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Abstract

We prove some multi-dimensional Clarkson type inequalities for Banach spaces.
The exact relations between such inequalities and the concepts of type and cotype
are shown, which gives a conclusion in an extended setting to M. Milman’s ob-
servation on Clarkson’s inequalities and type. A similar investigation concerning
the close connection between random Clarkson inequality and the corresponding
concepts of type and cotype is also included. The obtained results complement,
unify and generalize several classical and some recent results of this type.
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Introduction

Since they were proved for Lp (1 < p < ∞) in the context of uniform convexity in [4],
Clarkson’s inequalities have been treated a great deal by many authors (cf. [19]).
These investigations were mostly devoted to various proofs and generalizations of
these inequalities for Lp and some other concrete Banach spaces ([3, 1, 17, 7, 14, 24,
10, 18, 5, 6, 15, 16, 20, 22, 11, 25, 19]. In particular R. P. Boas [3] and M. Koskela [14]
extended these inequalities in parameters involved. On the other hand the operator
norms of the Littlewood matrices between �2

n

r -spaces were calculated (implicitly) in
A. Pietsch [23]. M. Kato [10] determined these norms between Lp-valued �2

n

r -spaces.
This yielded a multi-dimensional global version of the classical Clarkson inequalities,
we call it generalized Clarkson’s inequality (GCI), which includes those of Boas [3]
and Koskela [14]. Later GCI was investigated in [27, 15, 16, 20, 11, 8, 19, etc.]; A.
Tonge [27] presented its another proof, and L. Maligranda and L. E. Persson [15, 16]
extended GCI to an almost full range of the parameters. Also in connection with
GCI Tonge [27] proved random Clarkson inequality (RCI) for Lp.

On the other hand, as far as we know in literature, M. Milman [18] first observed
Clarkson’s inequalities and (Rademacher) type in the same framework in the general
Banach space setting. Recently M. Kato and Y. Takahashi [13] characterized the
Banach spaces in which Clarkson’s inequalities hold as those of type p with “type p
constant” 1, resp., cotype p′ with “cotype p′ constant” 1 (1/p+1/p′ = 1). Using this
result, they [25] proved RCI for any Banach space X in which (p, p′)-Clarkson in-
equality holds, where the unknown absolute constant K included in Tonge’s original
inequality was replaced by 1 (see [26] for some further results on RCI).

The aim of this paper is to characterize the Banach spaces in which these multi-
dimensional inequalities GCI and RCI hold in terms of type and cotype. In the first
section we recall these Clarkson type inequalities for Lp. Some figures presented
there will illustrate the relation among several variants of GCI. In Section 2 we
show that GCI of Kato or more generally that of Maligranda-Persson holds in any
Banach space X satisfying (p, p′)-Clarkson inequality (1 ≤ p ≤ 2), and moreover the
converse is true (Theorem 2.5). In Section 3 we first show that these GCI’s hold
in X if and only if X is of type p and the “type p constant” is 1, resp., cotype p′

and “cotype p′ constant” is 1 (Theorem 3.2). This extends the previous result of
Kato and Takahashi [13] stated above and gives a conclusion to the observation of
Milman [18] in the extended setting. Secondly, as the general case in type constant,
we prove that X is of type p if and only if RCI holds in X with an absolute constant
K, where the best value of K is estimated by type p constants of X (Theorem 3.4).
In the final section we shall present several related results, especially concerning
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Lebesgue-Bochner spaces Lr(X). It is shown that if (t, t′)-Clarkson inequality holds
in X, then GCI’s hold in Lr(X) (Theorem 4.2); hence the original GCI’s for Lp

are derived directly from the parallelogram law for scalars as the classical Clarkson
and random Clarkson inequalities (Takahashi-Kato [26], cf. also [15]). We also have
some exact relations between GCI and RCI; in particular GCI in X and RCI (K = 1)
in Lp′(X) is equivalent (Theorem 4.9).

These results in this paper complement, unify and generalize several classical
and some recent results of this type.

1. Generalized Clarkson and random Clarkson inequalities

In this section we recall and discuss some versions of the classical Clarkson inequa-
lities (CI), their multi-dimensional generalizations GCI’s and the random Clarkson
inequality RCI. In the following, prime means taking conjugate numbers unless
otherwise mentioned, that is, 1/p+1/p′ = 1/q+1/q′ = · · · = 1 for 1 ≤ p, q, ... ≤ ∞.

