X (R) # 0 and curves as above with X(R) = (). Now assume d even, d > 6 and
X(R) = (. For any Q € P?(R) the linear projection P?\{Q} — P! induces a degree d
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real morphism fg : X — P! not associated to a complete linear system. According to
our conventions this is not sufficient to show that gon(X,R) = d. Indeed, we will see
that gon(X,R) = 2d — 4. Fix points P;, P, € X(C) with o(P;) # P, and such that
the points Py, 0(Py), P, and o(P) are not collinear. It is easy to check that no 3 of
the points Py, 0(Py), P, and o(P,) are collinear. Set D := Py + o(P1) + P2 + o(FP2).
Thus D is an effective Cartier divisor with deg(D) = 4 and D defined over R. Thus
Ox(2)(—D) is a real line bundle of degree 2d — 4. There is a pencil of conics passing
through Py,0(Py), P, and o(P,). Since d # 5, we have h'(P2, Op2(2 — d)) = 0. Hence
from the exact sequence

0 — Op2(2 — d) — Op2(2) — Ox(2) — 0 (1)

we obtain h?(X,Ox(2)) = 6. Thus h°(X,0x(2)(—D)) = 2. By [5], main result at p.
6,if d — 1 <t < 2d — 5 there is no complete base point free pencil of degree t on X.
Thus gon(X,R) = 2d — 4.

EXAMPLE 2.3: Fix an integer d > 4 and P € P?(C)\P?(R). There is an irreducible
real curve Y C P? with deg(Y) = d and Sing(Y(C)) = {P,o(P)}. Let X be the
normalization of Y. Thus X is a real curve of genus (d — 1)(d — 2)/2 — 2. Since Oy (1)
is real, we have Cliff(X,R) < d — 4. We have gon(X) = d — 2 and there are exactly
two line bundles on X computing gon(X) : the one induced by the linear projection
P2\{P} — P! from P and the one induced by the linear projection P?\{o(P)} — P!
from o(P) (see the Main Lemma on p. 7 of [6]). Since none of them is real, we have
gon(X) > d— 1. Every spanned degree d — 1 line bundle on X is induced by the linear
projection from a point @ € Y\{P,o(P)} (see the Main Lemma on p. 7 of [6]). Hence
gon(X,R) = d — 1 if and only if X(R) # (. We have ClLff(X) = d — 4 (apply [7],
Theorem 2.1, and the Main Lemma on p. 7 of [6]). Thus Cliff(X,R) = d — 4.

Remark 3.4. There is no hope that the examples described in 3.2 are the only ones
with real Clifford dimension 2 and for which such phenomena do occur, as obvious
applying the statements and/or the proofs of [1], [6], [3], [4] and [5] to other classes of
plane integral curves defined over R and hence whose singularity scheme is g-invariant,
say having 4 nodes or having two triple points.
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