Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 52, 3 (2001), 289-294
(c) 2001 Universitat de Barcelona

Fixed points of the Hardy-Littlewood maximal operator

Soulaymane Korry
Equipe d'Analyse et de Mathématiques Appliquées, bâtiment Copernic, Université de Marne-La-Vallée, 5 Bd Descartes, Champs-sur-Marne, 77454 Marne-La-Vallée Cedex 2, France
E-mail: korry@math.univ-mlv.fr

Received May 11, 2001

Abstract

Let $1 \leq p \leq+\infty$ be a real number and \mathcal{M} be the centered Hardy-Littlewood maximal operator. Then, there exists a non-constant function $f \in L^{p}\left(\mathbb{R}^{n}\right)$ such that $\mathcal{M}(f)=f$, if and only if $n \geq 3$ and $n /(n-2)<p \leq+\infty$. We also prove that for every $n \geq 1$ and every $1 \leq p \leq+\infty$, there is no non-constant fixed point of the so-called centered "strong" maximal operator \mathcal{N} in $L^{p}\left(\mathbb{R}^{n}\right)$.

1. Introduction

The classical centered Hardy-Littlewood maximal operator \mathcal{M} is defined on the Lebesgue space $L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ by setting

$$
\forall f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right), \quad \mathcal{M}(f)(x)=\sup _{r>0} \frac{1}{\left|B_{r}\right|} \int_{B_{r}}|f(x-y)| d y
$$

for every $x \in \mathbb{R}^{n}$. Here $\left|B_{r}\right|$ denotes the volume of the Euclidean ball B_{r} centered at the origin of \mathbb{R}^{n} and with radius r. The maximal function is a classical tool in harmonic analysis but recently it has been successfully used in studying Sobolev functions and partial differential equations, see [1] and [2]. The celebrated theorem of Hardy, Littlewood and Wiener asserts that the maximal operator is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p \leq \infty$ (see, Stein [3]):

$$
\begin{equation*}
\|\mathcal{M}(f)\|_{p} \leq C_{p}\|f\|_{p} \tag{1}
\end{equation*}
$$

[^0]In this paper our goal is to study the existence of non-constant fixed points of the maximal operator \mathcal{M} in the framework of Lebesgue spaces $L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq+\infty$, (a locally integrable function f is a fixed point of \mathcal{M}, if and only if $\mathcal{M}(f)=f)$.

It is well-known (and simple to check) that for every non-zero locally integrable function f on \mathbb{R}^{n}, there exists a constant $C>0$ such that

$$
\begin{equation*}
\forall x \in \mathbb{R}^{n}, \quad \mathcal{M}(f)(x) \geq C(1+|x|)^{-n} \tag{2}
\end{equation*}
$$

Consequently, the zero function is the only fixed point of \mathcal{M} in $L^{1}\left(\mathbb{R}^{n}\right)$. Obviously, each positive constant is a fixed point of \mathcal{M} in $L^{\infty}\left(\mathbb{R}^{n}\right)$. However, the question can be raised whether \mathcal{M} has non-constant fixed points in $L^{p}\left(\mathbb{R}^{n}\right)$ when $p \in(1,+\infty]$. Our following result yields an affirmative answer.

Theorem 1

Let $1 \leq p \leq+\infty$ be a real number. Then, there exists a non-constant fixed point $f \in L^{p}\left(\mathbb{R}^{n}\right)$ of \mathcal{M}, if and only if $n \geq 3$ and $n /(n-2)<p \leq+\infty$.

Before we come back to the proof of Theorem 1, we shall make some clarifying remarks.

