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Abstract

A transference theorem for convolution operators is proved for certain families of
one-dimensional hypergroups.

1. Introduction

The results in this paper are a natural extension to those in [5]. In that paper, a
transference-type theorem for convolution operators was presented in the setting of
developments in ultraspherical polynomials. Before going further we should explain
what we mean by “transference-type theorem”. The method of transference was in-
troduced by Coifman and Weiss in the Seventies (see [2]) and essentially allows to
transfer a convolution operator on an Lp space of functions on an amenable group G

to an operator on an Lp space of functions on some measure space M, by means of a
representation of G acting on Lp(M). If the convolution operator on Lp(G) has norm
Np, then the “transferred” operator on Lp(M) has norm bounded by cNp, where c is a
constant that depends on the representation. In our case we do not have a group nor a
representation, but we can still obtain the same kind of preservation of Lp inequalities
as long as we deal with certain families of hypergroups.

A hypergroup (see [1], [8] or [11]) is a locally compact Hausdorff space X with a
certain convolution structure ∗ on the space of complex Radon measures on X, M(X).
Let δx be the Dirac measure at a point x ∈ X. Then the convolution δx ∗ δy of the two
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point measures δx and δy is a probability Radon measure on X with compact support
and such that (x, y) �→ supp (δx ∗ δy) is a continuous mapping from X × X into the
space of compact subsets of X, with the appropriate topologies which will be described
later. Unlike the case of groups, this convolution is not necessarily the point measure
δx·y for a composition x · y in X. The role played by the natural left translation of
a function f by x, in the group case, is assumed by the generalized (left) translation,
defined on a hypergroup by

Txf(y) =
∫
X

f(t) d(δx ∗ δy)(t),

for all y ∈ X. Here, we denote by
∫
f dµ the integral of the function f with respect to

the measure µ. For a commutative hypergroup (i.e. δx ∗ δy = δy ∗ δx for all x, y ∈ X)
the convolution of two functions k and f is given by

k ∗ f(x) =
∫
X

k(y)Txf(y) dη(y)

where η is a translation-invariant measure, called Haar measure of the hypergroup. All
these notions will be explained in full detail in the next section.

This convolution has many of the “nice” properties that one may expect. Among
others, if k ∈ L1(X, η) and f ∈ Lp(X, η), then

‖k ∗ f‖p ≤ ‖k‖1‖f‖p (1.1)

It is therefore natural to study convolution operators of the type
Sk : Lp(X, η) → Lp(X, η)

f �→ k ∗ f

since, by inequality (1.1), Sk is bounded with operator norm less than or equal to
‖k‖1. In many situations, we deal with families of hypergroups defined on the same
space X, indexed by a parameter λ ≥ λ0, each of them having Haar measure dηλ(x) =
(g(x))λdη0(x) for some positive function g on X. It is obvious that, if k ∈ L1(X, ηλ)
and if we define the function h on X by h(x) = k(x)(g(x))δ, for some δ > 0, then
h ∈ L1(X, ηλ−δ), and the two L1 norms coincide. Inequality (1.1), then, suggests that
the two convolution operators Sk on Lp(X, ηλ) and Sh on Lp(X, ηλ−δ) are strictly
related to each other. More precisely, we will show that the operator norm of Sk,
‖Sk‖, is bounded above by the norm ‖Sh‖ in many significant examples, namely when
the family of hypergroups is one of the following:

1. Continuous Jacobi polynomial hypergroups of index (λ, λ), λ ≥ −1/2.
2. Continuous Jacobi polynomial hypergroups of index (λ, β), λ ≥ β ≥ −1/2.
3. Bessel-Kingman hypergroups.
4. Jacobi hypergroups of non-compact type of index (λ, λ), λ ≥ −1/2.
5. Jacobi hypergroups of non-compact type of index (λ, β), λ ≥ β ≥ −1/2.

All these hypergroups will be described in Section 3. The first case is precisely
the one we mentioned at the beginning (ultraspherical polynomials), while the third
case was in part discussed by R. O. Gandulfo in his Ph.D. thesis (see [4].)

The main result is stated in Section 4 (Theorem 4.6) in a general way, while all
the subsequent corollaries describe how the theorem applies to each particular case.
In Section 5 we prove all the lemmas that lead to Theorem 4.6.
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2. Hermitian hypergroups, definitions and properties

Let X be a locally compact Hausdorff space. Denote by M(X) the complex Radon
measures on X, by M+(X) the complex Radon measures which are non-negative, and
by M1(X) the probability Radon measures. Denote by C(X) the continuous complex-
valued functions on X, by Cc(X) those with compact support, by C0(X) those which are
zero at infinity and by C+

c (X) those which are non-negative and compactly supported.
Define the cone topology on M+(X) as the weakest topology such that, for each

f ∈ C+
c (X), the mapping µ �→

∫
X

f dµ is continuous and such that the mapping µ �→
µ(X) is continuous. From now on, any unspecified topology on M+(X) is the cone
topology.

Let (µ, ν) �→ µ∗ν be a bilinear map from M(X)×M(X) to M(X). This mapping
will be called positive continuous if

1. µ ∗ ν ≥ 0, if µ ≥ 0 and ν ≥ 0.
2. The restricted mapping from M+(X) ×M+(X) to M+(X) is continuous.

Let K(X) denote the collection of all nonvoid compact subsets of X. If A and
B are subsets of X, let KA(B) be the collection of all C in K(X) such that C ∩ A

is nonvoid and C ⊂ B. We give K(X) the topology generated by the subbasis of all
KU (V ) for which U and V are open subsets of X (see [9].) It is worth noting (see
[10]) that, if X is a metric space with distance d, the above defined topology of K(X)
coincides with the more intuitive Hausdorff topology, given by the Hausdorff metric:
for A ∈ K(X) and r > 0, define

Vr(A) =
{
y : d(x, y) < r for some x ∈ A

}
and, for A, B ∈ K(X), define the Hausdorff distance by

d(A, B) = inf
{
r : A ⊂ Vr(B) and B ⊂ Vr(A)

}
.

Definition 2.1. The pair (X, ∗) will be called a hypergroup if the following conditions
are satisfied.

H1. The symbol ∗ denotes a binary operation on M(X), and with this operation,
M(X) is a complex associative algebra.

H2. The bilinear mapping (µ, ν) �→ µ ∗ ν is positive-continuous.
H3. If x, y ∈ X, then δx ∗ δy is a probability measure with compact support.
H4. The map (x, y) �→ supp(δx ∗ δy) from X ×X to K(X) is continuous.
H5. There exists a (necessarily unique) element e of X such that δx ∗ δe = δe ∗ δx = δx

for all x ∈ X.

H6. There exists a (necessarily unique) involution x �→ x− of X (that is, a home-
omorphism of X such that (x−)− = x) such that, for all µ, ν ∈ M(X),
(µ ∗ ν)− = ν− ∗ µ−, where µ−(A) def= µ(A−) for all measurable A ⊂ X.

H7. For all x, y ∈ X, the element e is in the support of δx ∗ δy if and only if x = y−.

A hypergroup (X, ∗) is called commutative if (M(X), +, ∗) is a commutative al-
gebra, and hermitian if the involution is the identity map. It is easy to prove that
every hermitian hypergroup is commutative.
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Examples: (a) Every locally compact group G is a hypergroup with its usual con-
volution structure. More precisely, δx ∗ δy = δx·y, e is the unit of the group, and

x− def= x−1.
(b) If G is a locally compact group and H is a compact subgroup with normalized
Haar measure ωH , then the space of double cosets H\G/H

def= {HxH, x ∈ G} is a
hypergroup. The convolution is given, for point measures, by

δHxH ∗ δHyH =
∫
H

δHxtyHdωH(t),

the identity is HeH and the involution is (HxH)− = Hx−1H.
All the hypergroups we consider in this paper will be intervals of the real line,

either compact ([0, π]) or non-compact ([0, ∞]). It is a fact (see [1], page 190) that
these hypergroups are hermitian, that the neutral element of [0, ∞) is 0 and that the
neutral element of [0, π] is either 0 or π. For this reason, in the following definitions
and properties, we will assume that the hypergroup (X, ∗) be hermitian.

Definition 2.2. Let η be a positive Radon measure on X. We say that η is a Haar
measure if, for all x ∈ X and for all f ∈ Cc(X), we have∫

X

∫
X

f d(δx ∗ δy) dη(y) =
∫
X

f(y) dη(y).

This definition is more easily understood once we notice that
∫
X

f d(δx ∗ δy) is the
generalization of the notion of translation of a function f(x · y) that one has in the
group case (see Definition 2.4.)

