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Abstract

Despite the recent advances made in Gorenstein liaison, there are still many open
questions for the theory in codimension ≥ 3. In particular we consider the follow-
ing question: given two curves in P

n with isomorphic deficiency modules (up to
shift), can they be evenly Gorenstein linked? The answer to this is yes for curves
in P

3, due to Rao, but for higher codimension the answer is not known. This paper
will look at large classes of curves in P

4 with isomorphic deficiency modules and
show that they can be Gorenstein linked. However, we are not able to prove (or
disprove) the general case.

1. Introduction

Liaison is, roughly speaking, the study of properties shared by two schemes whose union
is either a complete intersection or an arithmetically Gorenstein scheme. It is well
known that a complete intersection is arithmetically Gorenstein, and in codimension 2
these two notions coincide. Much of the work in liaison has focused on using complete
intersections to link, but Gorenstein liaison appears to be a more natural approach for
codimension ≥ 3. The difficulty with this arises when we try to find good arithmetically
Gorenstein schemes (i.e. arithmetically Gorenstein schemes containing a given scheme
of the same codimension). Fortunately, the authors of [5] have developed many useful
tools for doing so, some of which shall be used in this paper.

Liaison theory in codimension 2, in particular for curves in P
3, has become a well-

understood and useful field of study in algebraic geometry. However, there are still
many open problems for liaison theory in higher codimension. As the title suggests,
this paper will take a look at how to G-link various curves in P

4 with isomorphic

Keywords: Liaison, linkage, Gorenstein.
MSC2000: 14H50, 14M06, 13H10.

219

Administrador




220 Lesperance

deficiency modules. The original motivation for these examples comes from the hope
for a nice generalization of the following theorem to curves of higher codimension.

Theorem 1.1 (Rao, [10]).

Let C and C ′ be curves in P
3 with deficiency modules (Rao modules) M(C) and

M(C ′). Then C is evenly linked to C ′ if and only if M(C) is isomorphic to some shift

of M(C ′).

By no means does this paper prove the existence of such a generalization; thus it
is apparent that more work needs to be done. There is, however, a more general result
in one direction, which follows from the Hartshorne-Schenzel Theorem.

Corollary 1.2 ([8]).

Let C, C ′ ⊂ P
n be evenly linked curves of the same codimension. Then there is

an integer p such that M(C)(p) ∼= M(C ′).

Thus, we are really looking for some insight on the following question.

Question 1.3 Let C and C ′ be two curves in P
n, n ≥ 4. If M(C) ∼= M(C ′)(p) for

some integer p, can we (evenly) G-link C to C ′?

In an attempt to enlighten the situation a bit, we will look at some curves in P
4.

We define a curve of type (P, d, t) to be a disjoint union of two plane curves (in P
4),

one of degree d and one of degree t (d ≤ t), such that the two planes meet in the point
P (but neither plane curve contains the point P ). We should notice that when d = 1
the point P is not uniquely determined, since there are many planes that contain a
line. (We will make sure to mention the differences that may arise in this case.) In
this paper we will prove the following:

Lemma 1.4

Let C, C ′ ⊂ P
4 be curves of type (P, d, t) and (P ′, d′, t′) respectively.

(i) For d = 1, M(C) ∼= M(C ′) if and only if d = d′ = 1.

(ii) For d ≥ 2, M(C) ∼= M(C ′) if and only if P = P ′ and d = d′.

Theorem 1.5

Let C, C ′ be as in Lemma 1.4. Then we can (evenly) G-link C to C ′ if and only

if M(C) ∼= M(C ′).

If we wish to classify all curves with deficiency module isomorphic (up to shift) to
that of a curve of type (P, d, t) the natural place to start is with the minimal curves.
We know from [8], Proposition 1.2.8 that there is a leftmost possible shift for any
deficiency module. We shall call any curve with this leftmost shift minimal. As it
turns out, a curve C of type (P, d, t) is minimal, but these are not the only minimal
curves for deficiency module M ∼= M(C). We shall show that there are minimal curves
with deficiency module M of every degree ≥ d + 1, and we shall investigate whether
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or not all minimal curves can be G-linked. In codimension 2, the even liaison class
(which is determined by the deficiency module) has the Lazarsfeld-Rao property. In
particular, this says that if V1 and V2 are two minimal curves in the even liaison class,
then there exists an irreducible flat family of curves (all in that same even liaison
class) to which both V1 and V2 belong (see [8] Section 6.3). We already know that this
property does not hold for G-liaison in codimension 3 or higher, since we have minimal
curves in the same even liaison class of different degrees. Even still, we might hope
that the minimal curves in an even liaison class of fixed degree form an irreducible
family. Hartshorne, [4] Proposition 4.1, showed that this is the case for curves with
deficiency module k. However, in Section 4 we will show that there are two curves that
can be G-linked but are not in the same irreducible family (see Remark 4.6).