Clarkson’s inequalities (CI) ([4])

(i) Let 1 < p ≤ 2. Then for all f, g ∈ Lp

(1.1)
(
‖f + g‖p′

p + ‖f − g‖p′

p

)1/p′
≤ 21/p′(‖f‖pp + ‖g‖pp

)1/p
.

(ii) Let 2 ≤ q < ∞. Then for all f, g ∈ Lq

(1.2)
(
‖f + g‖qq + ‖f − g‖qq

)1/q ≤ 21/q
(
‖f‖q′q + ‖g‖q′q

)1/q′
.

For the case 1/p + 1/q = 1 (1 < p ≤ 2) the inequalities (1.1) and (1.2) are
equivalent. This fact can be most easily understood as a duality principle which
holds in the general Banach space setting (see Lemma 2.1).

Let An = (εij) denote the Littlewood matrices, that is,

A1 =
(

1 1
1 −1

)
, An+1 =

(
An An

An −An

)
, n = 1, 2....

We shall now present and compare some natural multi-dimensional generalizations
of Clarkson’s inequalities GCI in terms of the Littlewood matrices:
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Generalized Clarkson’s inequality (GCI)

(a) The standard form ([10]): Let 1 ≤ p ≤ ∞ and let t = min {p, p′}. Then

for any n ∈ N and for all f1, f2, ..., f2n ∈ Lp

(1.3)




2n∑
i=1

∥∥∥ 2n∑
j=1

εijfj

∥∥∥t′

p




1/t′

≤ 2n/t
′




2n∑
j=1

‖fj‖tp




1/t

.

(b) The Kato form (see [10] and also [25, 20, 8, 19]): Let 1 ≤ p, r, s ≤ ∞ and

n ∈ N. Then for all f1, f2, ..., f2n ∈ Lp,

(1.4)




2n∑
i=1

∥∥∥ 2n∑
j=1

εijfj

∥∥∥s

p




1/s

≤ 2nc(r,s;p)




2n∑
j=1

‖fj‖rp




1/r

,

where, letting t = min {p, p′},

c(r, s; p) =




1/r′ + 1/s− 1/t′ if t ≤ r ≤ ∞, 1 ≤ s ≤ t′,

1/s if 1 ≤ r ≤ t, 1 ≤ s ≤ r′,

1/r′ if s′ ≤ r ≤ ∞, t′ ≤ s ≤ ∞.

(c) The Maligranda-Persson form (see [15] and also [16, 22]): Let 0 <

p, r, s < ∞ and n ∈ N. Then for all f1, f2, ..., f2n ∈ Lp, the inequality (1.4)
holds with the constant C(r, s; p) = 1/s − 1/r + 1/q in place of c(r, s; p), where

q = min{p, p′, r, s′} with the convention that p′ is omitted if p ≤ 1 and s′ is omitted

if s ≤ 1.

Above and in the sequel we have the usual (supremum) interpretation of the
sums when s = ∞ or r = ∞ and of the integrals when p = ∞.

Remark 1.1. (i) If n = 1, then GCI (a) is just (1.1) or (1.2), and GCI (b) coincides
with Koskela’s inequality ([14]), a part of which is Boas’ inequality ([3]).

(ii) If p ≥ 1, then GCI on the forms (a)-(c) can be compared: Indeed, in this
case the constant C(r, s; p) on the form (c) is rewritten as

(1.5) C(r, s; p) =




1/r′ + 1/s− 1/t′ if t ≤ r ≤ ∞, 0 < s ≤ t′,

1/s if 1 ≤ r ≤ t, 0 < s ≤ r′,

or 0 < r ≤ 1, 0 < s ≤ ∞,

1/r′ if s′ ≤ r ≤ ∞, t′ ≤ s ≤ ∞,

where t = min {p, p′} (see also our Theorem 2.5). Thus GCI(c) includes GCI(b).
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In the figures 1a-1b below we illustrate the difference among the sets of param-
eters in the plane with axes 1/r and 1/s for which GCI in the above three forms
(a)-(c) can be applied, where C(r, s; p) = 1/r′ + 1/s − 1/t′ on the region D1, and
C(r, s; p) = 1/s, resp. 1/r′ on D2, resp. on D3. Note that GCI on the form (a)
corresponds to the point (1/p, 1/p′) in Figure 1a and the point (1/p′, 1/p) in Figure
1b. GCI on the form (b) corresponds to Figures 1a and 1b restricted to the unit
square {(1/r, 1/s) : 0 ≤ 1/r, 1/s ≤ 1}, and GCI on the form (c) corresponds to the
first quadrant in Figures 1a-1b.