Theorem 2.3 (see [1], pages 28–41)

Every commutative hypergroup possesses a Haar measure η, which is unique mod-

ulo a positive multiplicative constant and has support equal to the whole space X. Only

compact hypergroups admit bounded Haar measure η.

Definition 2.4. We define the generalized translation operators Tx, x ∈ X, on C(X)
by

Txf(y) =
∫
X

f d(δx ∗ δy)

for all y ∈ X.
The following proposition provides an overview of the basic properties of the

translation operators. Some of them are easy consequences of the axioms H1–H7,
others are rather technical and we will refer the reader to appropriate references.

Proposition 2.5

(i) For all µ, ν ∈ M(X), we have µ∗ν =
∫
X

∫
X

(δx∗δy) dµ(x) dν(y), where the integral

is taken in the Pettis sense.
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(ii) For all x, y, z ∈ X and f ∈ C(X) we have

Tef(x) = f(x)

Txf(y) = Tyf(x)

TxTyf(z) = TyTxf(z).

(iii) For all bounded f ∈ C(X), the mapping (x, y) �→ Txf(y) is continuous on X ×X.

(iv) If f ∈ Cc(X), then for all x ∈ X, Txf ∈ Cc(X).
(v) For all x, y ∈ X, Tx(1)(y) = 1.

(vi) Let 1 ≤ p ≤ ∞. For all x ∈ X, f ∈ C(X) ∩ Lp(X, η), we have

‖Txf‖p ≤ ‖f‖p.

(Notice that the density of Cc(X) in Lp(X, η), 1 ≤ p < ∞, and the above property
allow us to extend the definition of translation operator to the spaces Lp(X, η).)

(vii) For f ∈ Lp(X, η), 1 ≤ p < ∞, the mapping x �→ Txf is continuous from X into

Lp(X, η).
(viii) For all g, h ∈ L1(X, η) and for all x ∈ X, we have

∫
X

(Txg)h dη =
∫
X

g(Txh) dη.

Proof. (i) The two bilinear maps R1 and R2 from M+(X)×M+(X) to M+(X) given
by R1(µ, ν) = µ ∗ ν and R2(µ, ν) =

∫
X

∫
X

(δx ∗ δy) dµ(x) dν(y) are positive continuous
and coincide when µ and ν are point measures. By the density in M+(X) of the
finitely supported measures, R1 and R2 coincide on M+(X), and therefore on M(X).

(ii) The first two equalities are trivial; for the third, observe that, using (i),

TxTyf(z) = 〈δy ∗ (δx ∗ δz), f〉 = 〈δx ∗ (δy ∗ δz), f〉 = TyTxf(z).

(iii) This follows from the continuity of the map x �→ δx and axiom H2.
(iv) Continuity follows again from the continuity of the map x �→ δx and axiom H2.

As for the compactness of the support, see [1], page 19. In all our examples, though,
X = [0, 2π] (and the support of Txf is obviously compact), or X = [0, ∞); in this case
the support of δx ∗ δy is always [|x− y|, x+ y], and this implies that Txf is compactly
supported.

(v) This is trivial.
(vi) This follows from the definition of Haar measure and the inequality∣∣Txf(y)

∣∣p ≤ Tx
(
|f |p

)
(y),

implied by Jensen’s inequality.
(vii) This is a standard “ε/3 argument”. One has to approximate f in Lp with a

function g ∈ Cc(X)
(viii) This is rather technical. See [1], page 34. �

Definition 2.6. For g and h in L1(X, η), the convolution of g and h is given by

g ∗ h(x) =
∫
X

Txg(y)h(y) dη(y) =
∫
X

g(y)Txh(y) dη(y).
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Proposition 2.7

Let 1 ≤ p ≤ ∞. If g is in L1(X, η) and h is in Lp(X, η), then the function g ∗ h

belongs to Lp(X, η) and we have

‖g ∗ h‖p ≤ ‖g‖1‖h‖p.

Proof. This is an easy application of Minkowski’s inequality and Proposition 2.5.
(vi). �

3. Examples of one-dimensional hermitian hypergroups

One-dimensional hypergroups are those for which the space X is R, T, R+ or a compact
interval [0, a], a > 0. It can be proved that for any hypergroup (X, ∗) where X is either
R or T, the convolution arises from the group structure of R or T respectively (see [1],
page 189). We are mainly interested in the remaining two cases: X = [0, ∞) or
X = [0, a] (this second case can always be reduced to the case X = [0, π]). These, as
we said in the previous section, are hermitian hypergroups.

Before we present the three main examples that will be studied in this chapter, let
us state some preliminary definitions. Recall the Gaussian hypergeometric function

2F1(a, b; c; z)
def=

∞∑
k=0

(a)k(b)k
(c)kk!

zk,

where a, b, c ∈ C, c �= 0, −1, −2, . . ., (a)k
def= a(a + 1) . . . (a + k − 1) and |z| < 1.

Considered as a function of z, there is a unique analytic continuation to {z ∈ C : z /∈
[1,∞)}. For any α ≥ β ≥ −1/2, define the measures m1

α,β on [0, 1] and m2
β on [0, π]

by

dm1
α,β(v) =


qα,β(1 − v2)α−β−1v2β+1dv if α > β ≥ −1

2

dδ1(v) if α = β ≥ −1
2

where

qα,β =
(∫ 1

0

(1 − v2)α−β−1v2β+1dv

)−1

=
2Γ(α + 1)

Γ(β + 1)Γ(α− β)
,

and

dm2
β(θ) =


cβ sin2β θ dθ if β > −1

2

d

(
δ0 + δπ

2

)
(θ) if β = −1

2

where

cβ =
(∫ π

0

sin2β θ dθ

)−1

=
Γ(β + 1)√
πΓ

(
β + 1

2

) .
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Example 3.1: The continuous Jacobi polynomial hypergroup.
This is sometimes referred to as the dual Jacobi polynomial hypergroup. The

Jacobi polynomials are defined by

Pα,βn (t) =
(
n + α

n

)
2F1

(
−n, n + α + β + 1;α + 1;

1 − t

2

)
where α, β > −1, n = 0, 1, 2, . . . For fixed α and β, Pα,βn is a real valued polynomial
of degree n, and {Pα,βn }∞n=0 are orthogonal on the interval [−1, 1] with respect to the
weight function (1 − t)α(1 + t)β . We shall use the normalized Jacobi polynomials

Rα,βn (t) def=
Pα,βn (t)

Pα,βn (1)
= 2F1

(
−n, n + α + β + 1;α + 1;

1 − t

2

)
,

so that Rα,βn (1) = 1.
In the case α ≥ β ≥ −1/2, we are in the fortunate situation in which the Jacobi

polynomials satisfy the so-called hypergroup-type product formula. Define the function
Φ on [0, π] × [0, π] × [0, 1] × [−1, 1], taking values on [0, π], by

Φ(x, y, v, cos θ) def= arccos

(
1
2
(1 − v2)(cosx + cos y) +

1
2
(1 + v2) cosx cos y

+ sinx sin y v cos θ − 1
2
(1 − v2)

)
.

The product formula is (see [6] and [7])

Rα,βn (cosx)Rα,βn (cos y) =
∫ π

0

∫ 1

0

Rα,βn
(
cos Φ(x, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θeta),

where α ≥ β ≥ −1/2, n = 1, 2, . . ., x, y ∈ [0, π].
Note that, if α = β = −1/2, Rα,βn are the Tchebichef polynomials of first kind,

that is R−1/2,−1/2
n (cosx) = cos(nx), and the product formula reduces to the well known

formula
cos(nx) cos(ny) =

1
2

cos
(
n(x + y)

)
+

1
2

cos
(
n(x− y)

)
.

The Riesz representation theorem guarantees the existence of a probability mea-
sure µα,βx,y ∈ M1([0, π]) such that, for every continuous f on [0, π]

∫ π

0

f dµα,βx,y =
∫ π

0

∫ 1

0

f
(
Φ(x, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θ),

so that, taking f = Rα,βn ◦ cos, we get

Rα,βn (cosx)Rα,βn (cos y) =
∫ π

0

Rα,βn (cos t) dµα,βx,y (t).
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We can now define a convolution product on M([0, π]) as follows: if ν and λ belong to
M([0, π]), define ν ∗ λ by its action on f ∈ C([0, π]) by∫ π

0

f d(ν ∗ λ) def=
∫ π

0

∫ π

0

(∫ π

0

f dµα,βx,y

)
dν(x) dλ(y).

