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Fixed points of the Hardy-Littlewood maximal operator
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ABSTRACT

Let 1<p<+oc bearea number and M bethe centered Hardy—L ittlewood maximal
operator. Then, there exists a non-constant function feL?(R™) such that m(f)=,
if andonly if n>3 andn/(n—2)<p<+oco. Wea so provethat for every »n>1 and every
1<p<+oo, there is no non-constant fixed point of the so-called centered “ strong”
maximal operator A in LP(R™).

1. Introduction

The classical centered Hardy-Littlewood maximal operator M is defined on the
Lebesgue space Li (R™) by setting

loc

Vf e LL.(R™), M(f)(x) = supﬁ /B @ — )| dy,

r>0

for every « € R™. Here |B,| denotes the volume of the Euclidean ball B, centered at
the origin of R™ and with radius . The maximal function is a classical tool in har-
monic analysis but recently it has been successfully used in studying Sobolev functions
and partial differential equations, see [1] and [2]. The celebrated theorem of Hardy,
Littlewood and Wiener asserts that the maximal operator is bounded in LP(R™) for
all 1 < p < oo (see, Stein [3]):

M < Cp 11l (1)
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In this paper our goal is to study the existence of non-constant fixed points of the
maximal operator M in the framework of Lebesgue spaces LP(R"), 1 < p < 400, (a
locally integrable function f is a fixed point of M, if and only if M(f) = f).

It is well-known (and simple to check) that for every non-zero locally integrable
function f on R™, there exists a constant C' > 0 such that

Ve e R", M(f)@) = C (1+ [z) (2)

Consequently, the zero function is the only fixed point of M in L'(R™). Obviously,
each positive constant is a fixed point of M in L*>°(R™). However, the question can
be raised whether M has non-constant fixed points in LP(R™) when p € (1, +o00]. Our
following result yields an affirmative answer.

Theorem 1

Let 1 < p < +o0 be a real number. Then, there exists a non-constant fixed point
f e LP(R™) of M, if and only if n > 3 and n/(n — 2) < p < +oo.

Before we come back to the proof of Theorem 1, we shall make some clarifying
remarks.

Remark 1. A locally integrable function f on R" is a fixed point of M, if and only if
f is a super-harmonic function (i.e., A(f) < 0; here A is the Laplace operator) and is
positive. Indeed, based on Lebesgue’s differentiation theorem, the relation

flz—y) dy (3)

holds for almost every x € R", whenever f € L{ (R™). Therefore, one obtains

[f(@)] < M(f)(z) ae zecR™ (4)

So, a function f € Li _(R") is a fixed point of M, if and only if f is positive and

loc
satisfies

1
Vr > 0, —/ flx—y) dy < f(x) ae. xR,
1Br| JB,

which concludes our claim. Ol

Remark 2. Let f € LP(R™) be a non-constant fixed point of M; let ¢ be a positive
function belonging to the Schwartz class S(R™) such that [, ¢(x) dz = 1. Then, there
exists some t > 0 such that the function f; = f * pi(x), where @i(x) =t~ p(x/t), is
also a non-constant fixed point of M belonging to C*°(R™)NLP(R™). Indeed, obviously,
for every t > 0, f; € C°(R™)NLP(R™). To see that f; is a fixed point of M, according
to the estimate (4), it suffices to establish that

fr > M(fi).
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This last estimate is deduced by applying Fubini theorem and the fact that M com-
mutes with translations (i.e., 7, M = M7, with 7, f(z) = f(x — a)): for every r > 0,
let x, = ﬁXBT' Then, we have M(f;) = sup,~q Xr * f: and

xo # (e % () = / W) (xr 7, f) () dy

n

< [ olw) Ml (@) dy = por M) = i

Finally, using the Lebesgue differentiation theorem, there exists some ¢ > 0 such that
ft is non-constant, since f is non-constant. This proves our claim. [J

2. Proof of Theorem 1

2.1. Proof of Theorem 1, Part 1

Let n > 3 and n/(n — 2) < p < +oo. Before we prove that the maximal operator has
a non-constant fixed point f € LP(R"™), we shall first recall some facts about the Riesz
potentials (for more details, see for instance Stein [3], page 116). Classically, the Riesz
potentials (Is)ae[o,n) are defined in S(R™) by setting

Io(g) = F~H[(2rle))™ Fy]

where Fg(€) = [g. €>™@9) g(z) dv with (z|¢) = 21& + -+ + 2,&,, and F~1 denotes
the inverse Fourier transform.

The fundamental result of Hardy-Littlewood-Sobolev asserts that (see, for exam-
ple, Stein [3], page 119), for every 1 < ¢ < p < +o0 and 0 < a < n/q such that
1/p=1/q — a/n, we have

Ma(@)llp < Crq llla (5)

and the following representation integral

1.(9)(2) = ca / z— g7 g(y) dy. (6)

where I' is the gamma function and

I'(n/2 - a/2)
I'(a/2)

Co =7 227
Now, we are ready to establish our claim.
Step 1. Here we deal with the case n > 3 and n/(n — 2) < p < +00. On the one

hand, we notice that for every 1 < ¢ < min(p,n/2) and every 2 < a < n/q such that
1/p = 1/q — a/n, we have the following identity —which is valid for the class S(R™)
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by the means of Fourier transform, and extends to L?(R") via the Hardy—Littlewood—
Sobolev result recalled above—-

Vg € LY(R"), A(la(9)) = —Ia—2(9)- (7)

On the other hand, for every non zero positive function g € L4(R™), the equations (6)
(applied to a — 2), (7) and Remark 1 imply that I,(g) is a fixed point of M. Thanks
to Hardy-Littlewood—Sobolev result, I,(g) is a non-constant fixed point of M and
belongs to LP(R™). This concludes Step 1.