Hartshorne has recently taken a look at similar examples in [4]. He even gives
possible counterexamples to the proposed generalization of Theorem 1.1. Nonetheless,
until an answer is found we press forward.

I would like to thank my advisor Juan Migliore for introducing me to this beautiful
theory and for his guidance in writing this paper. I would also like to thank Robin
Hartshorne and Scott Nollet for their correspondence about this work and the referee
for suggestions on how to expand this paper.

2. Background and definitions

Throughout this paper, P
n will be the n-dimensional projective space over an alge-

braically closed field k, and R = k[x0, . . . , xn]. For a closed subscheme X of P
n, we

denote by IX its ideal sheaf and by IX = H0
∗ (Pn, IX) its saturated homogeneous ideal.

For a curve C ⊂ P
n, we will denote by M(C) = H1

∗ (Pn, IC) = ⊕t∈ZH
1(Pn, IC(t)) its

deficiency module (or Rao module).

Definition 2.1. Let V1 and V2 be two non-empty, equidimensional schemes without
embedded components. We say that V1 and V2 are directly Gorenstein-linked, or directly
G-linked, by an arithmetically Gorenstein scheme (aG scheme for short) X ⊂ P

n if
IX ⊂ IV1 ∩ IV2 and we have [IX : IV1 ] = IV2 and [IX : IV2 ] = IV1 . In this case we say
that V2 is residual to V1 in the scheme X (and vice versa).

Remark 2.2. When the two schemes V1 and V2 have no common component, as well
as being non-empty and equidimensional without embedded components, the above
definition is equivalent to the following: V1 and V2 are directly G-linked by the aG

scheme X if V1 ∪ V2 = X. Also, we say that V1 and V2 are G-linked if we can use a
finite number of direct G-links to get from V1 to V2.

Gorenstein liaison, or G-liaison, is the study of the equivalence relation generated
by G-linkage. Complete intersection linkage is defined similarly, replacing arithmeti-
cally Gorenstein with complete intersection in the above definition, and in that case
we speak of CI-liaison. It has been shown that CI-liaison can be viewed as a theory
about generalized divisors on complete intersection schemes [3]. The authors of [5] took
a similar approach for G-liaison, viewing it as a theory of divisors on arithmetically
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Cohen-Macaulay (aCM) schemes satisfying G1 (Gorenstein in codimension 1, see [3]).
We will use the following results to produce some G-links for our examples.

Theorem 2.3 (KMMNP, [5]).

Let S ⊂ P
n be an aCM scheme satisfying property G1, and let K be a twisted

canonical divisor on S (i.e. a subscheme of S defined by the vanishing of a regular

section of ωS(t) for some t ∈ Z). Let F ∈ IK be a homogeneous polynomial of degree d

such that F does not vanish on any component of S. Let HF be the divisor cut out on S

by F. Then any (effective) divisor on S in the linear system |HF −K| is arithmetically

Gorenstein.

Corollary 2.4 (KMMNP, [5]).

Let K ′ be any divisor in the linear system |HF − K| as in Theorem 2.3. Let G

be a homogeneous polynomial not vanishing on any component of S. Then K ′ + HG

is also aG.

Remark 2.5. If K is a twisted canonical divisor on S, then we shall call any divisor K ′

of the form HG −K (as in Theorem 2.3) a twisted anticanonical divisor.

Since we shall be speaking of divisors on schemes, a definition is in order. A
divisor on a subscheme S of P

n will be an equidimensional, locally Cohen-Macaulay,
codimension one subscheme of S. Taking a hypersurface section of our scheme S is the
most basic, and most useful, type of divisor. If F ∈ Rt is a homogeneous polynomial
not vanishing on any component of S (i.e. [IS : F ] = IS), then HF is the divisor cut
out on S by F . If our scheme S is aCM then we denote the set of all divisors cut out
by hypersurfaces of degree t by |tH|.