Remark 1. A locally integrable function f on \mathbb{R}^{n} is a fixed point of \mathcal{M}, if and only if f is a super-harmonic function (i.e., $\Delta(f) \leq 0$; here Δ is the Laplace operator) and is positive. Indeed, based on Lebesgue's differentiation theorem, the relation

$$
\begin{equation*}
f(x)=\lim _{r \rightarrow 0} \frac{1}{\left|B_{r}\right|} \int_{B_{r}} f(x-y) d y \tag{3}
\end{equation*}
$$

holds for almost every $x \in \mathbb{R}^{n}$, whenever $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$. Therefore, one obtains

$$
\begin{equation*}
|f(x)| \leq \mathcal{M}(f)(x) \quad \text { a.e. } \quad x \in \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

So, a function $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ is a fixed point of \mathcal{M}, if and only if f is positive and satisfies

$$
\forall r>0, \quad \frac{1}{\left|B_{r}\right|} \int_{B_{r}} f(x-y) d y \leq f(x) \text { a.e. } x \in \mathbb{R}^{n}
$$

which concludes our claim.
Remark 2. Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$ be a non-constant fixed point of \mathcal{M}; let φ be a positive function belonging to the Schwartz class $\mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $\int_{\mathbb{R}^{n}} \varphi(x) d x=1$. Then, there exists some $t>0$ such that the function $f_{t}=f * \varphi_{t}(x)$, where $\varphi_{t}(x)=t^{-n} \varphi(x / t)$, is also a non-constant fixed point of \mathcal{M} belonging to $C^{\infty}\left(\mathbb{R}^{n}\right) \cap L^{p}\left(\mathbb{R}^{n}\right)$. Indeed, obviously, for every $t>0, f_{t} \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap L^{p}\left(\mathbb{R}^{n}\right)$. To see that f_{t} is a fixed point of \mathcal{M}, according to the estimate (4), it suffices to establish that

$$
f_{t} \geq \mathcal{M}\left(f_{t}\right)
$$

This last estimate is deduced by applying Fubini theorem and the fact that \mathcal{M} commutes with translations (i.e., $\tau_{\alpha} \mathcal{M}=\mathcal{M} \tau_{\alpha}$ with $\tau_{\alpha} f(x)=f(x-\alpha)$): for every $r>0$, let $\chi_{r}=\frac{1}{\left|B_{r}\right|} \chi_{B_{r}}$. Then, we have $\mathcal{M}\left(f_{t}\right)=\sup _{r>0} \chi_{r} * f_{t}$ and

$$
\begin{aligned}
\chi_{r} *\left(\varphi_{t} * f\right)(x) & =\int_{\mathbb{R}^{n}} \varphi_{t}(y)\left(\chi_{r} * \tau_{y} f\right)(x) d y \\
& \leq \int_{\mathbb{R}^{n}} \varphi_{t}(y) \mathcal{M}\left(\tau_{y} f\right)(x) d y=\varphi_{t} * \mathcal{M}(f)(x)=f_{t}
\end{aligned}
$$

Finally, using the Lebesgue differentiation theorem, there exists some $t>0$ such that f_{t} is non-constant, since f is non-constant. This proves our claim.

2. Proof of Theorem 1

2.1. Proof of Theorem 1, Part 1

Let $n \geq 3$ and $n /(n-2)<p \leq+\infty$. Before we prove that the maximal operator has a non-constant fixed point $f \in L^{p}\left(\mathbb{R}^{n}\right)$, we shall first recall some facts about the Riesz potentials (for more details, see for instance Stein [3], page 116). Classically, the Riesz potentials $\left(I_{\alpha}\right)_{\alpha \in[0, n)}$ are defined in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ by setting

$$
I_{\alpha}(g)=\mathcal{F}^{-1}\left[(2 \pi|\xi|)^{-\alpha} \mathcal{F} g\right]
$$

where $\mathcal{F} g(\xi)=\int_{\mathbb{R}^{n}} e^{2 \pi i(x \mid \xi)} g(x) d x$ with $(x \mid \xi)=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$, and \mathcal{F}^{-1} denotes the inverse Fourier transform.