Thus δx ∗ δy = µα,βx,y .
Let us check that ([0, π], ∗)α,β is a hypergroup. All the axioms H2, H3, H5 and

H6 follow easily from the definition of µα,βx,y and ∗ (here, the identity of the hypergroup
is 0 and the involution is the identity map, so that, as we said, the hypergroup is
hermitian.) As for axiom H1, all we have to check is the associative property: the
equality ∫ π

0

f d
(
(ν ∗ λ) ∗ γ

)
=

∫ π

0

f d
(
ν ∗ (λ ∗ γ)

)
is easily verified when f = Rα,βn ◦ cos and follows, by density, for any continuous f . In
order to prove that axioms H4 and H7 hold, we need to find out what the support of
µα,βx,y is. Suppose first that α > β > −1/2; then supp(µα,βx,y ) coincides with the range of
the function Φ(x, y, · , ·). Define z = veiθ; as v and θ vary in their respective domains,
z varies in D

+ = {|z| ≤ 1, imz ≥ 0}. Also, defining A =
√

(1 + cosx)(1 + cos y) and
B =

√
(1 − cosx)(1 − cos y), we get

cos
[
Φ(x, y, v, cos θ)

]
=

|A + Bz|2 − 2
2

.

If 0 ≤ x + y ≤ π, then A ≥ B and, as z varies in D
+, |A+Bz|2−2

2 varies between
(A−B)2−2

2 = cos(x + y) and (A+B)2−2
2 = cos(x− y).

If x + y > π, then |A+Bz|2−2
2 varies between −1 and cos(x− y).

Thus supp(µα,βx,y ) = [|x− y|,min(π, x + y)].
Similar arguments show that supp(µα,βx,y ) equals

[|x− y|,min(π, x + y)] if α > β = −1
2

[|x− y|, π − |x + y − π|] if α = β > −1
2

{|x− y|} ∪ {[π − |x + y − π|]} if α = β = −1
2

Axioms H4 and H7 follow now easily.
The translation operators are, by definition, given by

Tα,βx f(y) =
∫ π

0

f d(δx ∗ δy) =
∫ π

0

f dµα,βx,y

=
∫ π

0

∫ 1

0

f
(
Φ(x, y, v, cos θ)

)
dm1

α,β(v)dm
2
β(θ).
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Finally, it is easy to check that dηα,β(x) def= (1− cosx)α(1 + cosx)β sinx dx is the
Haar measure of the hypergroup: the equality∫ π

0

Tα,βx f(y) dηα,β(y) =
∫ π

0

f(y) dηα,β(y)

is trivially true when f = Rα,βn ◦ cos (follows from the orthogonality of the Jacobi
polynomials) and can be extended by density to the whole C([0, π]).

Let us analyze in detail the case α = β = −1/2. In this case, the translation
operator is

T−1/2,−1/2
x f(y) =

1
2
f
(
Φ(x, y, 1, 1)

)
+

1
2
f
(
Φ(x, y, 1,−1)

)
=

1
2
f
(
arccos(cosx cos y + sinx sin y)

)
+

1
2
f
(
arccos(cosx cos y − sinx sin y)

)
=

1
2
f
(
|x− y

∣∣) +
1
2
f
(
π − |x + y − π|

)
and the convolution is given by

k ∗ f(x) =
∫ π

0

k(y)T−1/2,−1/2
x f(y) dy

=
1
2

∫ π

0

k(y)
[
f(|x− y|) + f(π − |x + y − π|)

]
dy.

Let K and F be the 2π-periodic even functions given on [−π, π] by K(x) = k(|x|) and
F (x) = f(|x|). We can write the convolution K 6 F in the group T

K 6 F (x) =
∫ π

−π
K(y)F (x− y) dy

The function K 6 F is an even 2π-periodic function, and for x ∈ [−π, π], we have

K 6 F (x) = K 6 F (|x|) =
∫ π

−π
K(y)F (|x| − y) dy

=
∫ 0

−π
k(−y)F (|x| − y) dy +

∫ π

0

k(y)F (|x| − y) dy

=
∫ π

0

k(y)
[
F (|x| + y) + F (|x| − y)

]
dy

=
∫ π

0

k(y)
[
f(π − ||x| + y − π|) + f(||x| − y|)

]
dy = 2k ∗ f(|x|).

Thus, the convolution we just defined on [0, π] when α = β = −1/2 coincides, modulo
a multiplicative constant, with the convolution on T.
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Example 3.2: The Bessel-Kingman hypergroup.
Let X = [0,∞) and α ≥ −1/2. Recall that the Bessel function of first kind and

index α is given by

Jα(x) =
∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + α + 1)

(x

2

)α+2k

,

a series converging on the complex plane cut along the ray (−∞, 0].
For any λ ∈ [0,∞), consider the function

jαλ (x) =

{
2αΓ(α + 1)

Jα(λx)
(λx)α

if λx �= 0

1 if λx = 0.

The functions jαλ (x) are real and satisfy

∀λ ≥ 0, ∀x ≥ 0, |jαλ (x)| ≤ 1.

Moreover, they satisfy the product formula (see [11], page 5)

jαλ (x)jαλ (y) =
∫ π

0

jαλ

(√
x2 + y2 − 2xy cos θ

)
dm2

α(θ).

Note that, for α = −1/2, j−1/2
λ (x) = cos(λx) and the product formula reduces to

cos(λx) cos(λy) =
1
2

cos
(
λ(x− y)

)
+

1
2

cos
(
λ(x + y)

)
.

Once again by the Riesz representation theorem, for any x, y ∈ [0,∞), there exists a
probability measure µαx,y such that, for all f ∈ C0([0,∞))

∫ ∞

0

f dµαx,y =
∫ π

0

f
(√

x2 + y2 − 2xy cos θ
)

dm2
α(θ).

Note that, since the range of
√

x2 + y2 − 2xy cos θ is [|x − y|, x + y] = supp(µαx,y),
µαx,y is compactly supported. We can now define a hypergroup-type convolution on
M([0,∞)): for any ν, γ ∈ M([0,∞)), define ν ∗ γ by its action on f ∈ C0([0,∞))∫ ∞

0

f d(ν ∗ γ) def=
∫ ∞

0

∫ ∞

0

(∫ ∞

0

f dµαx,y

)
dν(x) dγ(y)

so that δx ∗ δy = µαx,y.

We will indicate this hypergroup by ([0,∞), ∗)α or, for reasons that will become
clear later, by ([0,∞), ∗)α,α. Just as in the previous example, we can check that
([0,∞), ∗)α is a hypergroup with identity equal to 0 and involution equal to the identity
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map, all the axioms being, at this point, easily verified. The translation operator is,
by definition, given by

Tαx f(y) =
∫ ∞

0

f d(δx ∗ δy) =
∫ ∞

0

f dµαx,y

=
∫ π

0

f
(√

x2 + y2 − 2xy cos θ
)
dm2

α(θ).

If α > −1/2, by a change of variable we obtain that for all λ ≥ 0, for all x, y ≥ 0 and
for all f ∈ C([0,∞)),

Tαx f(y) =
∫ ∞

0

f(z)Wα(x, y, z)z2α+1 dz

where Wα is the function, invariant under any rearrangement of the three variables,
given by

Wα(x, y, z) =


21−2αΓ(α+1)√
πΓ(α+ 1

2 )
((x+y)2−z2)α−1/2(z2−(x−y)2)α−1/2

(xyz)2α if |x− y| < z < x + y

0 otherwise.

In particular, µαx,y(z) dz = Wα(x, y, z)z2α+1 dz. It is now easy to see that dηα(z)
def=

z2α+1 dz is a Haar measure:∫ ∞

0

Tαx f(y) dη(y) =
∫ ∞

0

∫ ∞

0

f(z)Wα(x, y, z) dηα(z) dηα(y)

=
∫ ∞

0

f(z)
∫ ∞

0

jα0 (y)Wα(x, z, y) dηα(y) dηα(z)

=
∫ ∞

0

f(z)jα0 (x)jα0 (z) dηα(z) =
∫ ∞

0

f(z) dηα(z),

since jα0 (x) = 1. In the case α = −1/2, it is easy to check that the Haar measure is
dη−1/2(x) = dx. In this case, the translation operator is given by

T−1/2
x f(y) =

1
2
f(x + y) +

1
2
f(|x− y|)

and the convolution by

k ∗ f(x) =
1
2

∫ ∞

0

k(y)
[
f(x + y) + f(|x− y|)

]
dy.