Let Bn = (bij), n = 1, 2, ..., denote a random n × n-matrix whose coefficients
are independent identically distributed random variables taking the values +1 or
−1 with equal probability. We shall close this section by presenting the random
Clarkson inequality RCI in terms of the matrices Bn:

Random Clarkson inequality (RCI) (see [27] and also [25, 26]). Let 1 ≤
p, r, s ≤ ∞ and n ∈ N. Then, with E denoting the mathematical expectation,

for all f1, f2, ..., fn ∈ Lp, we have

E


 n∑

i=1

∥∥∥ n∑
j=1

bijfj

∥∥∥s

p




1/s

≤ K nc(r,s;p)


 n∑

j=1

‖fj‖rp




1/r

,
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where the constant c(r, s; p) is the same as in GCI of the form (b) and K is a fixed

constant independent on n, r and s.

2. Clarkson type inequalities in Banach spaces

Let X = (X, ‖ · ‖) denote a Banach space. Let 1 ≤ p ≤ 2. We say that (p, p′)-
Clarkson inequality holds in X if for all x, y ∈ X

(2.1)
(
‖x+ y‖p′

+ ‖x− y‖p′)1/p′
≤ 21/p′(‖x‖p + ‖y‖p

)1/p

holds. More generally we say that (p, p′;n)-Clarkson inequality, n ∈ N, holds in X

if for all x1, x2, ..., x2n ∈ X

(2.2)




2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥p′



1/p′

≤ 2n/p
′




2n∑
j=1

‖xj‖p



1/p

holds. Here εij are the entries of the Littlewood matrices. Clearly (p, p′; 1)-Clarkson
inequality is precisely (2.1).

The equivalence of (1.1) and (1.2) noted in the preceding section is stated for a
general Banach space:

Lemma 2.1 ([13, Proposition 2.1]; [8, Proposition 2.1])

Let 1 ≤ p ≤ 2. Then the (p, p′)-Clarkson inequality holds in a Banach space X if

and only if it holds in the dual space X ′ : The same is true for the (p, p′;n)-Clarkson

inequality.

In view of this lemma it is enough in general to consider Clarkson type inequal-
ities in the case 1 ≤ p ≤ 2.

Theorem 2.2

Let 1 ≤ p ≤ 2. Then the following assertions are equivalent.

(i) (p, p′)-Clarkson inequality (2.1) holds in X.

(ii) (p, p′;n)-Clarkson inequality (2.2) holds in X for any n ∈ N.

(iii) (p, p′;n)-Clarkson inequality (2.2) holds in X for some n ∈ N.

In addition to the above, the same assertions (i)-(iii) for the dual space X ′ are

equivalent.
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Proof. (i) ⇒ (ii): The statement (ii) is true for n = 1 by assumption. Assume that
(2.2) holds for a fixed n. Then, by using (2.1) and Minkowski’s inequality, we obtain
that


2n+1∑
i=1

∥∥∥ 2n+1∑
j=1

εijxj

∥∥∥p′



1/p′

=




2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj +
2n+1∑

j=2n+1

εijxj

∥∥∥p′

+
2n+1∑

i=2n+1

∥∥∥ 2n∑
j=1

εijxj +
2n+1∑

j=2n+1

εijxj

∥∥∥p′



1/p′

=




2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj +
2n+1∑

j=2n+1

εijxj

∥∥∥p′

+
2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj −
2n+1∑

j=2n+1

εijxj

∥∥∥p′



1/p′

=




2n∑
i=1


∥∥∥ 2n∑

j=1

εijxj +
2n+1∑

j=2n+1

εijxj

∥∥∥p′

+
∥∥∥ 2n∑

j=1

εijxj −
2n+1∑

j=2n+1

εijxj

∥∥∥p′






1/p′

≤




2n∑
i=1

2


∥∥∥ 2n∑

j=1

εijxj

∥∥∥p

+
∥∥∥ 2n+1∑

j=2n+1

εijxj

∥∥∥p




p′/p



1/p′

= 21/p′







2n∑
i=1


∥∥∥ 2n∑

j=1

εijxj

∥∥∥p

+
∥∥∥ 2n+1∑

j=2n+1

εijxj

∥∥∥p




p′/p



p/p′


1/p

≤ 21/p′







2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥p′



p/p′

+




2n∑
i=1

∥∥∥ 2n+1∑
j=2n+1

εijxj

∥∥∥p′



p/p′


1/p

≤ 21/p′


2np/p

′




2n∑
j=1

‖xj‖p

 + 2np/p

′

{
2n+1∑

j=2n+1

‖xj‖p
}


1/p

= 21/p′ · 2n/p′




2n+1∑
j=1

‖xj‖p



1/p

= 2(n+1)/p′




2n+1∑
j=1

‖xj‖p



1/p

.
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That is, the (p, p′;n+1)-Clarkson inequality holds. Thus, according to the induction
axiom, we have the conclusion. The assertion (ii) ⇒ (iii) is clear.