The fundamental result of Hardy-Littlewood-Sobolev asserts that (see, for example, Stein [3], page 119), for every $1<q<p<+\infty$ and $0<\alpha<n / q$ such that $1 / p=1 / q-\alpha / n$, we have

$$
\begin{equation*}
\left\|I_{\alpha}(g)\right\|_{p} \leq C_{p, q}\|g\|_{q} \tag{5}
\end{equation*}
$$

and the following representation integral

$$
\begin{equation*}
I_{\alpha}(g)(x)=c_{\alpha} \int_{\mathbb{R}^{n}}|x-y|^{-n+\alpha} g(y) d y \tag{6}
\end{equation*}
$$

where Γ is the gamma function and

$$
c_{\alpha}=\pi^{-n / 2} 2^{-\alpha} \frac{\Gamma(n / 2-\alpha / 2)}{\Gamma(\alpha / 2)}
$$

Now, we are ready to establish our claim.

Step 1. Here we deal with the case $n \geq 3$ and $n /(n-2)<p<+\infty$. On the one hand, we notice that for every $1<q<\min (p, n / 2)$ and every $2<\alpha<n / q$ such that $1 / p=1 / q-\alpha / n$, we have the following identity - which is valid for the class $\mathcal{S}\left(\mathbb{R}^{n}\right)$

Korry

by the means of Fourier transform, and extends to $L^{q}\left(\mathbb{R}^{n}\right)$ via the Hardy-LittlewoodSobolev result recalled above-

$$
\begin{equation*}
\forall g \in L^{q}\left(\mathbb{R}^{n}\right), \quad \Delta\left(I_{\alpha}(g)\right)=-I_{\alpha-2}(g) \tag{7}
\end{equation*}
$$

On the other hand, for every non zero positive function $g \in L^{q}\left(\mathbb{R}^{n}\right)$, the equations (6) (applied to $\alpha-2),(7)$ and Remark 1 imply that $I_{\alpha}(g)$ is a fixed point of \mathcal{M}. Thanks to Hardy-Littlewood-Sobolev result, $I_{\alpha}(g)$ is a non-constant fixed point of \mathcal{M} and belongs to $L^{p}\left(\mathbb{R}^{n}\right)$. This concludes Step 1.

Step 2. We assume that $n \geq 3$. To prove that \mathcal{M} has a non-constant fixed point $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, we use the known result (cf. Step 1) for a finite p : we choose a nonconstant fixed point $f \in L^{p}\left(\mathbb{R}^{n}\right)$ of \mathcal{M}. Then, we consider (cf. Remark 2) the nonconstant fixed point f_{t} of \mathcal{M} which belongs to $L^{\infty}\left(\mathbb{R}^{n}\right)$ (since $\varphi_{t} \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ with $1 / p+1 / p^{\prime}=1$). This completes the proof of Theorem 1, Part 1.

2.2. Proof of Theorem 1, Part 2

We assume that there exists a non-constant fixed point of \mathcal{M} in $L^{p}\left(\mathbb{R}^{n}\right)$ and we shall prove that $n \geq 3$ and $n /(n-2)<p \leq+\infty$. We split the proof into two steps.

Step 1. Here we shall prove that necessarily $n \geq 3$. We proceed by contradiction. We prove, if $n=1,2$, there exists no non-constant fixed point of \mathcal{M} in $L^{p}\left(\mathbb{R}^{n}\right)$ whenever $1 \leq p \leq+\infty$.

- Let $f \in L^{p}(\mathbb{R}), 1 \leq p \leq+\infty$, be a non-constant fixed point of \mathcal{M}. According to Remark 2, we may assume that $f \in C^{\infty}(\mathbb{R}) \cap L^{p}(\mathbb{R})$. Therefore, f is a positive concave function:

$$
\begin{equation*}
\forall x \in \mathbb{R}, \quad f(x) \leq f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) \tag{8}
\end{equation*}
$$

where we may choose some $x_{0} \in \mathbb{R}$ such that $f^{\prime}\left(x_{0}\right) \neq 0$. But, the estimate (8) is not possible, since f is a non-constant positive function belonging to $L^{p}(\mathbb{R}), 1 \leq p \leq+\infty$.