Let K and F be the even functions on R given by K(x) = k(|x|) and F (x) = f(|x|).
We can write the convolution (on the group R) of these two functions, obtaining an
even function K 6 F . Note that

K 6 F (x) = K 6 F (|x|) =
∫ ∞

−∞
K(y)F (|x| − y) dy

=
∫ ∞

0

k(y)F (|x| − y) dy +
∫ 0

−∞
k(−y)F (|x| − y) dy

=
∫ ∞

0

k(y)
[
F (|x| − y) + F (|x| + y)

]
dy

=
∫ ∞

0

k(y)
[
f(||x| − y|) + f(|x| + y)

]
dy = 2(k ∗ f)(|x|).



138 Gigante

Thus, the convolution in the Bessel-Kingman hypergroup of index α = −1/2 coincides,
modulo a multiplicative constant, with the convolution on R.

Example 3.3: Jacobi hypergroups of non-compact type.
These are the non-compact analogues of the hypergroups presented in the first

example.
For α ≥ β ≥ −1/2, for µ ∈ C and for t ∈ [1,∞), let the Jacobi function Rα,βµ (t)

be defined by

Rα,βµ (t) def= 2F1

(
−µ, µ + α + β + 1;α + 1;

1 − t

2

)
.

Once again we have a hypergroup-type product formula for these functions. Define
the function Φ on [0,∞) × [0,∞) × [0, 1] × [−1, 1] taking values in [0,∞) by

Φ(x, y, v, cos θ) def= argcosh
(1

2
(1 − v2)(coshx + cosh y) +

1
2
(1 + v2) coshx cosh y

+ sinhx sinh yv cos θ − 1
2
(1 − v2)

)
.

Note that, if we fix x and y, the range of this function (as a function of v and
cos θ), is [|x− y|, x + y]. To see this, call z = veiθ; as v and cos θ vary in their
respective domains, z varies in D

+. Defining A =
√

(coshx + 1)(cosh y + 1) and
B =

√
(coshx− 1)(cosh y − 1), we get

cosh
(
Φ(x, y, v, cos θ)

)
=

|A + Bz|2 − 2
2

.

It is easy to see that, as z varies in D
+, |A+Bz|2−2

2 varies between cosh(x − y) and
cosh(x + y).

The product formula is (see [3])

Rα,βµ (coshx)Rα,βµ (cosh y) =
∫ π

0

∫ 1

0

Rα,βµ
(
cosh Φ(x, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θ).

For any x, y ∈ [0,∞), by the Riesz representation theorem, there is a probability
measure µα,βx,y on [0,∞), with support equal to [|x − y|, x + y], such that, for all f ∈
C0([0,∞)) ∫ ∞

0

f dµα,βx,y =
∫ π

0

∫ 1

0

f
(
Φ(x, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θ).

We can now define a hypergroup-type convolution on M([0,∞)): for any ν, λ ∈
M([0,∞)), define ν ∗ λ by its action on f ∈ C0([0,∞))∫ ∞

0

f d(ν ∗ λ) def=
∫ ∞

0

∫ ∞

0

(∫ ∞

0

f dµα,βx,y

)
dν(x) dλ(y),
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so that δx ∗ δy = µα,βx,y . As usual, this structure makes ([0,∞), ∗)α,β into a hermitian
hypergroup (all axioms are now easily verified) with identity equal to 0. The translation
operators are, by definition, given by

Tα,βx f(y) =
∫ ∞

0

f d(δx ∗ δy) =
∫ ∞

0

f dµα,βx,y

=
∫ π

0

∫ 1

0

f
(
Φ(x, y, v, cos θ)

)
dm1

α,β(v)dm
2
β(θ).

The Haar measure is

dηα,β(x) def= (coshx− 1)α(coshx + 1)β sinhx dx

= (coshx− 1)α−β(sinhx)2β+1 dx.

This is easy to prove in the case α = β = −1/2. Otherwise the proof follows in a
similar way as in Example 2, thanks to the existence (see [3]) of a function Wα,β(x, y, z)
invariant under any rearrangement of the variables x, y, z, and such that

Tα,βx f(y) =
∫ ∞

0

f(z)Wα,β(x, y, z) dηα,β(z).

As a final remark, note that if α = β = −1/2, this hypergroup coincides with the
Bessel-Kingman hypergroup of index −1/2. Thus, the convolution between two func-
tions in this hypergroup coincides with the convolution on R of the associated even
functions.

4. A transference theorem

Define the family B def= {(α, β) : α ≥ β ≥ −1/2}. Suppose that (α′, β′) and (α, β)
belong to B. We say that (α′, β′) > (α, β) if and only if
• α′ > α ≥ β = β′ ≥ −1/2, or
• α′ = β′ > α = β ≥ −1/2.

Let (X, ∗)α′,β′ and (X, ∗)α,β be two hypergroups, both taken from the same family
among those introduced in the previous section and suppose that (α′, β′) > (α, β) (note
that if two Bessel-Kingman hypergroups are considered, then the only possible choice
is α′ = β′ > α = β ≥ −1/2.)

Recall that, in any possible case, the translation operators are given by

Tα,βx f(y) =
∫ π

0

∫ 1

0

f
(
Φ(x, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θ)

for appropriate choices of Φ which, we repeat, are

Φ(x, y, v, cos θ) = arccos
(1

2
(1 − v2)(cosx + cos y) +

1
2
(1 + v2) cosx cos y

+ sinx sin y v cos θ − 1
2
(1 − v2)

)
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for the continuous Jacobi polynomial hypergroup,

Φ(x, y, v, cos θ) =
√

x2 + y2 − 2xy cos θ

for the Bessel-Kingman hypergroup, and

Φ(x, y, v, cos θ) = argcosh
(1

2
(1 − v2)(coshx + cosh y) +

1
2
(1 + v2) coshx cosh y

+ sinhx sinh yv cos θ − 1
2
(1 − v2)

)
for the Jacobi hypergroup of non-compact type.

Definition 4.1. With the above assumptions, for any ψ ∈ [0, π/2], define the
(α, β, ψ)-pseudo-translation operators by

Tα,β,ψx f(y) def=
∫ π

0

∫ 1

0

f
(
Φ(x, y, v sinψ, cos θ)

)
dm1

α,β(v)dm
2
β(θ)

if α′ > α ≥ β = β′ ≥ −1/2, and

Tα,β,ψx f(y) =
∫ π

0

∫ 1

0

f
(
Φ(x, y, v, cos θ sinψ)

)
dm1

α,β(v)dm
2
β(θ)

=
∫ π

0

f
(
Φ(x, y, 1, cos θ sinψ)

)
dm2

β(θ)

if α′ = β′ > α = β ≥ −1/2.
The next lemma allows to obtain a translation operator associated to (α′, β′) as

an average of (α, β, ψ)-pseudo-translation operators.

Lemma 4.2

With the above assumptions, we have

Tα
′,β′

x f(y) =
∫ π/2

0

Tα,β,ψx f(y)dm̃α,α′(ψ)

for any f ∈ C(X). Here m̃α,α′ is a probability measure on [0, π/2] defined by

dm̃α,α′(ψ) def= qα′,α(sinψ)2α+1(cosψ)2(α
′−α)−1 dψ.

The proof of this lemma, as well as the proof of the next two, will be given in the
next section.

Definition 4.3. For any f ∈ Cc(X) and for any b ∈ X, define the function fb on X

by
fb(x) def= f

(
Ψ(x, b)

)
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where

Ψ(x, b) def=


Φ(x, b, 0, 1) if α′ > α ≥ β = β′ ≥ −1/2

Φ(x, b, 1, 0) if α′ = β′ > α = β ≥ −1/2.

The next lemma explains how one can write an Lp norm in (X, ∗)α′,β′ as an
average of Lp norms in (X, ∗)α,β .

Lemma 4.4

There exists a positive measure µα,α′,β on an interval I ⊂ X such that, for all

f ∈ Cc(X),

‖f‖pLp(X,ηα′,β′ )
=

∫
I

‖fb‖pLp(X,ηα,β)dµα,α′,β(b).

Lemma 4.5

There is a change of variables Q = (Q1, Q2),

Q : X × I −→ X × [0, π/2]

(a, b) �−→ (x, ψ)

with Q1(a, b) = Ψ(a, b), such that, for any G ∈ L1(X × [0, π/2], ηα′,β′ ⊗ m̃α,α′), we

have

∫ π/2

0

∫
X

G(x, ψ) dηα′,β′(x) dm̃α,α′(ψ) =
∫
I

∫
X

G(Q(a, b)) dηα,β(a) dµα,α′,β(b)

and

T
α,β,Q2(a,b)
Q1(a,b)

f(y) = Tα,βa fb(y).

