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Abstract

Let 1≤p≤+∞ be a real number and M be the centered Hardy–Littlewood maximal
operator. Then, there exists a non-constant function f∈Lp(Rn) such that M(f)=f ,
if and only if n≥3 and n/(n−2)<p≤+∞. We also prove that for every n≥1 and every
1≤p≤+∞, there is no non-constant fixed point of the so-called centered “strong”
maximal operator N in Lp(Rn).

1. Introduction

The classical centered Hardy–Littlewood maximal operator M is defined on the
Lebesgue space L1

loc(R
n) by setting

∀f ∈ L1
loc(R

n), M(f)(x) = sup
r>0

1
|Br|

∫
Br

|f(x− y)| dy,

for every x ∈ R
n. Here |Br| denotes the volume of the Euclidean ball Br centered at

the origin of R
n and with radius r. The maximal function is a classical tool in har-

monic analysis but recently it has been successfully used in studying Sobolev functions
and partial differential equations, see [1] and [2]. The celebrated theorem of Hardy,
Littlewood and Wiener asserts that the maximal operator is bounded in Lp(Rn) for
all 1 < p ≤ ∞ (see, Stein [3]):

‖M(f)‖p ≤ Cp ‖f‖p. (1)
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In this paper our goal is to study the existence of non-constant fixed points of the
maximal operator M in the framework of Lebesgue spaces Lp(Rn), 1 ≤ p ≤ +∞, (a
locally integrable function f is a fixed point of M, if and only if M(f) = f).

It is well-known (and simple to check) that for every non-zero locally integrable
function f on R

n, there exists a constant C > 0 such that

∀x ∈ R
n, M(f)(x) ≥ C (1 + |x|)−n. (2)

Consequently, the zero function is the only fixed point of M in L1(Rn). Obviously,
each positive constant is a fixed point of M in L∞(Rn). However, the question can
be raised whether M has non-constant fixed points in Lp(Rn) when p ∈ (1,+∞]. Our
following result yields an affirmative answer.

Theorem 1

Let 1 ≤ p ≤ +∞ be a real number. Then, there exists a non-constant fixed point

f ∈ Lp(Rn) of M, if and only if n ≥ 3 and n/(n− 2) < p ≤ +∞.

Before we come back to the proof of Theorem 1, we shall make some clarifying
remarks.

Remark 1. A locally integrable function f on R
n is a fixed point of M, if and only if

f is a super-harmonic function (i.e., ∆(f) ≤ 0; here ∆ is the Laplace operator) and is
positive. Indeed, based on Lebesgue’s differentiation theorem, the relation

f(x) = lim
r→0

1
|Br|

∫
Br

f(x− y) dy (3)

holds for almost every x ∈ R
n, whenever f ∈ L1

loc(R
n). Therefore, one obtains

|f(x)| ≤ M(f)(x) a.e. x ∈ R
n. (4)

So, a function f ∈ L1
loc(R

n) is a fixed point of M, if and only if f is positive and
satisfies

∀r > 0,
1

|Br|

∫
Br

f(x− y) dy ≤ f(x) a.e. x ∈ R
n,

which concludes our claim. �

Remark 2. Let f ∈ Lp(Rn) be a non-constant fixed point of M; let ϕ be a positive
function belonging to the Schwartz class S(Rn) such that

∫
Rn ϕ(x) dx = 1. Then, there

exists some t > 0 such that the function ft = f ∗ ϕt(x), where ϕt(x) = t−n ϕ(x/t), is
also a non-constant fixed point of M belonging to C∞(Rn)∩Lp(Rn). Indeed, obviously,
for every t > 0, ft ∈ C∞(Rn)∩Lp(Rn). To see that ft is a fixed point of M, according
to the estimate (4), it suffices to establish that

ft ≥ M(ft).
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This last estimate is deduced by applying Fubini theorem and the fact that M com-
mutes with translations (i.e., ταM = Mτα with ταf(x) = f(x− α)): for every r > 0,
let χr = 1

|Br|χBr
. Then, we have M(ft) = supr>0 χr ∗ ft and

χr ∗ (ϕt ∗ f)(x) =
∫

Rn

ϕt(y) (χr ∗ τyf)(x) dy

≤
∫

Rn

ϕt(y) M(τyf)(x) dy = ϕt ∗M(f)(x) = ft.