- Again, there is no non-constant fixed point $f \in L^{p}\left(\mathbb{R}^{2}\right)$ whenever $1 \leq p \leq+\infty$. If this would be false, as we have said, we may assume that $f \in C^{\infty}\left(\mathbb{R}^{2}\right) \cap L^{p}\left(\mathbb{R}^{2}\right)$. Let $x_{0} \in \mathbb{R}^{2}$ and $\varepsilon \in(0,1)$, set $t_{\varepsilon}=f\left(x_{0}\right)-\varepsilon$. We find $\delta>0$ such that $f(x)>t_{\varepsilon}$ if $\left|x-x_{\varepsilon}\right| \leq \delta$. Now, for $\delta<\left|x-x_{\varepsilon}\right|<R$, we consider the function

$$
G(x)=f(x)+\frac{t_{\varepsilon}}{\log (R)-\log \left(t_{\varepsilon}\right)}\left(\log \left(\left|x-x_{0}\right|\right)-\log \left(t_{\varepsilon}\right)\right)-t_{\varepsilon}
$$

Since $x \rightarrow \log \left(\left|x-x_{0}\right|\right)$ is harmonic on $\mathcal{C}_{R}=\left\{x \in \mathbb{R}^{2}: \delta<\left|x-x_{0}\right|<R\right\}$ and f is super-harmonic on \mathcal{C}_{R}, then G is super-harmonic on \mathcal{C}_{R}. Furthermore, G is positive on the boundary of \mathcal{C}_{R}. Hence, the maximum principle yields that G is positive on the closure of \mathcal{C}_{R}. So, by passing to limits $(R \rightarrow+\infty)$ for fixed x, this yields $f(x) \geq t_{\varepsilon}$ everywhere. Since $\varepsilon>0$ is arbitrary, f is constant, which is a contradiction. Henceforward, we suppose $n \geq 3$.

Step 2. Here we assume that $n \geq 3$, and we shall prove that $n /(n-2)<p \leq+\infty$. Let $f \in L^{p}\left(\mathbb{R}^{n}\right) \cap C^{\infty}\left(\mathbb{R}^{n}\right)$ be a non-constant fixed point of \mathcal{M}. Since $f(0)=\mathcal{M}(f)(0)>0$, there exists some $t>0$ such that

$$
\forall x \in \mathbb{R}^{n}, \quad|x| \leq t \Longrightarrow f(x) \geq t
$$

Since the function $|\cdot|^{2-n}$ is harmonic on $\mathcal{D}_{R}=\left\{x \in \mathbb{R}^{n}: t<|x|<R\right\}$ and f is super-harmonic on \mathcal{D}_{R}, then the function

$$
H(x)=f(x)-t^{n-1}|x|^{2-n}+t^{n-1} R^{2-n}
$$

is super-harmonic on \mathcal{D}_{R}. Furthermore, H is positive on the boundary of \mathcal{D}_{R}. Again, the maximum principle yields that H is positive on the closure of \mathcal{D}_{R}. So, by passing to limits ($R \rightarrow+\infty$), this yields $f(x) \geq t^{n-1}|x|^{2-n}$ everywhere. Using the assumption $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and polar coordinates, we obtain $n /(n-2)<p \leq+\infty$. This concludes the proof of Theorem 1 .