We can now state and prove the main result of this paper.

Theorem 4.6

Let k ∈ L1(X, ηα′,β′). Define the function h on X by

h(x) = k(x)
dηα′,β′

dηα,β
(x)

Obviously h ∈ L1(X, ηα,β). Suppose that the operator norm of h, as a convolution

operator on Lp(X, ηα,β), 1 ≤ p < ∞, equals Np(h). Then the operator norm of k, as a

convolution operator on Lp(X, ηα′,β′), is bounded above by Np(h).
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Proof. Let f ∈ Cc(X). For the sake of clarity, denote by ∗α,β the convolution on
(X, ∗)α,β and by Lpα,β the space Lp(X, ηα,β). Then, using Lemma 4.2,

(k ∗α′,β′ f)(x) =
∫
X

k(y)Tα
′,β′

x f(y) dηα′,β′(y)

=
∫
X

k(y)
∫ π/2

0

Tα,β,ψx f(y) dm̃α,α′(ψ) dηα′,β′(y)

=
∫
X

h(y)
∫ π/2

0

Tα,β,ψx f(y) dm̃α,α′(ψ) dηα,β(y).

Thus, using Jensen’s inequality and Lemmas 4.4 and 4.5, we get

‖k ∗α′,β′ f‖p
Lp

α′,β′
=

∫
X

∣∣∣∣∣
∫
X

h(y)
∫ π/2

0

Tα,β,ψx f(y) dm̃α,α′(ψ) dηα,β(y)

∣∣∣∣∣
p

dηα′,β′(x)

=
∫
X

∣∣∣∣∣
∫ π/2

0

∫
X

h(y)Tα,β,ψx f(y) dηα,β(y) dm̃α,α′(ψ)

∣∣∣∣∣
p

dηα′,β′(x)

≤
∫
X

[∫ π/2

0

∣∣∣∣∫
X

h(y)Tα,β,ψx f(y) dηα,β(y)
∣∣∣∣ dm̃α,α′(ψ)

]p
dηα′,β′(x)

≤
∫
X

∫ π/2

0

∣∣∣∣∫
X

h(y)Tα,β,ψx f(y) dηα,β(y)
∣∣∣∣p dm̃α,α′(ψ) dηα′,β′(x)

=
∫
I

∫
X

∣∣∣∣∫
X

h(y)Tα,β,Q2(a,b)
Q1(a,b)

f(y) dηα,β(y)
∣∣∣∣p dηα,β(a) dµα,α′,β(b)

=
∫
I

∫
X

∣∣∣∣∫
X

h(y)Tα,βa fb(y) dηα,β(y)
∣∣∣∣p dηα,β(a) dµα,α′β(b)

=
∫
I

‖h ∗α,β fb‖pLp
α,β

dµα,α′,β(b) ≤ [Np(h)]p
∫
I

‖fb‖pLp
α,β

dµα,α′,β(b)

= [Np(h)]p ‖f‖p
Lp

α′,β′
.

By the density of Cc(X) in Lpα′,β′ , the theorem is proved. �

The following corollaries show how Theorem 4.6 applies specifically to the various
examples studied in Section 3. The next two corollaries deal with the continuous Jacobi
polynomial hypergroups. Here p is a real number, 1 ≤ p < ∞ and Lpα,β denotes the
space Lp([0, π], (1 − cosx)α(1 + cosx)β sinx dx).

Corollary 4.7

Let α′ ≥ β′ ≥ −1/2.

(a) Let α ∈ [β′, α′). Suppose k ∈ L1
α′,β′ and define h(x) def= k(x)(1 − cosx)α

′−α.

Obviously h ∈ L1
α,β′ . Suppose that h, as a convolution operator on Lpα,β′ has

norm Np(h). Then k, as a convolution operator on Lpα′,β′ , has norm bounded

above by Np(h).
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(b) Let α ∈ [−1/2, β′). Suppose k ∈ L1
α′,β′ and define

h(x) def= k(x)(1 − cosx)α
′−α(1 + cosx)β

′−α.

Obviously h ∈ L1
α,α. Suppose that h, as a convolution operator on Lpα,α has norm

Np(h). Then k, as a convolution operator on Lpα′,β′ has norm less than or equal

to Np(h).

Proof. Part (a) coincides with Theorem 4.6, since (α′, β′) > (α, β′). As for part (b), ap-
ply Theorem 4.6 twice; first to the case (β′, β′) > (α, α), and then to (α′, β′) > (β′, β′).
�

Corollary 4.8

Let α′ ≥ β′ ≥ −1/2, and let k ∈ L1
α′,β′ . Let H be the 2π-periodic even function

on R, given on [−π, π] by

H(x) def= k(|x|)(1 − cosx)α
′
(1 + cosx)β

′ | sinx|.

Let Np(H) be the smallest constant such that, for all even functions F ∈ Lp(T),

‖H 6 F‖Lp(T) ≤ Np(H)‖F‖Lp(T).

Then k, as a convolution operator on Lpα′,β′ , has norm less than or equal to Np(H)/2.

Proof. Apply Corollary 4.7. (b) with α = −1/2, and get

‖k ∗ f‖p
Lp

α′,β′
≤ [Np(h)]p ‖f‖p

Lp

α′,β′

where h(x) = k(x)(1 − cosx)α
′
(1 + cosx)β

′
sinx. By the observations at the end of

the presentation of the Jacobi polynomial hypergroups, we see that Np(h) ≤ Np(H)/2,
since ∫ π

0

|h ∗ f(x)|pdx =
1
2

∫ π

−π

∣∣∣∣H 6 F (x)
2

∣∣∣∣p dx ≤
[
Np(H)

2

]p
‖f‖p

Lp

−1/2,−1/2
.

This proves the corollary. �

The next two corollaries deal with the Bessel-Kingman hypergroups. Here we
have 1 ≤ p < ∞ and Lpα will denote Lp([0,∞), x2α+1dx).

Corollary 4.9

Let α′ ≥ α ≥ −1/2, and suppose k ∈ L1
α′ . Define h(x) def= k(x)x2(α′−α). Obviously

h ∈ L1
α. If h, as a convolution operator on Lpα, has norm Np(h), then k, as a convolution

operator on LPα′ , has norm less than or equal to Np(h).
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Proof. This corollary follows directly from Theorem 4.6, just put β′ = α′ and
β = α. �

Corollary 4.10
Let α′ ≥ −1/2 and let k ∈ L1

α′ . Define, on R, the even function H(x) =
k(|x|)|x|2α′+1. Obviously H ∈ L1(R). Let Np(H) be the smallest constant such that,
for all even functions F ∈ Lp(R),

‖H 6 F‖pLp(R) ≤ [Np(H)]p ‖F‖pLp(R).

Then k, as a convolution operator on Lpα′ , has norm less than or equal to Np(H)/2.

Proof. Apply Corollary 4.9 with α = −1/2 and then proceed as in the proof of
Corollary 4.8. �

The next two corollaries involve the Jacobi hypergroups of non-compact type.
Here we have 1 ≤ p < ∞ and Lpα,β denotes the space Lp([0,∞], (coshx− 1)α(coshx+
1)β sinhx dx).
Corollary 4.11

Let α′ ≥ β′ ≥ −1/2.

(a) Let α ∈ [β′, α′). Suppose k ∈ L1
α′,β′ and define h(x) def= k(x)(coshx − 1)α

′−α.
Obviously h ∈ L1

α,β′ . Suppose that h, as a convolution operator on Lpα,β′ has
norm Np(h). Then k, as a convolution operator on Lpα′,β′ , has norm bounded
above by Np(h).

(b) Let α ∈ [−1/2, β′). Suppose k ∈ L1
α′,β′ and define

h(x) def= k(x)(coshx− 1)α
′−α(coshx + 1)β

′−α.

Obviously h ∈ L1
α,α. Suppose that h, as a convolution operator on Lpα,α has norm

Np(h). Then k, as a convolution operator on Lpα′,β′ has norm less than or equal
to Np(h).

Proof. Part (a) coincides with Theorem 4.6, since (α′, β′) > (α, β′). As for part (b),
apply Theorem 4.6 twice; first to the case (β′, β′) > (α, α), and then to (α′, β′) >
(β′, β′). �

Corollary 4.12
Let α′ ≥ β′ ≥ −1/2, and let k ∈ L1

α′,β′ . Let H be the even function defined on R

by

H(x) def= k(|x|)(coshx− 1)α
′
(coshx + 1)β

′ | sinhx|.
Let Np(H) be the smallest constant such that, for all even functions F ∈ Lp(R),

‖H 6 F‖Lp(R) ≤ Np(H)‖F‖Lp(R).