Finally, using the Lebesgue differentiation theorem, there exists some t > 0 such that
ft is non-constant, since f is non-constant. This proves our claim. �

2. Proof of Theorem 1

2.1. Proof of Theorem 1, Part 1

Let n ≥ 3 and n/(n− 2) < p ≤ +∞. Before we prove that the maximal operator has
a non-constant fixed point f ∈ Lp(Rn), we shall first recall some facts about the Riesz
potentials (for more details, see for instance Stein [3], page 116). Classically, the Riesz
potentials (Iα)α∈[0,n) are defined in S(Rn) by setting

Iα(g) = F−1
[
(2π|ξ|)−α Fg

]
where Fg(ξ) =

∫
Rn e

2πi(x|ξ) g(x) dx with (x|ξ) = x1ξ1 + · · · + xnξn, and F−1 denotes
the inverse Fourier transform.

The fundamental result of Hardy–Littlewood–Sobolev asserts that (see, for exam-
ple, Stein [3], page 119), for every 1 < q < p < +∞ and 0 < α < n/q such that
1/p = 1/q − α/n, we have

‖Iα(g)‖p ≤ Cp,q ‖g‖q (5)

and the following representation integral

Iα(g)(x) = cα
∫

Rn

|x− y|−n+α g(y) dy, (6)

where Γ is the gamma function and

cα = π−n/2 2−αΓ
(
n/2 − α/2

)
Γ(α/2)

.

Now, we are ready to establish our claim.

Step 1. Here we deal with the case n ≥ 3 and n/(n − 2) < p < +∞. On the one
hand, we notice that for every 1 < q < min(p, n/2) and every 2 < α < n/q such that
1/p = 1/q − α/n, we have the following identity –which is valid for the class S(Rn)
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by the means of Fourier transform, and extends to Lq(Rn) via the Hardy–Littlewood–
Sobolev result recalled above–

∀g ∈ Lq(Rn), ∆(Iα(g)) = −Iα−2(g). (7)

On the other hand, for every non zero positive function g ∈ Lq(Rn), the equations (6)
(applied to α− 2), (7) and Remark 1 imply that Iα(g) is a fixed point of M. Thanks
to Hardy–Littlewood–Sobolev result, Iα(g) is a non-constant fixed point of M and
belongs to Lp(Rn). This concludes Step 1.

Step 2. We assume that n ≥ 3. To prove that M has a non-constant fixed point
f ∈ L∞(Rn), we use the known result (cf. Step 1) for a finite p: we choose a non-
constant fixed point f ∈ Lp(Rn) of M. Then, we consider (cf. Remark 2) the non-
constant fixed point ft of M which belongs to L∞(Rn) (since ϕt ∈ Lp′

(Rn) with
1/p+ 1/p′ = 1). This completes the proof of Theorem 1, Part 1. �

2.2. Proof of Theorem 1, Part 2

We assume that there exists a non-constant fixed point of M in Lp(Rn) and we shall
prove that n ≥ 3 and n/(n− 2) < p ≤ +∞. We split the proof into two steps.

Step 1. Here we shall prove that necessarily n ≥ 3. We proceed by contradiction. We
prove, if n = 1, 2, there exists no non-constant fixed point of M in Lp(Rn) whenever
1 ≤ p ≤ +∞.

• Let f ∈ Lp(R), 1 ≤ p ≤ +∞, be a non-constant fixed point of M. According to
Remark 2, we may assume that f ∈ C∞(R)∩Lp(R). Therefore, f is a positive concave
function:

∀x ∈ R, f(x) ≤ f ′(x0) (x− x0) + f(x0) (8)

where we may choose some x0 ∈ R such that f ′(x0) �= 0. But, the estimate (8) is not
possible, since f is a non-constant positive function belonging to Lp(R), 1 ≤ p ≤ +∞.