(iii) ⇒ (i): Assume that the (p, p′;n+ 1)-Clarkson inequality holds for some n,
and put x2n+1 = · · · = x2n+1 = 0. Then we have


2n+1∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥p′



1/p′

≤ 2(n+1)/p′




2n∑
j=1

‖xj‖p



1/p

.

Noting that 


2n+1∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥p′



1/p′

=


2

2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥p′



1/p′

,

we have the (p, p′;n)-Clarkson inequality. By iterating this procedure we have (2.1).
By Lemma 2.1 we have the latter assertion for X ′. �

Now the following elementary lemma is useful in our later discussions:

Lemma 2.3
Let {aj} be a sequence of nonnegative numbers and let n ∈ N.

(a) If 0 < α ≤ β ≤ ∞, then
 1
n

n∑
j=1

aαj




1/α

≤


 1
n

n∑
j=1

aβj




1/β

.

(b) If 0 < β ≤ α ≤ ∞, then


n∑
j=1

aαj




1/α

≤




n∑
j=1

aβj




1/β

.

The statement in (a) is only a consequence of the well-known fact that the scale
of power means is nondecreasing. (We refer the reader to [21] for some historical
remarks and recent developments concerning this fact; even for the more general
case with Gini means and when the sums are replaced by integrals or more general
isotone linear functionals). The statement in (b) is only another way to write the
usual embedding between �p-spaces or simply the inequality (

∑
cj)b ≤

∑
cbj , 0 <

b ≤ 1, cj ≥ 0.

Lemma 2.4 ([8, Proposition 2.2]; see also [26])
Let 1 ≤ t < p ≤ 2. Then (p, p′;n)-Clarkson inequality implies (t, t′;n)-Clarkson

inequality.
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We are now in a position to show that, maybe to be surprising, GCI of Kato
form, and more generally that of Maligranda-Persson form holds in any Banach
space satisfying the (p, p′)-Clarkson inequality, and moreover the converse is derived
from each of these GCI’s for some n.

Theorem 2.5

Let 1 ≤ p ≤ 2. The following assertions are equivalent.

(i) (p, p′)-Clarkson inequality holds in a Banach space X.

(ii) Let 1 ≤ r, s ≤ ∞. Then for any, resp., some n ∈ N GCI of Kato form (b) holds

in X; that is, for every x1, x2, ..., x2n ∈ X

(2.3)




2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥s




1/s

≤ 2nc(r,s;p)




2n∑
j=1

‖xj‖r



1/r

holds, where

c(r, s; p) =




1/r′ + 1/s− 1/p′ if p ≤ r ≤ ∞, 1 ≤ s ≤ p′,

1/s if 1 ≤ r ≤ p, 1 ≤ s ≤ r′,

1/r′ if s′ ≤ r ≤ ∞, p′ ≤ s ≤ ∞.

(iii) Let 0 < r, s ≤ ∞. Then for any, resp., some n ∈ N GCI of Maligranda-Persson

form (c) holds in X; that is, for every x1, x2, ..., x2n ∈ X

(2.4)




2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥s




1/s

≤ 2nC(r,s;p)




2n∑
j=1

‖xj‖r



1/r

holds, where

C(r, s; p) =




1/r′ + 1/s− 1/p′ if p ≤ r ≤ ∞, 0 < s ≤ p′,

1/s if 1 ≤ r ≤ p, 0 < s ≤ r′,

or 0 < r ≤ 1, 0 < s ≤ ∞,

1/r′ if s′ ≤ r ≤ ∞, p′ ≤ s ≤ ∞.

In addition to the above, these assertions (i)-(iii) for the dual space X ′ are

equivalent.
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Proof. (i) ⇒ (iii): For an arbitrarily fixed n put

As :=




2n∑
i=1

∥∥∥ 2n∑
j=1

εijxj

∥∥∥s




1/s

and Br :=




2n∑
j=1

‖xj‖r



1/r

.

According to the assumption and Theorem 2.2 it holds that

(2.5) Ap′ ≤ 2n/p
′
Bp.