Then k, as a convolution operator on Lpα′,β′ , has norm less than or equal to Np(H)/2.

Proof. Apply Corollary 4.11. (b) with α = −1/2, and then proceed as in the proof of
Corollary 4.8. �
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5. Proofs of the lemmas

In this section we will prove Lemmas 4.2, 4.4 and 4.5. Let us begin with a technical
lemma.

Lemma 5.1
For any A > 0, γ ≥ 0 and δ > 0, we have∫ A

0

(
A2 − v2

)γ
v2δ−1dv = A2γ+2δq−1

γ+δ,δ−1.

Proof. By substitution, v = Au, we obtain∫ A

0

(
A2 − v2

)γ
v2δ−1dv = A2γ+2δ

∫ 1

0

(
1 − u2

)γ
u2δ−1du = A2γ+2δq−1

γ+δ,δ−1. �

Proof of Lemma 4.2. The proof of this lemma does not depend on the choice of the
function Φ, it only depends on the indices (α, β) and (α′, β′); we have therefore five
possible situations.

Case 1. Suppose α′ > α > β = β′ ≥ −1/2. In this case, according to Defini-
tion 4.1, we have∫ π/2

0

Tα,β,ψx f(y) dm̃α,α′(ψ)

=
∫ π/2

0

∫ π

0

∫ 1

0

f
(
Φ(x, y, v sinψ, cos θ)

)
dm1

α,β(v) dm
2
β(θ) dm̃α,α′(ψ)

= qα,βqα′,α

∫ π/2

0

∫ π

0

∫ 1

0

f
(
Φ(x, y, v sinψ, cos θ)

)
(1 − v2)α−β−1v2β+1dv

dm2
β(θ)(cosψ)2(α

′−α)−1(sinψ)2α+1dψ

= qα,βqα′,α

∫ π/2

0

∫ π

0

∫ sinψ

0

f
(
Φ(x, y, u, cos θ)

)
(sin2 ψ − u2)α−β−1u2β+1du

dm2
β(θ)(cosψ)2(α

′−α)−1 sinψ dψ

= qα,βqα′,α

∫ 1

0

∫ π

0

f
(
Φ(x, y, u, cos θ)

) ∫ π/2

arcsinu

(
sin2 ψ − u2

)α−β−1(cosψ)2(α
′−α)−1

sinψ dψ dm2
β(θ)u

2β+1du.

Notice that the innermost integral equals
∫ √

1−u2

0
(1 − u2 − t2)α−β−1t2(α

′−α)−1dt,
which, by Lemma 5.1, equals (1 − u2)α

′−β−1q−1
α′−β−1,α′−α−1.

Thus, we may conclude that∫ π/2

0

Tα,β,ψx f(y) dm̃α,α′(ψ)

=
qα,β qα′,α

qα′−β−1,α′−α−1

∫ 1

0

∫ π

0

f
(
Φ(x, y, u, cos θ)

)
dm2

β(θ)(1 − u2)α
′−β−1u2β+1du

=
qα,β qα′,α

qα′−β−1,α′−α−1 qα′,β
Tα

′,β
x f(y) = Tα

′,β′

x f(y).
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Case 2. Suppose α′ > α = β = β′ > −1/2. In this case we have∫ π/2

0

Tα,β,ψx f(y)dm̃α,α′(ψ)

=
∫ π/2

0

∫ π

0

∫ 1

0

f
(
Φ(x, y, v sinψ, cos θ)

)
dm1

α,β(v) dm
2
β(θ) dm̃α,α′(ψ)

=
∫ π/2

0

∫ π

0

f
(
Φ(x, y, sinψ, cos θ)

)
dm2

β(θ)dm̃α,α′(ψ) = Tα
′,β′

x f(y),

where the last equality is obtained by means of the substitution sinψ = v.

Case 3. Suppose α′ > α = β = β′ = −1/2. Then∫ π/2

0

Tα,β,ψx f(y)dm̃α,α′(ψ)

= qα′,−1/2

∫ π/2

0

1
2
[
f(Φ(x, y, sinψ, 1)) + f(Φ(x, y, sinψ,−1))

]
(cosψ)2α

′
dψ

= qα′,−1/2

∫ 1

0

1
2
[
f(Φ(x, y, v, 1)) + f(Φ(x, y, v,−1))

]
(1 − v2)α

′−1/2dv = Tα
′,β′

x f(y).

Case 4. Let α′ = β′ > α = β > −1/2. In this case, according to Definition 4.1,
we have ∫ π/2

0

Tα,β,ψx f(y)dm̃α,α′(ψ)

=
∫ π/2

0

∫ π

0

f
(
Φ(x, y, 1, cos θ sinψ)

)
dm2

β(θ) dm̃α,α′(ψ)

= cβ qα′,α

∫ π/2

0

∫ π

0

f
(
Φ(x, y, 1, cos θ sinψ)

)
(sin θ)2β

dθ(cosψ)2(α
′−α)−1(sinψ)2α+1dψ.

Changing variables in the innermost integral, namely letting cos θ sinψ = cos t, we
obtain that the last integral equals

cβ qα′,α

∫ π/2

0

∫ π/2+ψ

π/2−ψ
f
(
Φ(x, y, 1, cos t)

)(
sin2 ψ − cos2 t

)β−1/2

sin t dt(cosψ)2(α
′−α)−1 sinψ dψ

= cβ qα′,α

∫ π

0

f
(
Φ(x, y, 1, cos t)

)
sin t

∫ π/2

|π/2−t|
(sin2 ψ − cos2 t)β−1/2

(cosψ)2(α
′−α)−1 sinψ dψ dt

= cβ qα′,α

∫ π

0

f
(
Φ(x, y, 1, cos t)

)
sin t

∫ sin t

0

(sin2 t− u2)β−1/2u2(α′−α)−1du dt

=
cβ qα′,α

qα′− 1
2 ,α

′−α−1

∫ π

0

f
(
Φ(x, y, 1, cos t)

)
(sin t)2α

′
dt = Tα

′,β′

x f(y).
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Case 5. Suppose finally that α′ = β′ > α = β = −1/2. Then∫ π/2

0

Tα,β,ψx f(y)dm̃α,α′(ψ)

= qα′,−1/2

∫ π/2

0

1
2
[
f(Φ(x, y, 1, sinψ)) + f(Φ(x, y, 1,− sinψ))

]
(cosψ)2α

′
dψ

=
qα′,−1/2

2

[ ∫ π/2

0

f(Φ(x, y, 1, cosψ))(sinψ)2α
′
dψ

+
∫ π

π/2

f
(
Φ(x, y, 1, cosψ)

)
(sinψ)2α

′
dψ

]
=

qα′,−1/2

2

∫ π

0

f
(
Φ(x, y, 1, cosψ)

)
(sinψ)2α

′
dψ

=
qα′,−1/2

2cα′
Tα

′,β′

x f(y) = Tα
′,β′

x f(y). �

Unlike the case of the above proof, the proofs of Lemmas 4.4 and 4.5 depend
heavily on the functions Φ. For this reason, we will prove these two lemmas separately
for each of the families of hypergroups we are studying.

5.2. Continuous Jacobi polynomial hypergroups

Case (a). Suppose first that α′ > α ≥ β = β′ ≥ −1/2. In this case we have

dηα,β(x) = (1 − cosx)α(1 + cosx)β sinx dx = (1 − cosx)α−β(sinx)2β+1dx

Ψ(x, b) = Φ(x, b, 0, 1) = arccos
(

(1 + cosx)
1 + cos b

2
− 1

)
I = [0, π]

dµα,α′,β(b) =
qα′,α

2

(
1 + cos b

2

)α+β+1

(1 − cos b)α
′−α−1 sin b db

x = Q1(a, b) = Ψ(a, b) = arccos
(

(1 + cos a)
1 + cos b

2
− 1

)
ψ = Q2(a, b) = arcsin

(
1 + cos b

2
sin a√

(1 + cos a)1 + cos b
2

(
2 − (1 + cos a)1 + cos b

2

)
)
.