This paper focuses on how to use the above theorem to produce G-links between
different curves in P

4, and not why we can do so. If the reader wishes a more thorough
background on these techniques, and liaison theory in general, see [5], [8] and [9].

3. Main results

Let X1, X2 ⊂ P
4 be two (disjoint) plane curves such that neither curve intersects the

plane of the other. That is, Λ1 ∩Λ2 = P (a point), where Λ1 and Λ2 are the planes of
X1 and X2 respectively. (Notice that this implies neither curve contains the point P .)
Also, assume that deg X1 = d and deg X2 = t ≥ d. Finally, let C = X1 ∪X2. For the
rest of this paper we shall call C a curve of type (P, d, t), and all the curves that we
speak of shall be thought of as being inside P

4.
We need to be careful when d = 1. In this case X1 is a line that doesn’t intersect

Λ2. For any point P ∈ Λ2 we can find a plane Λ1 containing X1 such that Λ1∩Λ2 = P .
In other words, the point P is not uniquely determined by the curve C = X1 ∪ X2,
which will allow us to have more freedom in the constructions we will use later in this
paper. Thus, the results will still hold when d = 1 (in fact they are a bit more general,
since the deficiency module will not depend on our choice of P ), and we will make sure
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to note the differences when necessary. In this case we shall call C a curve of type
(−, 1, t).

One of the goals of this paper is to show that any curve of type (P, d, t) can be
G-linked to any curve of type (P, d, s). Part of the motivation for trying to do this
came from the following observation:

Lemma 3.1

Let Λ1,Λ2 be linear subspaces of P
n meeting in a single point P , where IP =

(x0, x1, . . . , xn−1). Let C1, C2 be aCM curves in Λ1,Λ2 respectively, not both con-

taining P , and let C = C1 ∪ C2. Let d be the smallest number among the degrees of

hypersurfaces of Λ1 containing C1 and not P , or hypersurfaces of Λ2, containing C2

and not P . Then

(i) M(C) ∼= Md = R/(x0, x1, . . . , xn−1, x
d
n), and

(ii) For d ≥ 2 the module structure of M(C) determines and is determined by the

point P.

Proof. First notice that we have IC = IX1 ∩ IX2 . Thus we have the following exact
sequence

0 → IC → IX1 ⊕ IX2 → IX1 + IX2 → 0.

Then we can sheafify and take cohomology to get

0 → IC → IX1 ⊕ IX2 → R → M(C) → 0.

↘ ↗

IX1 + IX2

↗ ↘

0 0

Notice that H0
∗ ( ˜IX1 + IX2) = R since X1 and X2 are disjoint. Also, H1

∗ (IX1 ⊕
IX2) = 0 since both curves are aCM . Now we see that M(C) ∼= R/(IX1 + IX2), and
the ideal IX1 + IX2 has n independent generators in degree 1 (the n linear forms that
define the point P ). Also, by hypothesis IX1 + IX2 contains xd

n. Hence, M(C) ∼= Md.
For d = 1 we get M(C) ∼= k (in degree 0). To see that the module structure determines
and is determined by P (for d ≥ 2) all we need to do is notice that the linear forms
that annihilate M(C) are exactly the ones in IP . �

Remark 3.2. In particular this lemma shows that a curve C of type (P, d, t) has defi-
ciency module M(C) ∼= Md. This is essentially the same proof used in Example 1.5.4
from [8].

Now we will establish some facts which will be useful for producing our links.
When C = X1 ∪ X2 ⊂ P

4 is a disjoint union of two lines, let P be any point not
contained in the hyperplane containing C. Then if we let Λi be the plane spanned by
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Xi and P , we can think of C ⊂ Λ1 ∪Λ2 as a curve of type (P, 1, 1). This construction
helps make sense of the following lemmas, when d = 1.

Lemma 3.3

Let C = X1 ∪ X2 be a curve of type (P, d, d). Then we can find a form F ∈ Rd

such that F cuts out X1 on Λ1 and X2 on Λ2.

Proof. Without loss of generality, let IP = (x0, x1, x2, x3), IΛ1 = (x0, x1) and IΛ2 =
(x2, x3). Now let F ∈ Rd such that F meets Λ1(and not Λ2) properly, i.e. [IΛ1 : F ] =
IΛ1 and [IΛ2 : F ] �= IΛ2 . Then we can find a homogeneous polynomial G �∈ IΛ2 such
that GF ∈ IΛ2 . However, IΛ2 is a prime ideal which forces F ∈ IΛ2 ⊂ IP . Now we
notice that since X1 and X2 are plane curves not containing P , any form of degree d

that cuts out either curve cannot be in IP , thus it must cut out a curve on both planes
Λ1 and Λ2.