Thus, by using (2.5) and Lemmas 2.3 and 2.4, we have the following:

(a) If p ≤ r ≤ ∞ and 0 < s ≤ p′, then by (2.5)

As ≤ 2n(1/s−1/p′)Ap′ ≤ 2n/sBp

≤ 2n/s2n(1/p−1/r)Br = 2n(1/s−1/r+1/p)Br.

(b) Let 1 ≤ r ≤ p and 0 < s ≤ r′. Then by Lemma 2.4 with t = r,

As ≤ 2n(1/s−1/r′)Ar′ ≤ 2n(1/s−1/r′)2n/r
′
Br = 2n/sBr.

(c) If 0 < r ≤ 1 and 0 < s ≤ ∞, then

As ≤ 2n/sB1 ≤ 2n/sBr.

(d) Let s′ ≤ r ≤ ∞ and p′ ≤ s ≤ ∞. Then by Lemma 2.4 with t = s′.

As ≤ 2n/sBs′ ≤ 2n/s2n(1/s′−1/r)Br = 2n/r
′
Br.

This completes the proof of (2.4). The other implications are clear by Theorem 2.2.
We have the latter assertion for X ′ by Lemma 2.1. �
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3. Exact relations between Clarkson type inequalities and the
notions of type and cotype

Let 1 ≤ p ≤ 2. A Banach space X is said to be of (Rademacher) type p provided
there exist a constant M and some s, 1 ≤ s < ∞, such that

(3.1)




∫ 1

0

∥∥∥ n∑
j=1

rj(t)xj
∥∥∥s

dt




1/s

≤ M




n∑
j=1

‖xj‖p



1/p

holds for all finite systems {xj} in X, where rj(t) are the Rademacher functions,
that is, rj(t) = sgn(sin 2jπt). Let 2 ≤ q ≤ ∞. X is said to be of (Rademacher)
cotype q provided there exist a constant M and some s, 1 ≤ s < ∞, such that

(3.2)




n∑
j=1

‖xj‖q



1/q

≤ M




∫ 1

0

∥∥∥ n∑
j=1

rj(t)xj
∥∥∥s

dt




1/s

holds for all finite systems {xj} in X. We denote by Tp(s)(X) resp. Cq(s)(X) the
smallest constant M satisfying (3.1) resp. (3.2) for all finite systems {xj} in X.

Remark 3.1. (a) According to the well-known Khintchin-Kahane inequality (see
[28]) each of the above definitions is equivalent if we take any fixed s, 1 ≤ s < ∞.

(b) It is clear that 1 ≤ Tp(s1)(X) ≤ Tp(s2)(X) and Cq(s1)(X) ≥ Cq(s2)(X) ≥ 1 if
1 ≤ s1 ≤ s2.

Now we introduce the Rademacher matrices Rn =
(
r
(n)
ij

)
(2n × n matrices)

recursively as follows:

R1 =
(

1
−1

)
, Rn+1 =




1
... Rn

1
− 1
... Rn

− 1




(n = 1, 2...).

Note here that r(n)
ij = rj

(
(2i− 1)/2n+1

)
. The following relations are crucial for our

investigation in this section:


∫ 1

0

∥∥∥ n∑
j=1

rj(t)xj
∥∥∥s

dt




1/s

=


 1

2n
∑

θj=±1

∥∥∥ n∑
j=1

θjxj

∥∥∥s




1/s

(3.3)

=


 1

2n

2n∑
i=1

∥∥∥ n∑
j=1

r
(n)
ij xj

∥∥∥s




1/s

,
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and

E
∥∥∥ n∑

j=1

bijxj

∥∥∥s

=
1
2n

∑
θj=±1

∥∥∥ n∑
j=1

θjxj

∥∥∥s

(3.4)

=
∫ 1

0

∥∥∥ n∑
j=1

rj(t)xj
∥∥∥s

dt (1 ≤ i ≤ n),

where Bn = (bij) are the stochastic matrices defined in Section 1, and E denotes
the mathematical expectation. In particular, (3.3) implies that the definitions of
type and cotype can be given in terms of the operator norms of the Rademacher
matrices between �nr (X)-spaces (see [12]); i.e., X is of type p if and only if there
exist a constant M > 0 and some s, 1 ≤ s < ∞ such that

(3.5)
∥∥Rn : �np (X) → �2

n

s (X)
∥∥ ≤ M 2n/s for n = 1, 2, ....

Here, as usual, �nr (X) denotes the X-valued �nr -space, i.e., the direct sum of n copies
of X with the norm ∥∥{xj}∥∥�nr (X)

:=

(
n∑

j=1

‖xj‖r
)1/r

.