Proof of Lemma 4.4. With the above definitions we have∫
I

‖fb‖pLp([0,π],ηα,β)dµα,α′,β(b)

=
qα′,α

2

∫ π

0

∫ π

0

∣∣∣∣f (
arccos

(
(1 + cosx)

1 + cos b
2

− 1
))∣∣∣∣p (1 − cosx)α−β

(sinx)2β+1dx

(
1 + cos b

2

)α+β+1

(1 − cos b)α
′−α−1 sin b db.
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Applying the substitution cos t = (1 + cosx) 1+cos b
2 − 1 to the innermost integral, we

obtain that the last expression equals

qα′,α

2

∫ π

0

∫ π

b

|f(t)|p(1 + cos t)β(cos b− cos t)α sin t(1 − cos b)α
′−α−1 sin b dt db

=
qα′,α

2

∫ π

0

|f(t)|p(1 + cos t)β sin t

[∫ t

0

(cos b− cos t)α(1 − cos b)α
′−α−1 sin b db

]
dt.

Note that the expression within square parentheses equals∫ 1−cos t

0

(1 − cos t− u)αuα
′−α−1du

= (1 − cos t)α
′
∫ 1

0

(1 − v)αvα
′−α−1dv = (1 − cos t)α

′
2q−1
α′,α.

Therefore we have∫
I

‖fb‖pLp([0,π],ηα,β)dµα,α′,β(b)

=
∫ π

0

|f(t)|p(1 + cos t)β(1 − cos t)α
′
sin t dt = ‖f‖pLp([0,π],ηα′,β′ )

. �

Proof of Lemma 4.5. We can look at the change of variables Q as a double change of
variables, as follows

cosx = X = (1 + cos a)
1 + cos b

2
− 1

sinx sinψ = Y = sin a
1 + cos b

2

where (X,Y ) ∈ D
+. The first change of variables is easily understood; as for the

second, for a fixed a, as b varies in [0, π], the point (X,Y ) moves along the segment
joining (−1, 0) with (cos a, sin a), and as a varies in [0, π], the above segment sweeps
the whole D

+.
Note that

dX dY = sin2 x cosψ dx dψ = (1 + cos a)
sin b

2
1 + cos b

2
da db.

Thus,

qα′,α

∫ π/2

0

∫ π

0

G(x, ψ)(1 − cosx)α
′
(1 + cosx)β

′
sinx dx (sinψ)2α+1(cosψ)2(α

′−α)−1dψ

=
qα′,α

2

∫ π

0

∫ π

0

G(Q(a, b))(1 − cos a)α(1 + cos a)β sin a da(1 + cos b
2

)α+β+1

(1 − cos b)α
′−α−1 sin b db,
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which proves the first part of the lemma. As for the second, note that by definition

T
α,β,Q2(a,b)
Q1(a,b)

f(y) =
∫ π

0

∫ 1

0

f
(
Φ(Q1(a, b), y, v sin(Q2(a, b)), cos θ)

)
dm1

α,β(v) dm
2
β(θ),

whereas

Tα,βa fb(y) =
∫ π

0

∫ 1

0

fb
(
Φ(a, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θ)

=
∫ π

0

∫ 1

0

f
(
Ψ(Φ(a, y, v, cos θ), b)

)
dm1

α,β(v) dm
2
β(θ).

All there is to prove is that

Φ
(
Q1(a, b), y, v sin(Q2(a, b)), cos θ

)
= Ψ

(
Φ(a, y, v, cos θ), b

)
for all a, b, y, v, θ in their respective domains. This is a long but elementary calculation
that we shall not show here. In fact, the function Q2 has been chosen in such a way
that the above equality is satisfied. �
Case (b). Suppose now that α′ = β′ > α = β ≥ −1/2. Then we have

dηα,β(x) = (1 − cosx)α(1 + cosx)β sinx dx = (sinx)2α+1dx

dηα′,β′(x) = (1 − cosx)α
′
(1 + cosx)β

′
sinx dx = (sinx)2α

′+1dx

Ψ(x, b) = Φ(x, b, 1, 0) = arccos(cosx cos b)

I =
[
0,

π

2

]
dµα,α′,β(b) = qα′,α(cos b)2(α+1)(sin b)2(α

′−α)−1db

x = Q1(a, b) = Ψ(a, b) = arccos(cos a cos b)

ψ = Q2(a, b) = arcsin
(

sin a cos b√
1 − cos2 b cos2 a

)
.

Proof of Lemma 4.4. With the above definitions we have∫ π/2

0

‖fb‖pLp([0,π],ηα,β)dµα,α′,β(b)

= qα′,α

∫ π/2

0

∫ π

0

∣∣f(arccos(cosx cos b)
∣∣p(sinx)2α+1dx(cos b)2(α+1)(sin b)2(α

′−α)−1db.

Applying the substitution cos t = cosx cos b to the innermost integral, we obtain that
the last expression equals

qα′,α

∫ π/2

0

∫ π−b

b

|f(t)|p(cos2 b− cos2 t)α sin t dt(sin b)2(α
′−α)−1 cos b db

= qα′,α

∫ π

0

|f(t)|p sin t

[∫ π/2−|t−π/2|

0

(cos2 b− cos2 t)α(sin b)2(α
′−α)−1 cos b db

]
dt

= qα′,α

∫ π

0

|f(t)|p sin t

[∫ sin t

0

(sin2 t− u2)αu2(α′−α)−1du

]
dt

=
qα′,α

qα′,α′−α−1

∫ π

0

|f(t)|p(sin t)2α
′+1dt =

∫ π

0

|f(t)|p(sin t)2α
′+1dt,

where the second to last equality follows from Lemma 5.1. �
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Proof of Lemma 4.5. Once again, we can look at the change of variables Q as a double
change of variables 

cosx = X = cos a cos b

sinx sinψ = Y = sin a cos b

where (X,Y ) ∈ D
+. Thus

dX dY = sin2 x cosψ dx dψ = cos b sin b da db

and we have

qα′,α

∫ π/2

0

∫ π

0

G(x, ψ)(sinx)2α
′+1dx(sinψ)2α+1(cosψ)2(α

′−α)−1dψ

= qα′,α

∫ π/2

0

∫ π

0

G(Q(a, b))(sin a)2α+1da(cos b)2(α+1)(sin b)2(α
′−α)−1db.

which proves the first part. Just as in the previous case, in order to prove the second
part of the lemma it is enough to show that

Φ
(
Q1(a, b), y, 1, cos θ sin(Q2(a, b))

)
= Ψ

(
Φ(a, y, 1, cos θ), b

)
.

The left-hand side equals

arccos

(
cos a cos b cos y + sin(arccos(cos a cos b)) sin y cos θ

sin a cos b√
1 − cos2 b cos2 a

)
= arccos(cos a cos b cos y + sin y sin a cos b cos θ),

which equals the right-hand side. �

5.3. Bessel-Kingman hypergroups

We only have the case α′ = β′ > α = β ≥ −1/2. Therefore

dηα,β(x) = dηα,α(x) = x2α+1dx

dηα′,β′(x) = dηα′,α′(x) = x2α′+1dx

Ψ(x, b) = Φ(x, b, 1, 0) =
√

x2 + b2

I = [0,∞)

dµα,α′,β(b) = qα′,αb
2(α′−α)−1db

x = Q1(a, b) = Ψ(a, b) =
√

a2 + b2

ψ = Q2(a, b) = arcsin
(

a√
a2 + b2

)
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Proof of Lemma 4.4. With the above definitions, we obtain∫ ∞

0

‖fb‖pLp([0,∞),ηα,β)dµα,α′,β(b)

= qα′,α

∫ ∞

0

∫ ∞

0

∣∣∣f (√
x2 + b2

)∣∣∣p x2α+1dx b2(α
′−α)−1db

= qα′,α

∫ ∞

0

∫ ∞

b

|f(t)|p(t2 − b2)αt dt b2(α
′−α)−1db

= qα′,α

∫ ∞

0

|f(t)|pt
[∫ t

0

(t2 − b2)αb2(α
′−α)−1db

]
dt

=
qα′,α

qα′,α′−α−1

∫ ∞

0

|f(t)|pt2α′+1dt =
∫ ∞

0

|f(t)|pt2α′+1dt,

where the second to last equality follows from Lemma 5.1. �

Proof of Lemma 4.5. The change of variables is better understood in terms of Q−1:

(a, b) = Q−1(x, ψ) = (x sinψ, x cosψ),

thus da db = x dx dψ. Therefore,

qα′,α

∫ π/2

0

∫ ∞

0

G(x, ψ)x2α′+1dx (sinψ)2α+1(cosψ)2(α
′−α)−1dψ

= qα′,α

∫ ∞

0

∫ ∞

0

G(Q(a, b))a2α+1da b2(α
′−α)−1db.