Before we conclude this paper, we would like to make some remarks. For the socalled centered "strong" maximal operator \mathcal{N} (see below for its definition), the picture is different. Denote by $x=\left(x_{1}, \ldots, x_{n}\right)$ points in \mathbb{R}^{n}. For a locally integrable function f on \mathbb{R}^{n}, define

$$
\mathcal{N}(f)(x)=\sup _{r_{1}>0} \cdots \sup _{r_{n}>0} \frac{2^{-n}}{r_{1} \cdots r_{n}} \int_{x_{1}-r_{1}}^{x_{1}+r_{1}} \cdots \int_{x_{n}-r_{n}}^{x_{n}+r_{n}}\left|f\left(y_{1}, \cdots, y_{n}\right)\right| d y_{n} \cdots d y_{1}
$$

Corollary 1

For every $1 \leq p \leq+\infty$ and every $n \geq 1$, there is no non-constant fixed point $f \in L^{p}\left(\mathbb{R}^{n}\right)$ of the operator \mathcal{N}.

Proof. We proceed by contradiction by assuming that there exists a non-constant fixed point $f \in L^{p}\left(\mathbb{R}^{n}\right)$ of \mathcal{N} (with $1 \leq p \leq+\infty$ and $n \geq 1$). Similar arguments like in Remark 2 lead us to assume that f is continuous in \mathbb{R}^{n}.

First, assume $p<+\infty$; via Fubini's theorem, there exists $u \in \mathbb{R}^{n-1}$ such that the function $f_{u}\left(x_{1}\right)=f\left(x_{1}, u\right)$ is a non-constant function belonging to $L^{p}(\mathbb{R})$. The equation $\mathcal{N}(f)=f$ leads, for every $x_{1} \in \mathbb{R}$ and every $r>0$, to

$$
\begin{equation*}
f_{u}\left(x_{1}\right) \geq \frac{1}{2 r} \int_{x_{1}-r}^{x_{1}+r}\left(\frac{1}{\left|Q_{\rho}\right|} \int_{Q_{\rho}} f\left(y_{1}, \cdots, y_{n}\right) d y_{n} \cdots d y_{2}\right) d y_{1} \tag{9}
\end{equation*}
$$

where $u=\left(u_{1}, \cdots, u_{n-1}\right)$ and $Q_{\rho}=\left\{x \in \mathbb{R}^{n-1}: \max _{1 \leq i \leq n-1}\left|x_{i}-u_{i}\right| \leq \rho\right\}$. By passing to limits $(\rho \rightarrow 0)$ in the estimate (9), continuity of f and Fatou lemma yield

$$
\begin{equation*}
\forall x_{1} \in \mathbb{R}, \quad f_{u}\left(x_{1}\right) \geq \frac{1}{2 r} \int_{x_{1}-r}^{x_{1}+r} f_{u}\left(y_{1}\right) d y_{1} \tag{10}
\end{equation*}
$$

for every $r>0$. Therefore, f_{u} is a non-constant fixed point of \mathcal{M} in $L^{p}(\mathbb{R})$. But this is impossible (see Theorem 1).

Finally, if $p=\infty$, there exists $i=1, \cdots, n$ and $\left(u_{1}, \cdots, u_{i-1}, u_{i+1}, \cdots, u_{n}\right) \in \mathbb{R}^{n-1}$ such that the function ψ defined by

$$
\psi(y)=f\left(u_{1}, \cdots, u_{i-1}, y, u_{i+1}, \cdots, u_{n}\right)
$$

is non-constant and belongs to $L^{\infty}(\mathbb{R})$. The same arguments given before yield that ψ is a non-constant fixed point of \mathcal{M} in $L^{\infty}(\mathbb{R})$, which is a contradiction (see Theorem 1). This concludes the proof of Corollary 1.

Acknowledgments. I am very grateful to Bernard Maurey for helpful conversations. I am also grateful to the referee for useful suggestions.

References

1. B. Borjaski and P. Hajlasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106 (1993), 77-92.
2. J.L.Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations, 18 (1993), 1515-1537.
3. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N. J., 1970.
4. E.M. Stein and J.O. Strömberg, Behavior of maximal functions in \mathbb{R}^{n}, for large n, Ark. Mat. 21 (1983), 259-269.

[^0]: Keywords: Maximal function.
 MSC2000: 42B25.