A similar characterization can be made concerning the notion of cotype (see [12]).

Now by Theorems 2.2 and 2.5, combined with a previous result of Kato and
Takahashi [13], we obtain the following exact relations between various variants of
Clarkson’s inequalities and the notions of type and cotype with their constant one:

Theorem 3.2

Let 1 ≤ p ≤ 2. Then the following statements are equivalent:

(i) X is of type p and Tp(p′)(X) = 1.

(ii) X is of cotype p′ and Cp′(p)(X) = 1.

(iii) (p, p′)-Clarkson inequality holds in X.

(iv) (p, p′;n)-Clarkson inequality holds in X for any, resp., some n ∈ N.

(v) Let 1 ≤ r, s ≤ ∞. Then for any, resp., some n ∈ N GCI of Kato form (2.3) holds

in X.

(vi) Let 0 < r, s ≤ ∞. Then for any, resp., some n ∈ N GCI of Maligranda-Persson

form (2.4) holds in X.

In addition to the above, these assertions (i)-(vi) for the dual space X ′ in place

of X are equivalent.
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Proof. The equivalence of the assertions (i)-(iii) is proved in Kato and Takahashi [13,
Theorems 2.2, 2.4, Corollary 2.11]. Theorems 2.2, 2.5 and Lemma 2.1 give the rest
of our assertion. �

We note that Theorem 3.2 extends the result of Kato and Takahashi [13] men-
tioned in the above proof. Our next aim is to state a similar equivalence theorem
for the general case in type constant, but first we prove the following lemma of
independent interest:

Lemma 3.3

Let 1 ≤ u < p ≤ 2. Then if X is of type p, X is of type u and

(3.6) Tu(u′)(X)u
′ ≤ Tp(p′)(X)p

′
,

a fortiori, Tu(u′)(X) ≤ Tp(p′)(X).

Proof. Put θ = p′/u′ (0 ≤ θ ≤ 1). We note that (1− θ)/1+ θ/p = 1/u, (1− θ)/∞+
θ/p′ = 1/u′, and

M1 =
∥∥Rn : �n1 (X) → �2

n

∞ (X)
∥∥ = 1,

M2 =
∥∥Rn : �np (X) → �2

n

p′ (X)
∥∥ ≤ Tp(p′)(X)2n/p

′
.

Thus by using the standard complex interpolation method (see e.g. [2]), we obtain
that ∥∥Rn : �nu(X) → �2

n

u′ (X)
∥∥ ≤ M1−θ

1 Mθ
2

≤ Tp(p′)(X)p
′/u′

2n/u
′
,

and, according to our discussion above (cf. (3.5)), this means that X is of type u

and (3.6) holds. �
Theorem 3.4

Let 1 ≤ p ≤ 2. The following statements are equivalent:

(i) X is of type p.

(ii) For any n the standard (p, p′;n)-random Clarkson inequality

(3.7) E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

≤ Kn1/p′


 n∑

j=1

‖xj‖p



1/p

holds in X with some constant K independent on n.
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(iii) For any n the (p, 1;n)-random Clarkson inequality

(3.8) E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥

 ≤ Kn


 n∑

j=1

‖xj‖p



1/p

holds in X with some constant K independent on n.

(iv) Let 1 ≤ r, s ≤ ∞. For any n the random Clarkson inequality

(3.9) E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥s




1/s

≤ Knc(r,s;p)


 n∑

j=1

‖xj‖r



1/r

holds in X with some constant K independent on n, r and s, where c(r, s; p) is the

constant given in GCI (2.3).
Moreover, let Kp(X) be the smallest value of such a K. Then

Tp(1)(X) ≤ Kp(X) ≤ Tp(p′)(X).

Proof. The implications (iv) ⇒ (ii) ⇒ (iii) are clear. (In each inequality to be proved
we can take the same constant K as in the inequality assumed.) Indeed, concerning
the latter implication we note that, according to Lemma 2.3,

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥

 ≤ n1/p E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

.

(iii) ⇒ (i): Assume that (3.8) holds with some K in X. Then by (3.4)

∫ 1

0

∥∥∥ n∑
j=1

rj(t)xj
∥∥∥ dt = E

∥∥∥ n∑
j=1

bijxj

∥∥∥

=
1
n

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥



≤ K


 n∑

j=1

‖xj‖p



1/p

.