As for the second part of the lemma, we have that T
α,β,Q2(a,b)
Q1(a,b)

f(y) equals

∫ π

0

f
(√

(Q1(a, b))2 + y2 + 2Q1(a, b)y cos θ sin(Q2(a, b))
)
dm2

α(θ)

=
∫ π

0

f
(√

a2 + b2 + y2 + 2ya cos θ
)

dm2
α(θ)

=
∫ π

0

fb

(√
a2 + y2 + 2ya cos θ

)
dm2

α(θ) = Tα,βa fb(y). �
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5.4. Jacobi hypergroups of non-compact type

Case (a). Suppose first that α′ > α ≥ β = β′ ≥ −1/2. In this case we have

dηα,β(x) = (coshx− 1)α(coshx + 1)β sinhx dx

= (coshx− 1)α−β(sinhx)2β+1dx

Ψ(x, b) = Φ(x, b, 0, 1) = argcosh
(
(1 + coshx)

1 + cosh b

2
− 1

)
I = [0,∞)

dµα,α′,β(b) =
qα′,α

2

(1 + cosh b

2

)α+β+1

(cosh b− 1)α
′−α−1 sinh b db

x = Q1(a, b) = Ψ(a, b) = argcosh
(
(1 + cosh a)

1 + cosh b

2
− 1

)

ψ = Q2(a, b) = arcsin

 1 + cosh b
2 sinh a√

(1 + cosh a)1 + cosh b
2

(
(1 + cosh a)1 + cosh b

2 − 2
)

 .

Proof of Lemma 4.4. With the above definitions we have∫
I

‖fb‖pLp([0,∞),ηα,β)dµα,α′,β(b)

=
qα′,α

2

∫ ∞

0

∫ ∞

0

∣∣∣∣f (
argcosh

(
(1 + coshx)

1 + cosh b

2
− 1

))∣∣∣∣p (coshx− 1)α−β

(sinhx)2β+1dx
(1 + cosh b

2

)α+β+1

(cosh b− 1)α
′−α−1 sinh b db.

Applying the substitution cosh t = (1 + coshx) 1+cosh b
2 − 1 to the innermost integral,

we obtain that the last expression equals

qα′,α

2

∫ ∞

0

∫ b

0

|f(t)|p(1 + cosh t)β(cosh t− cosh b)α sinh t(cosh b− 1)α
′−α−1 sinh b dt db

=
qα′,α

2

∫ ∞

0

|f(t)|p(1 + cosh t)β sinh t

×
[ ∫ t

0

(cosh t− cosh b)α(cosh b− 1)α
′−α−1 sinh b db

]
dt.

Note that the expression within square parentheses equals

∫ cosh t−1

0

(cosh t− 1 − u)αuα
′−α−1du

= (cosh t− 1)α
′
∫ 1

0

(1 − v)αvα
′−α−1dv = (cosh t− 1)α

′
2q−1
α′,α.
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Therefore, we have∫
I

‖fb‖pLp([0,∞),ηα,β)dµα,α′,β(b)

=
∫ ∞

0

|f(t)|p(1 + cosh t)β(cosh t− 1)α
′
sinh t dt = ‖f‖pLp([0,∞),ηα′,β′ )

. �

Proof of Lemma 4.5. We can look at the change of variables Q as a double change of
variables, as follows coshx = X = (1 + cosh a)1 + cosh b

2 − 1

sinhx sinψ = Y = sinh a 1 + cosh b
2

where (X,Y ) ∈ H
+ def= {X2 − Y 2 ≥ 1, X ≥ 0, Y ≥ 0}. The first change of variables

needs no explanation; as for the second, for a fixed a, as b varies between 0 and
∞, the point (X,Y ) moves inside H

+ along the line passing through (−1, 0) and
(cosh a, sinh a), and as a varies in [0,∞), the above ray sweeps the whole H

+.
Note that

dX dY = sinh2 x cosψ dx dψ = (1 + cosh a)
sinh b

2
1 + cosh b

2
da db.

Thus,

qα′,α

∫ π/2

0

∫ ∞

0

G(x, ψ)(coshx− 1)α
′
(coshx + 1)β

′
sinhx dx(sinψ)2α+1

(cosψ)2(α
′−α)−1dψ

=
qα′,α

2

∫ ∞

0

∫ ∞

0

G(Q(a, b))(cosh a− 1)α(cosh a + 1)β sinh a da(
1 + cosh b

2

)α+β+1

(cosh b− 1)α
′−α−1 sinh b db,

which proves the first part of the lemma. As for the second, note that by definition

T
α,β,Q2(a,b)
Q1(a,b)

f(y) =
∫ π

0

∫ 1

0

f
(
Φ(Q1(a, b), y, v sin(Q2(a, b)), cos θ)

)
dm1

α,β(v) dm
2
β(θ),

whereas

Tα,βa fb(y) =
∫ π

0

∫ 1

0

fb
(
Φ(a, y, v, cos θ)

)
dm1

α,β(v) dm
2
β(θ)

=
∫ π

0

∫ 1

0

f
(
Ψ(Φ(a, y, v, cos θ), b)

)
dm1

α,β(v) dm
2
β(θ).

All there is to prove is that

Φ
(
Q1(a, b), y, v sin(Q2(a, b)

)
, cos θ) = Ψ

(
Φ(a, y, v, cos θ), b

)
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for all a, b, y, v, θ in their respective domains. We leave the proof to the reader. �
Case (b). Suppose now that α′ = β′ > α = β ≥ −1/2. Then we have

dηα,β(x) = (coshx− 1)α(coshx + 1)β sinhx dx = (sinhx)2α+1dx

dηα′,β′(x) = (coshx− 1)α
′
(coshx + 1)β

′
sinhx dx = (sinhx)2α

′+1dx

Ψ(x, b) = Φ(x, b, 1, 0) = argcosh(coshx cosh b)

I = [0,∞)

dµα,α′,β(b) = qα′,α(cosh b)2(α+1)(sinh b)2(α
′−α)−1db

x = Q1(a, b) = Ψ(a, b) = argcosh(cosh a cosh b)

ψ = Q2(a, b) = arcsin

(
sinh a cosh b√

cosh2 b cosh2 a− 1

)
.

Proof of Lemma 4.4. With the above definitions we have∫ ∞

0

‖fb‖pLp([0,∞),ηα,β)dµα,α′,β(b)

= qα′,α

∫ ∞

0

∫ ∞

0

∣∣f(
argcosh(coshx cosh b)

)∣∣p(sinhx)2α+1dx(cosh b)2(α+1)

(sinh b)2(α
′−α)−1db.

Applying the substitution cosh t = coshx cosh b to the innermost integral, we obtain
that the last expression equals

qα′,α

∫ ∞

0

∫ ∞

b

|f(t)|p(cosh2 t− cosh2 b)α sinh t dt(sinh b)2(α
′−α)−1 cosh b db

= qα′,α

∫ ∞

0

|f(t)|p sinh t

[∫ t

0

(cosh2 t− cosh2 b)α(sinh b)2(α
′−α)−1 cosh b db

]
dt

= qα′,α

∫ ∞

0

|f(t)|p sinh t

[∫ sinh t

0

(sinh2 t− u2)αu2(α′−α)−1du

]
dt

=
qα′,α

qα′,α′−α−1

∫ ∞

0

|f(t)|p(sinh t)2α
′+1dt =

∫ ∞

0

|f(t)|p(sinh t)2α
′+1dt,

where the second to last equality follows from Lemma 5.1. �
Proof of Lemma 4.5. Once again, we can look at the change of variables Q as a double
change of variables 

coshx = X = cosh a cosh b

sinhx sinψ = Y = sinh a cosh b

where (X,Y ) ∈ H
+. Thus

dX dY = sinh2 x cosψ dx dψ = cosh b sinh b da db
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and we have

qα′,α

∫ π/2

0

∫ ∞

0

G(x, ψ)(sinhx)2α
′+1dx(sinψ)2α+1(cosψ)2(α

′−α)−1dψ

= qα′,α

∫ ∞

0

∫ ∞

0

G(Q(a, b))(sinh a)2α+1da(cosh b)2(α+1)(sinh b)2(α
′−α)−1db.

which proves the first part. Just as in the previous case, in order to prove the second
part of the lemma it is enough to show that

Φ(Q1(a, b), y, 1, cos θ sin(Q2(a, b))) = Ψ(Φ(a, y, 1, cos θ), b).

The left-hand side equals

argcosh
(
cosh a cosh b cosh y + sinh(argcosh(cosh a cosh b))

sinh y cos θ sinh a cosh b√
cosh2 b cosh2 a− 1

)
= argcosh(cosh a cosh b cosh y + sinh y sinh a cosh b cos θ),

which equals the right-hand side. �
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