Step 2. We assume that n > 3. To prove that M has a non-constant fixed point
f € L*(R™), we use the known result (cf. Step 1) for a finite p: we choose a non-
constant fixed point f € LP(R™) of M. Then, we consider (cf. Remark 2) the non-
constant fixed point f; of M which belongs to L>®(R™) (since ¢; € L¥ (R™) with
1/p+1/p’ =1). This completes the proof of Theorem 1, Part 1. OJ

2.2. Proof of Theorem 1, Part 2

We assume that there exists a non-constant fixed point of M in LP(R™) and we shall
prove that n > 3 and n/(n — 2) < p < +o00. We split the proof into two steps.

Step 1. Here we shall prove that necessarily n > 3. We proceed by contradiction. We
prove, if n = 1,2, there exists no non-constant fixed point of M in LP(R™) whenever
1<p<+o0.

e Let f € LP(R), 1 < p < 400, be a non-constant fixed point of M. According to
Remark 2, we may assume that f € C°°(R)NLP(R). Therefore, f is a positive concave
function:

Ve €R, f(z) < f(xo) (x —x0) + f(20) (8)

where we may choose some 2y € R such that f/(zg) # 0. But, the estimate (8) is not
possible, since f is a non-constant positive function belonging to LP(R), 1 < p < +o0.

e Again, there is no non-constant fixed point f € LP(R?) whenever 1 < p < +oo. If
this would be false, as we have said, we may assume that f € C°°(R?) N L?(R?). Let
o € R? and ¢ € (0,1), set t. = f(z9) —e. We find § > 0 such that f(x) > t. if

|z — x| < 6. Now, for § < |x — x| < R, we consider the function

te

o) = 1)+ 5 R) — toaty)

(log(|lz — wo|) — log(t)) — te.

Since  — log(|z — z¢|) is harmonic on Cgr = {z € R? : § < |z — x| < R} and f is
super-harmonic on Cgr, then G is super-harmonic on Cg. Furthermore, G is positive
on the boundary of Cr. Hence, the maximum principle yields that G is positive
on the closure of Cr. So, by passing to limits (R — +4o0) for fixed z, this yields
f(x) > t. everywhere. Since € > 0 is arbitrary, f is constant, which is a contradiction.
Henceforward, we suppose n > 3.



Fixed points of the Hardy—Littlewood maximal operator 293

Step 2. Here we assume that n > 3, and we shall prove that n/(n—2) < p < +o0. Let
f € LP(R™)NC*°(R™) be a non-constant fixed point of M. Since f(0) = M(f)(0) > 0,
there exists some ¢ > 0 such that

Ve e R", |z| <t= f(z)>1t.

Since the function | - [>~™ is harmonic on Dr = {z € R" : t < |z| < R} and f is
super-harmonic on Dg, then the function

H(x) = f(z) —t" ' |z[> "+t RZ"

is super-harmonic on Dg. Furthermore, H is positive on the boundary of Dgr. Again,
the maximum principle yields that H is positive on the closure of Dg. So, by passing
to limits (R — +00), this yields f(z) > #"~! |2|>~™ everywhere. Using the assumption
f € LP(R™) and polar coordinates, we obtain n/(n — 2) < p < 4o00. This concludes
the proof of Theorem 1. [J

Before we conclude this paper, we would like to make some remarks. For the so-
called centered “strong” maximal operator A (see below for its definition), the picture
is different. Denote by z = (z1,...,x,) points in R”. For a locally integrable function
f on R™  define

9—n r1+7r1 Tn+Tn
(@) = supesup =2 [ [ g ) - di,

r1>0 rn,>0T1""Tn 1 =71

n—Tn

Corollary 1

For every 1 < p < 400 and every n > 1, there is no non-constant fixed point
f € LP(R™) of the operator N .

Proof. We proceed by contradiction by assuming that there exists a non-constant fixed
point f € LP(R™) of N (with 1 < p < 400 and n > 1). Similar arguments like in
Remark 2 lead us to assume that f is continuous in R™.

First, assume p < 4o00; via Fubini’s theorem, there exists v € R"~! such that

the function f,(x1) = f(x1,u) is a non-constant function belonging to L?(R). The
equation NV(f) = f leads, for every x; € R and every r > 0, to

1 omtr o
ful(y 2—/ 57 [ FWnyn) dyn - dys | din 9
ez g [ gy e do (9
where u = (uy, -, up—1) and Q, = {x e R" "1 : | Jnax 1]a:i —u;| < p}. By passing to

limits (p — 0) in the estimate (9), continuity of f and Fatou lemma yield

1 x1+7r
Ve €R fule)z 5 [ fuln) du (10)

1=
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for every r > 0. Therefore, f, is a non-constant fixed point of M in LP(R). But this
is impossible (see Theorem 1).

Finally, if p = oo, there exists i = 1,---,n and (ug, -, U1, Uit1,"*,Up) € R?7L
such that the function v defined by

w(y) = f(ula' : '7ui—1ay7ui+17"'aun)

is non-constant and belongs to L>°(R). The same arguments given before yield that ¢
is a non-constant fixed point of M in L*>*(R), which is a contradiction (see Theorem 1).
This concludes the proof of Corollary 1. [J
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