Thus X is of type p and Tp(1)(X) ≤ K.
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Moreover, according to the above proofs of (iv) ⇒ (ii) ⇒ (iii) ⇒ (i) we see that
if (3.8) holds with some K, then Tp(1)(X) ≤ K, and hence Tp(1)(X) ≤ Kp(X).

(i) ⇒ (iv): First we prove that (3.7) holds with K = Tp(p′)(X). Let x1, x2, ..., xn
be any finite system in X. Then by assumption and (3.4), we have for each i, i =
1, 2, ..., n,


E

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

=


 1

2n
∑

θj=±1

∥∥∥ n∑
j=1

θjxj

∥∥∥p′



1/p′

(3.10)

≤ Tp(p′)(X)


 n∑

j=1

‖xj‖p



1/p

,

so that

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

≤


E

n∑
i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

= n1/p′


E

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

≤ Tp(p′)(X)n1/p′


 n∑

j=1

‖xj‖p



1/p

,

i.e., (3.7) holds. Hence, according to Lemma 3.3 and the result just proved we have
for any u, 1 ≤ u ≤ p ≤ 2,

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥u′



1/u′

≤ Tp(p′)(X)p
′/u′

n1/u′


 n∑

j=1

‖xj‖u



1/u

(3.11)

≤ Tp(p′)(X)n1/u′


 n∑

j=1

‖xj‖u



1/u

,

which is a special case of (3.9). The remaining part of the proof can be carried out
by using the technique used in [25] (cf. [26]), but for the readers convenience we
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present the details: Let p ≤ r ≤ ∞ and 1 ≤ s ≤ p′. Then, by (3.4), Lemma 2.3
and (3.10), we have for each i, i = 1, 2, ..., n,

E
∥∥∥ n∑

j=1

bijxj

∥∥∥s




1/s

≤


E

∥∥∥ n∑
j=1

bijxj

∥∥∥p′



1/p′

≤ Tp(p′)(X)


 n∑

j=1

‖xj‖p



1/p

≤ Tp(p′)(X)n1/p−1/r


 n∑

j=1

‖xj‖r



1/r

.

Hence

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥s




1/s

≤


E

n∑
i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥s




1/s

≤ n1/s


E

∥∥∥ n∑
j=1

bijxj

∥∥∥s




1/s

≤ Tp(p′)(X)n1/s+1/p−1/r


 n∑

j=1

‖xj‖r



1/r

.

Let 1 ≤ r ≤ p and 1 ≤ s ≤ r′. Then, according to Lemma 2.3 and (3.11) with
u = r, we obtain

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥s




1/s

≤ n1/s−1/r′E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥r′



1/r′

≤ Tp(p′)(X)n1/s


 n∑

j=1

‖xj‖r



1/r

.

Let s′ ≤ r ≤ ∞ and p′ ≤ s ≤ ∞. Then, by again using Lemma 2.3 and (3.11)
now with u = s′, we obtain that

E


 n∑

i=1

∥∥∥ n∑
j=1

bijxj

∥∥∥s




1/s

≤ Tp(p′)(X)n1/s


 n∑

j=1

‖xj‖s
′




1/s′
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≤ Tp(p′)(X)n1/sn1/s′−1/r


 n∑

j=1

‖xj‖r



1/r

= Tp(p′)(X)n1/r′


 n∑

j=1

‖xj‖r



1/r

.

Thus (3.9) holds with K = Tp(p′)(X) and hence Kp(X) ≤ Tp(p′)(X). This completes
the proof. �
Remark 3.5. (i) If RCI (3.9) holds with some K in X, we can take the type p(p′)
constant Tp(p′)(X) as such a K.

(ii) Consider the constant K in RCI (3.9) depending on p, and r, s; write such
a K as Kp(X; r, s). From the above proof of the last implication we see that our
upper estimate of Kp(X) can be improved to an estimate of the following type:

Kp(X; r, s) ≤



Tp(p′)(X) if p ≤ r ≤ ∞, 1 ≤ s ≤ p′,

Tp(p′)(X)p
′/r′ if 1 ≤ r ≤ p, 1 ≤ s ≤ r′,

Tp(p′)(X)p
′/s if s′ ≤ r ≤ ∞, p′ ≤ s ≤ ∞,

namely, Kp(X; r, s) ≤ Tp(p′)(X)min {1, p′/r′, p′/s}.

4. Concluding results and remarks

By combining the results from the preceding sections with some resent ones we
can obtain several new results of independent interest. We start with stating the
following result in [26]:

Theorem 4.1 (Takahashi-Kato [26, Theorem 2.3])
Let 1 ≤ t ≤ 2, 1 ≤ u ≤ ∞ and let p = min {t, u, u′}. Then if the (t, t′)-Clarkson

inequality holds in a Banach space X, the (p, p′)-Clarkson inequality holds in Lu(X).
If t ≤ u ≤ t′, the converse is true.