This allows us to see that we have IX1 = (x0, x1, x
d
4 +G2) and IX2 = (x2, x3, x

d
4 +

G1) where G1 ∈ (IΛ1)d and G2 ∈ (IΛ2)d. Then the form F = xd
4+G2+G1 ∈ (IX1∩IX2)d

as desired. (Note that F �∈ IP .) �

Lemma 3.4

Let C = X1 ∪ X2, C ′ = X ′
1 ∪ X ′

2 be two curves of type (P, d, d) such that there

exists F ∈ Rd which cuts out all four plane curves X1, X2, X ′
1, and X ′

2. Then C can

be linked to C ′.

Proof. (Note: the links used here will be CI-links.)
Let Λ1,Λ2,Λ1

′ and Λ2
′ be the planes of X1, X2, X

′
1 and X ′

2 respectively. Recall
that Λ1 ∩ Λ2 = P = Λ1

′ ∩ Λ2
′. If it turns out that Λi meets Λj

′ in a line for all
1 ≤ i, j ≤ 2, then the surface S = Λ1 ∪ Λ2 ∪ Λ1

′ ∪ Λ2
′ is a complete intersection. We

see this since S is a cone with vertex P over a complete intersection stick figure in
P

3. The form F cuts out C ∪C ′ on S, making C ∪C ′ a complete intersection as well.
Hence C is linked to C ′.

We cannot rely on this to be the situation however, so we consider the case where
Λi ∩ Λj

′ = P for all 1 ≤ i, j ≤ 2. Notice now that we can find two planes Γ1 and Γ2

such that Γ1 ∩ Γ2 = P and Γi meets each of the planes Λ1,Λ2 and Λ1
′ in a line, for

i = 1, 2 (see remark below). Let S = Λ1 ∪ Λ2 ∪ Γ1 ∪ Γ2 and T = Λ2 ∪ Λ1
′ ∪ Γ1 ∪ Γ2.

Then we see from above that, using the same form F , C is linked to a curve of type
(P, d, d) on Γ1 ∪Γ2 which is in turn linked to a curve of type (P, d, d), C ′′, on Λ2 ∪Λ1

′.
Repeating this process we can link C ′′ to C ′, which gets us what we want.

All other possible configurations of the planes Λ1,Λ2, Λ1
′ and Λ2

′ can be handled
in a similar fashion. �

Remark 3.5. Something more should be said about why we can find Γ1 and Γ2 used
in the proof above. If H1 is a general hyperplane not containing the point P , then it
cuts out three skew lines on the planes Λ1,Λ2 and Λ1

′, one on each. Then we can find
a trisecant γ1 connecting those lines and let Γ1 be the cone over γ1 through the point
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P . We can do the same with another general hyperplane H2 not containing P to get
Γ2.

With these two lemmas in place we can now handle the more general situation.

Theorem 3.6

Let C be a curve of type (P, d, t) and let C ′ be a curve of type (P, d, s), d ≥ 2.

Then C can be G-linked to C ′. Also, a curve C of type (−, 1, t) can be G-linked to

ANY curve C ′ of type (−, 1, s).

Proof. First we deal with the case d = 1. Let C = X1 ∪X2 and C ′ = X ′
1 ∪X ′

2, where
X2 ⊂ Λ2 and X ′

2 ⊂ Λ2
′ are plane curves of degree t and s respectively. (When t = 1

we let Λ2 be any plane in P
4 containing X2 that is disjoint from X1. Likewise when

s = 1.) If Λ2 ∩ Λ2
′ = P (a point that lies on neither X2 nor X ′

2), then we let Λ1(Λ1
′

resp.) be the plane spanned by P and the line X1 (X ′
1 resp.). At this point we can

think of C as a curve of type (P, 1, t) and C ′ as a curve of type (P, 1, s), and we can
proceed with the rest of this proof. (If not, we can find an intermediate curve D of
type (−, 1, r) that satisfies these conditions with respect to both C and C ′.)