• Again, there is no non-constant fixed point f ∈ Lp(R2) whenever 1 ≤ p ≤ +∞. If
this would be false, as we have said, we may assume that f ∈ C∞(R2) ∩ Lp(R2). Let
x0 ∈ R

2 and ε ∈ (0, 1), set tε = f(x0) − ε. We find δ > 0 such that f(x) > tε if
|x− xε| ≤ δ. Now, for δ < |x− xε| < R, we consider the function

G(x) = f(x) +
tε

log(R) − log(tε)
(
log(|x− x0|) − log(tε)

)
− tε.

Since x → log(|x − x0|) is harmonic on CR = {x ∈ R
2 : δ < |x − x0| < R} and f is

super-harmonic on CR, then G is super-harmonic on CR. Furthermore, G is positive
on the boundary of CR. Hence, the maximum principle yields that G is positive
on the closure of CR. So, by passing to limits (R → +∞) for fixed x, this yields
f(x) ≥ tε everywhere. Since ε > 0 is arbitrary, f is constant, which is a contradiction.
Henceforward, we suppose n ≥ 3.
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Step 2. Here we assume that n ≥ 3, and we shall prove that n/(n−2) < p ≤ +∞. Let
f ∈ Lp(Rn)∩C∞(Rn) be a non-constant fixed point of M. Since f(0) = M(f)(0) > 0,
there exists some t > 0 such that

∀x ∈ R
n, |x| ≤ t =⇒ f(x) ≥ t.

Since the function | · |2−n is harmonic on DR = {x ∈ R
n : t < |x| < R} and f is

super-harmonic on DR, then the function

H(x) = f(x) − tn−1 |x|2−n + tn−1 R2−n

is super-harmonic on DR. Furthermore, H is positive on the boundary of DR. Again,
the maximum principle yields that H is positive on the closure of DR. So, by passing
to limits (R→ +∞), this yields f(x) ≥ tn−1 |x|2−n everywhere. Using the assumption
f ∈ Lp(Rn) and polar coordinates, we obtain n/(n − 2) < p ≤ +∞. This concludes
the proof of Theorem 1. �

Before we conclude this paper, we would like to make some remarks. For the so-
called centered “strong” maximal operator N (see below for its definition), the picture
is different. Denote by x = (x1, . . . , xn) points in R

n. For a locally integrable function
f on R

n, define

N (f)(x) = sup
r1>0

· · · sup
rn>0

2−n

r1 · · · rn

∫ x1+r1

x1−r1

· · ·
∫ xn+rn

xn−rn

|f(y1, · · · , yn)| dyn · · · dy1.

Corollary 1

For every 1 ≤ p ≤ +∞ and every n ≥ 1, there is no non-constant fixed point

f ∈ Lp(Rn) of the operator N .

Proof. We proceed by contradiction by assuming that there exists a non-constant fixed
point f ∈ Lp(Rn) of N (with 1 ≤ p ≤ +∞ and n ≥ 1). Similar arguments like in
Remark 2 lead us to assume that f is continuous in R

n.

First, assume p < +∞; via Fubini’s theorem, there exists u ∈ R
n−1 such that

the function fu(x1) = f(x1, u) is a non-constant function belonging to Lp(R). The
equation N (f) = f leads, for every x1 ∈ R and every r > 0, to

fu(x1) ≥
1
2r

∫ x1+r

x1−r

(
1

|Qρ|

∫
Qρ

f(y1, · · · , yn) dyn · · · dy2
)
dy1 (9)

where u = (u1, · · · , un−1) and Qρ = {x ∈ R
n−1 : max

1≤i≤n−1
|xi − ui| ≤ ρ}. By passing to

limits (ρ→ 0) in the estimate (9), continuity of f and Fatou lemma yield

∀x1 ∈ R, fu(x1) ≥
1
2r

∫ x1+r

x1−r

fu(y1) dy1 (10)
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for every r > 0. Therefore, fu is a non-constant fixed point of M in Lp(R). But this
is impossible (see Theorem 1).

Finally, if p = ∞, there exists i = 1, · · · , n and (u1, · · · , ui−1, ui+1, · · · , un) ∈ R
n−1

such that the function ψ defined by

ψ(y) = f(u1, · · · , ui−1, y, ui+1, · · · , un)

is non-constant and belongs to L∞(R). The same arguments given before yield that ψ
is a non-constant fixed point of M in L∞(R), which is a contradiction (see Theorem 1).
This concludes the proof of Corollary 1. �
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