By combining Theorem 3.2 with Theorem 4.1, and using Lemma 2.1 we have

Theorem 4.2
Let 1 ≤ t ≤ 2, 1 ≤ u ≤ ∞ and let p = min {t, u, u′}. Assume that the (t, t′)-

Clarkson inequality holds in a Banach space X. Then all the assertions (i)-(vi) in
Theorem 3.2 are valid for Lu(X) and Lu(X ′), in place of X. In particular, GCI’s
(2.3) and (2.4) hold in Lu(X) and Lu(X ′).
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Remark 4.3. According to the above theorem the original GCI’s in Lp of Kato and
of Maligranda-Persson (p ≥ 1) are both directly derived from the parallelogram law
((2, 2)-Clarkson inequality) for scalars. The same was proved for the (p, p′)-Clarkson
inequality and RCI in [26, Corollary 2.5 and Remark 3.3, respectively] (cf. also [15]).

According to Theorem 3.4 we have immediately

Theorem 4.4

(i) Let X be of type p and Tp(p′)(X) = 1. Then the random Clarkson inequality

(3.9) with K = 1 holds in X for any n; and conversely

(ii) If RCI (3.9) with K = 1 holds in X for any n, then X is of type p and

Tp(1)(X) = 1.

Theorem 4.4 yields the following previous result of Takahashi-Kato [25] and its
weak converse:

Corollary 4.5

(i) Let 1 ≤ p ≤ 2. Let X satisfy the (p, p′)-Clarkson inequality. Then the random

Clarkson inequality (3.9) with K = 1 holds in X for any n ([25]), and conversely;

(ii) If RCI (3.9) holds for any n in X with K = 1, then the (p, 1)-Clarkson inequality

(4.1) ‖x+ y‖ + ‖x− y‖ ≤ 2
(
‖x‖p + ‖y‖p

)1/p

holds in X.

Indeed concerning (ii), we merely note that (p, 1)-random Clarkson inequality
for n = 2 is precisely (4.1) (note also that (p, 1)-Clarkson inequality is weaker than
(p, p′)-one by Lemma 2.3(b)).

Remark 4.6. (i) Tonge’s original RCI for Lp (with K = 1) is a direct consequence
of Theorem 4.4 since Tt(t′)(Lp) = 1, where t = min {p, p′}.

(ii) There are fairly many Banach spaces satisfying (p, p′)-Clarkson inequality
and hence RCI with K = 1; we refer the reader to [19] for such examples (see also [4,
3, 5, 6, 11, 15, 17, 26]).

Finally we consider the relation between GCI and RCI. As an immediate con-
sequence of Theorems 3.2 and 3.4 we have

Corollary 4.7

Let 1 ≤ p ≤ 2. If GCI (2.3) or GCI (2.4) holds in X for any, resp., some n,

then RCI (3.9) with K = 1 holds in X for any n.
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As exact relations between them, we have that GCI in X and RCI in Lp′(X)
are equivalent, and also they are equivalent in Lp′(X). We need the next lemma
in [26].

Lemma 4.8 (Takahashi-Kato [26, Lemma 3.1])

Let 1 ≤ p ≤ 2. If the (p, 1)-Clarkson inequality (4.1) holds in Lp′(X), then the

(p, p′)-Clarkson inequality holds in X.

Theorem 4.9

Let 1 ≤ p ≤ 2 and 1/p+ 1/p′ = 1. Then the following are equivalent.

(i) X is of type p and Tp(p′)(X) = 1.

(ii) GCI (2.3) (resp. (2.4)) holds in X.

(iii) GCI (2.3) (resp. (2.4)) holds in Lr(X) for any, resp., some p ≤ r ≤ p′.
(iv) RCI (3.9) holds in Lp′(X) with K = 1.

In addition to these (i)-(iv), the same assertions for X ′ in place of X are equi-

valent.

Proof. By Theorems 3.2 and 4.1 we have the equivalence of (i)-(iii). The implication
(iii) ⇒ (iv) follows from Corollary 4.7 (owing to Theorem 4.1 we may assume that
GCI (2.3) (resp. (2.4)) holds in Lp′(X)). Suppose that (iv) is valid. Then by
Corollary 4.5 (ii) and Lemma 4.8 we obtain (i). The latter assertion follows from
Lemma 2.1. �
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