Let C = X1 ∪X2, X1 ⊂ Λ1 and X2 ⊂ Λ2. Now let Γ1,Γ2 be two planes such that
Γ1 ∩Γ2 = P , and Λi meets Γj in a line for all 1 ≤ i, j ≤ 2. Then S = Λ1 ∪Λ2 ∪Γ1 ∪Γ2

is a complete intersection surface containing C. By Lemma 3.3 we know we can find a
homogeneous polynomial F ∈ Rt that cuts out a complete intersection curve, HF , on
S containing C. The residual to C in HF is a curve D ⊂ T = Λ1 ∪ Γ1 ∪ Γ2, and the
surface T is aCM satisfying G1.

Now we need to figure out what a twisted canonical divisor on T looks like. We
can see that IΓ1 = (v, w), IΛ1 = (w, x), IΓ2 = (x, y) and IT = (vx,wx,wy) where the
linear forms v, w, x and y define the point P . Then the presentation matrix for the
canonical module (shifted by 5) of T is A =

(
x 0 −y
0 w −v

)
. Let A′ be the concatenation of

A with the matrix
(
1
1

)
, which is homogeneous. Let MA′ be the cokernel of the map

represented by A′, and let I be the ideal of the annihilator of the module MA′ . We
can see that I = (v − y, w, x), which defines a line containing P on the middle plane
Λ1. By step II of the proof of Proposition 5.12 in [5] we know that I defines a twisted
canonical divisor, K, on T. Let L be any general linear form cutting out K on T,
and let K ′ = HL − K (notice that K ′ is two lines through P , one on Γ1 and one on
Γ2). We know by Corollary 2.4 that any divisor of the form rH +K ′ is arithmetically
Gorenstein. In particular, the divisor E = (D∪X1)+K ′ is arithmetically Gorenstein,
and the residual to D in E is X1 + K ′.

Now let G ∈ (IX1)d be a form that meets T properly (i.e. [IT : G] = IT ). Then
the divisor HG + K ′ on T is aG and contains X1 + K ′. The residual to X1 + K ′ in
HG + K ′ is a curve of type (P, d, d). Note that we used a single form G ∈ (IX1)d to
define this curve of type (P, d, d) which lies on Γ1 ∪ Γ2.

We can repeat this whole process with C ′ (with planes Λ1
′, Λ2

′, Γ1
′ and Γ2

′).
Now if Λ1 ∩ Λ1

′ = P then we can pick G = G′ ∈ Rd above such that G cuts out
X1 and X ′

1 (hence G also cuts out the corresponding curves of type (P, d, d)), by
Lemma 3.3. Then using Lemma 3.4 we are done. If Λ1 ∩ Λ1

′ �= P then we can find



226 Lesperance

a third curve C ′′ = X ′′
1 ∪ X ′′

2 of type (P, d, r) such that Λ1 ∩ Λ1
′′ = P = Λ1

′ ∩ Λ1
′′.

Using the above proof we can link C to C ′′ and C ′′ to C ′. �

Remark 3.7. At first glance the divisor X1 + K ′ appears to be a curve type (P, 2, d)
when d ≥ 2, which would be a problem. However, since K ′ contains the point P ,
X1 +K ′ is not a curve of type (P, 2, d), and it can be easily shown that the deficiency
module of X1 + K ′ is as desired.

There are other curves in P
4 with deficiency module isomorphic to that of a curve

C of type (P, d, t). For instance, let D = λ ∪ Y ⊂ P
4 be the disjoint union of a line λ

and a plane curve Y of degree d ≥ 2, such that λ meets the plane of Y in the point
P . Notice that such a curve is degenerate and M(D) ∼= M(C), by Lemma 3.1. Trying
to keep hope alive that there is a nice extension of Rao’s theorem to curves of higher
codimension, we link C to D as well.

Remark 3.8. When d = 1, we get a disjoint union of two lines, which is a curve of type
(−, 1, 1). This has already been taken care of in the last theorem.

Corollary 3.9

Let C be a curve of type (P, d, t), and let D = λ ∪ Y ⊂ P
4 be as above. Then D

can be G-linked to C.

Proof. Let Λ1 be the plane of Y , let Γ1 be a plane containing λ and let Γ2 be a third
plane containing P such that Λ1 meets both Γ1 and Γ2 in a line and Γ1∩Γ2 = P . Then
T = Λ1 ∪ Γ1 ∪ Γ2 is aCM satisfying G1. Let γ2 ⊂ Γ2 be a line through P such that
γ2 ∩ Λ1 = P . Then as before we have λ ∪ γ2 = K ′, a twisted anticanonical divisor on
T . Thus if F ∈ (IY )d cuts out Y , then HF +K ′ is aG. The residual to D in HF +K ′

is a curve D′ ∪ γ2, where D′ is of type (P, d, d), D′ ⊂ Γ1 ∪ Γ2.
Now we can find a plane Λ2 (not containing γ2) that meets Λ1 in the point P

only while meeting each of the planes Γ1 and Γ2 in a line. Once again, the surface
S = Λ1 ∪ Λ2 ∪ Γ1 ∪ Γ2 is a complete intersection. Let L be a general linear form that
cuts out γ2 on Γ2, and let F ∈ (IY )d, as above, cutting out D′. Now if G = FL, then
the divisor cut out on S by G, HG, is a complete intersection containing D′ ∪ γ2. The
residual to D′ ∪ γ2 in HG is a curve D′′ on W = Λ1 ∪ Γ1 ∪ Λ2. With a slight abuse of
notation we can see that D′′ = HG −X where HG is the hypersurface section cut out
by G on W and X is a curve of degree d on Γ1 cut out by F .

If K ′′ is a twisted anticanonical divisor on W (i.e. two lines through P , one on
Λ1 and one on Λ2), the divisor HG + K ′′ (on W ) is aG, and the residual to D′′ in
HG + K ′′ is X + K ′′. Finally, the divisor HF + K ′′ is also aG and contains X + K ′′.
The residual to X + K ′′ is a curve of type (P, d, d) on Λ1 ∪ Λ2. �

We say that two equidimensional subschemes without embedded components are
evenly G-linked if they can be G-linked in an even number of steps. It is well known
that even G-linkage also generates an equivalence relation, known as even G-liaison
(note that we have an analogous definition for even CI-liaison). Theorem 1.1 (Rao)
speaks of even-liaison, and as it turns out the examples in this paper are evenly G-
linked. However, we should notice here that these deficiency modules are self-dual, so
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the distinction between liaison and even liaison becomes less significant. Indeed, notice
that the curve C of type (P, d, t) is linked in 3 steps to a curve of type (P, d, d). This
allows us, using a suitable number of intermediate curves (of type (P, d, d)), to G-link
a curve of type (P, d, t) to a curve of type (P, d, s) in either an even or an odd number
of steps.

4. Minimal curves

Something that is important to the structure of an even liaison class (at least in
codimension 2) is the notion of minimal elements. A minimal element of an even
liaison class is one with the leftmost possible shift of the corresponding deficiency
modules. In [6] Migliore showed that for curves in P

3,dim M(C)i has to be strictly
increasing for i non-positive. Fortunately, this proof easily extends to curves in P

4

which tells us that the curves we have considered in this paper are in fact minimal.
In [4] Hartshorne considers (minimal) curves with deficiency module k in degree

0, among other things. In particular he shows the following:

Proposition 4.1

(a.) There are curves C ⊂ P
4 of every degree ≥ 2 with M(C) ∼= k (concentrated in

degree 0).

(b.) For each d ≥ 2, the set of all such curves of degree d forms an irreducible family,

whose general member is the disjoint union C = C ′ ∪ L of a plane curve C ′ of degree

d− 1 and a line L, not meeting the plane of C ′.
(c.) Every such curve is in the G-liaison class of two skew lines.

Proof. See [4] Proposition 4.1. �

We should notice that the curves of type (−, 1, t) in this paper are exactly the
curves of degree t + 1 which are the general members of the irreducible families men-
tioned in Proposition 4.1(b.) above. Thus, it is natural to wonder if these results will
extend to all minimal curves in P

4 with deficiency module Md
∼= R/(x0, x1, x2, x3, x

d
4)

for d ≥ 2. We ask the following:

Question 4.2 (a.) What are the possible degrees for minimal curves C with M(C) ∼=
Md, d ≥ 2?

(b.) Do the curves C, with deg C = d′ and M(C) ∼= Md, form an irreducible

family for all possible d′ from part (a.)?

(c.) Are all (minimal) curves with M(C) ∼= Md in the same G-liaison class for

each d?

Hartshorne has given us our answer for d = 1, so we shall restrict ourselves to
d ≥ 2. (Notice also that for d ≥ 2, by our choice of Md we have fixed the point
P , where IP = (x0, x1, x2, x3)). We have already seen that we have curves C with
M(C) ∼= Md and either deg C = d′ = d + 1 or deg C = d′ ≥ 2d. However, these are
not the only minimal curves with these deficiency modules. Consider the following:
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Proposition 4.3

Let Md
∼= R/(x0, x1, x2, x3, x

d
4) for d ≥ 2. Then

(i.) There are curves C ⊂ P
4 with M(C) ∼= Md of every degree d′ ≥ d + 1.

(ii.) There are no reduced curves in P
4 of degree ≤ d with deficiency module Md.

Proof. Consider the curve C = C1 ∪ C2 which again is a disjoint union of two plane
curves whose corresponding planes meet only in the point P . This time we assume that
C1 does not contain P while C2 does, and we assume that deg C1 = d and deg C2 ≥ 1.
Lemma 3.1 tells us that M(C) ∼= Md. Thus there are minimal curves of every degree
d′ ≥ d + 1 with deficiency module isomorphic to Md.

Suppose that C ⊂ P
4 is a reduced curve with M(C) ∼= Md, d ≥ 2. If C is

degenerate, then we know that deg C ≥ d + 1 by the Lazarsfeld-Rao property. Thus
we assume that C is non-degenerate. By Theorem 1.2.6(b) [8] we know that C has to
have two connected components, C = C1 ∪ C2. Now consider the exact sequence

0 → H0(IC(1)) → H0(OP4(1)) → H0(OC(1)) → M(C)1 → 0.

From this we see that h0(OC(1)) = 6 = h0(OC1(1)) + h0(OC2(1)). Now we have
a few cases to consider. If C1 is non-degenerate then h0(OC1(1)) ≥ 5, which implies
that h0(OC2(1)) ≤ 1. This cannot happen if we wish C2 to be a curve. If C1 is a line
then h0(OC1(1)) = 2 which implies that h0(OC2(1)) = 4 (i.e. C2 is a non-degenerate
curve in P

3). Notice that C2 also has to be aCM (otherwise we would get another
contradiction using an exact sequence similar to the one above). Therefore, we can
use the proof of Lemma 3.1 to compute M(C). If indeed we have M(C) ∼= Md, then
the initial degree of IC2 has to be d. However, this forces deg C2 ≥ d. Finally, if we
assume that C1 is a plane curve (not a line), then we have h0(OC1(1)) = 3, which forces
h0(OC2(1)) = 3 as well (that is, they are both plane curves). Once again we can use
the proof of Lemma 3.1. Since C = C1 ∪C2 is a disjoint union, at most one of its two
components can contain the point P (which has to be the point of intersection of the
two planes involved here). What we know from the proof of Lemma 3.1 is that if C1

doesn’t contain P , then deg C1 ≥ d. Likewise for C2. Thus we have deg C ≥ d + 1. �

Remark 4.4. It is still unknown whether or not there are non-reduced curves of degree
≤ d with deficiency module Md, although the existence of such a curve seems very
unlikely. In any case, Proposition 4.3 gives us a partial answer to Question 4.2 (a.).

In correspondence with the author, Hartshorne pointed out a quick counterex-
ample to Question 4.2(b). If we let C be a curve of type (P, 2, 4) and let D be the
(non-degenerate) union of a line with an aCM curve in P

3 of degree 5 and genus 2,
then we see that deg C = deg D, M(C) ∼= M(D) ∼= Md yet C and D have different
genus. Thus, there is no chance for these two curves to be in the same irreducible
family.

We can consider the following refined question: Do all the curves in P
4 with fixed

degree and genus, having deficiency module Md, lie in the same irreducible family?
We answer this with a counterexample. Consider d = 2. We have already seen that a
curve C of type (P, 2, 2) is a curve of degree 4 with M(C) ∼= M2. Now let us consider
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a curve D = L∪Y ⊂ P
4 which is a disjoint union of a line L and a twisted cubic Y . If

we further assume that the hyperplane containing Y also contains the point P , while
the line L, which also contains P , is not contained in the same hyperplane, then by
Lemma 3.1 again we see that M(D) ∼= M2. Also we see that the genus of these two
curves is −1, and they shall provide us with our counterexample:

Proposition 4.5

Let C = X1 ∪X2 be a curve of type (P, 2, 2), and let D = L ∪ Y be the disjoint

union of a line L and a twisted cubic Y . If we assume that the hyperplane of Y contains

the point P and that L meets the hyperplane of Y in the point P only, then

(i.) M(C) ∼= M(D).
(ii.) The curves C and D are NOT contained in the same irreducible family.

Proof. With our assumptions, part (i.) follows directly from Lemma 3.1.

To prove part (ii.) we will look at the Hilbert scheme containing these two curves.
Planes in P

4 move in a 6 dimensional family, and conics in P
2 move in a 5 dimensional

family, thus the component of the Hilbert scheme to which C belongs has dimension
(at least) 22. Likewise, lines in P

4 move in a 6 dimensional family, and twisted cubics
in P

4 move in a 16 dimensional family. So, the component of the Hilbert scheme
containing D also has dimension (at least) 22. Now, using the techniques from [11]
Chapter 8, we can compute the dimension of the tangent space to the Hilbert scheme
at these two points. Proposition 8.1 from [11] tells us that the Zariski tangent space
of the Hilbert Scheme at C, TC , is isomorphic to the global sections of the normal
bundle, NC , of C in P

n. In this case, since C = X1 ∪X2 is a disjoint union, we have
h0(C,NC) = h0(X1,NX1) + h0(X2,NX2). Likewise for D = L ∪ Y . Therefore, we
can check using standard techniques that both TC and TD have dimension 22, and
thus both curves C and D are unobstructed. This implies that C is a member of one
dimension 22 component of the Hilbert scheme while D is the member of a different
dimension 22 component (in particular, neither curve is in the intersection of these
two components). Thus, there can be no irreducible family that contains both C and
D. �
Remark 4.6. Let D = L∪Y be as in Proposition 4.5. Let Q be a smooth quadric surface
in the hyperplane spanned by Y , containing Y and P . Let Λ be a plane containing L

that meets Q in a line. Then S = Λ ∪Q is an aCM surface of degree three containing
D, and its negative canonical divisor, −K, consists of a conic C in Λ, and a twisted
cubic on Q meeting the conic in the two points where C meets Q (see [4] Proposition
4.1). That is, we can assume that −K = C ∪ Y . Now if F is a linear form cutting
out L on Λ, then HF − K is an aG divisor on S linking D to a curve E = E1 ∪ E2,
where E is a curve like one of type (P, 2, 2), but here E2 contains the point P . The
proof of Proposition 4.5 shows that these two curves, both having degree 4, genus −1
and deficiency module M2 are not in the same irreducible family. However, we should
note here that it is not known if these curves can be evenly G-linked.

Unfortunately, we were neither able to prove nor disprove that the curves C and D

from Proposition 4.5 were in the same G-liaison class, and now it seems quite possible
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that these two curves may not be able to be G-linked. Likewise, we had limited success
linking the curves mentioned in Proposition 4.3 to curves of type (P, d, d). However,
in general Question 4.2 (c.) remains open.

5. Comments

While other work has recently been done on G-liaison of curves in P
4, see [1] and [2], the

examples done by Hartshorne [4] and the examples worked out here are among the first
for non-aCM curves. Already, we see that the picture for G-liaison in codimension ≥ 3
appears to be more complicated than the codimension 2 case. Even in these examples
we came across curves with isomorphic deficiency modules that leave us wondering
whether or not they can be G-linked.

Along with a theorem that could tell us exactly when two curves in P
4 can be

(evenly) G-linked, we are also concerned with the possible structure of an even liaison
class. We don’t know what the structure should look like, but this paper rules out a
possible generalization of the Lazarsfeld-Rao property that had still remained in [4].
This too remains an open question.

Finally, we might consider the importance of the use of G-liaison in this paper.
In [7] Migliore conjectured that a pair of skew lines in P

4 can be CI-linked to another
pair of skew lines if and only if they are contained in the same hyperplane H ⊂ P

4.
On the other hand, Theorem 3.6 tells us that we can G-link a pair of skew lines in
P

4 to any other pair of skew lines (in P
4). It is not hard to imagine that we will not

be able to replace G-links with CI-links for the general cases of the examples in this
paper, although we do not give a concrete reason for this to be so. There is still much
work to be done for G-liaison of curves in P

4 and indeed for G-liaison of all schemes
of codimension ≥ 3.
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2. M. Casanellas and R.M. Miró-Roig, Gorenstein liaison of divisors on standard determinantal

schemes and on rational normal scrolls, J. Pure Appl. Algebra, to appear.
3. R. Hartshorne, Generalized divisors on Gorenstein schemes, K-Theory 8 (1994), 287–339.
4. R. Hartshorne, Some examples of Gorenstein liaison in codimension three, (preprint).
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