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Abstract

We obtain a refinement of a result of Partington on Banach spaces containing
isomorphic copies of �∞. Motivated by this result, we prove that Banach spaces
containing asymptotically isometric copies of �∞ must contain isometric copies
of �∞.

A well-known result of R.C. James, dating back to the early sixties, says that if a
Banach space contains an isomorphic copy of c0 (respectively, �1), then it contains
almost isometric copies of c0 (respectively, �1) [10]. This result is often referred
to as the James Distortion Theorem. A less well-known result due to Partington
in the early eighties says that a similar result holds for Banach spaces containing
isomorphic copies of �∞; that is, if a Banach space contains an isomorphic copy of
�∞, then it contains almost isometric copies of �∞ [12].

In the past few years a number of authors have considered refinements of James’s
original result. In particular, the notions of a Banach space containing an asympto-
tically isometric copy of c0 or �1 were directly motivated by James’s result and have
resulted in applications to fixed point theory [6, 7] and the isometric structure of
Banach spaces [2, 5, 9]. In [8], the notion of a Banach space containing an asymptoti-
cally isometric copy of �∞ was introduced and an asymptotically isometric version of
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the classical Bessaga-Pe3lczyński Theorem [1, 4] was proved; namely, a dual Banach
space, X∗, contains an asymptotically isometric copy of c0 if and only if X∗ contains
an asymptotically isometric copy of �∞. This result was later improved to say that
a dual Banach space, X∗, contains an asymptotically isometric copy of c0 if and
only if X∗ contains an isometric copy of �∞ [9]. One consequence of these results is
that dual Banach spaces contain an isometric copy of �∞ whenever they contain an
asymptotically isometric copy of �∞. One of the aims of this short note is to prove
that this result is true in general; that is, a Banach space contains an isometric
copy of �∞ whenever it contains an asymptotically isometric copy of �∞. Although
the proof of this result is not particularly difficult, we will see that the result is
somewhat surprising when we consider refinements of Partington’s result.

Before we get to the results of this paper, it should be pointed out that the
proof of Theorem 6, though short, is not the shortest proof available. The proof of
Theorem 6 follows quite easily using Definition 4. However, we have chosen to give
a slightly longer proof, using Lemma 2, so as to highlight the similarities between
the proofs of Theorem 3 and Theorem 6.

The results

We refer the reader to [4] and [11] for standard definitions and notation. We begin
this section with Partington’s result [12, Theorem 3].

Theorem 1

Let ‖ · ‖ be an equivalent norm on �∞ and let ε > 0. Then there is a sequence

u1, u2, . . . of disjoint vectors such that for each bounded sequence of real numbers

a1, a2, . . . the norm of the formal sum
∑∞

n=1 anun lies between (1 − ε) sup |an| and

(1 + ε) sup |an|.

The key ingredient Partington used in proving his result is the following lemma
[12, Lemma 3], which will used twice in what follows.

Lemma 2

Let ‖ · ‖ be an equivalent norm on �∞ and let ε ≥ 0. If u1, u2, . . . is a bounded

sequence of disjointly supported elements of �∞ and if for every n ≥ 1,

1 − ε/3 ≤
∥∥∥un +

∞∑
i=n+1

aiui

∥∥∥ ≤ 1 + ε/3,
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provided that sup |ai| ≤ 1, then

1 − ε ≤
∥∥∥

∞∑
i=1

aiui

∥∥∥ ≤ 1 + ε/3

whenever sup |ai| = 1.

Our first result is a slight improvement of Partington’s result. In the proof of
this result we use the standard notation, suppu, to denote the support of a vector u
in �∞, ‖u‖∞ is the usual sup norm of u, and |A| denotes the cardinality of a subset
A of N.

Theorem 3

Let ‖·‖ be an equivalent norm on �∞ and let (εn) be a decreasing null sequence

in (0, 1). Then there is a sequence u1, u2, . . . of disjoint vectors such that for each

bounded sequence of real numbers a1, a2, . . . and for every n ≥ 1, the norm of the

formal sum
∑∞

i=n aiui satisfies

(∗) (1 − εn) sup
i≥n

|ai| ≤
∥∥∥

∞∑
i=n

aiui

∥∥∥ ≤ (1 + εn) sup
i≥n

|ai|.

Proof. Let T ′
0 = N. For n ≥ 0 we inductively define

Sn =
{
u ∈ �∞ : suppu ⊆ T ′

n and |T ′
n \ suppu| = ∞

}
.

Given v ∈ Sn with ‖v‖∞ ≤ 1, define

Rn(v) = {w ∈ Sn : ‖w‖∞ = 1, and wi = vi whenever vi �= 0}.

Note that if w ∈ Rn(v), then Rn(w) ⊆ Rn(v). Now define Mn(v) = sup {‖w‖ :
w ∈ Rn(v)} and mn(v) = inf {‖w‖ : w ∈ Rn(v)}. Choose vn ∈ Rn(0) such that
Mn(0) < ‖vn‖(1 + εn/6). Since Mn(vn) ≤ Mn(0), Mn(vn) < ‖vn‖(1 + εn/6). Given
δ > 0, choose y ∈ Rn(vn) with ‖y‖ < mn(vn) + δ. Then since 2vn − y ∈ Rn(vn), we
have

2‖vn‖ ≤ ‖2vn − y‖ + ‖y‖ ≤ Mn(vn) + mn(vn) + δ.

Consequently, since δ > 0 was arbitrary, 2‖vn‖ ≤ Mn(vn) + mn(vn) (this argument
can also be found in [3; page 121]). Hence mn(vn) > ‖vn‖(1 − εn/6).
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Now define Tn+1 = T ′
n \ supp vn and T ′

n+1 = Tn+1 \ {min {m : m ∈ Tn+1}}. By
construction we see that if sup |ai| ≤ 1, then the formal sum vn +

∑∞
i=n+1 aivi is

both an element of Sn and the unit sphere of (�∞, ‖ · ‖∞) and therefore satisfies

‖vn‖(1 − εn/6) < mn(vn) ≤
∥∥∥vn +

∞∑
i=n+1

aivi

∥∥∥ ≤ Mn(vn) < ‖vn‖(1 + εn/6).

Since the (‖vn‖) is a bounded sequence of real numbers which is bounded away
from 0, it has a subsequence which converges to a real number M > 0. Without
loss of generality, we can assume that (‖vn‖) converges to M and for each n ∈ N,
M(1 − εn/7) ≤ ‖vn‖ ≤ M(1 + εn/7). Let un = vn/M and note that

(1 − εn/3) ≤
∥∥∥un +

∞∑
i=n+1

aiui

∥∥∥ ≤ (1 + εn/3),

whenever sup |ai| ≤ 1. The proof is now completed by an application of Lemma 2
and the fact that the sequence (εn) is decreasing. �
Remark. If one considers the expression (∗) in Theorem 3, one might ask if the
expression can be improved by either removing the “1−εn” from the left hand side or
removing the “1+εn” from the right hand side. For example, if we consider �∞ with

the equivalent norm |‖ · |‖ defined by |‖(an)|‖ =
[
(sup |an|)2 +

∑∞
n=1 2−n|an|2

]1/2

,
then we can in this case remove the “1 − εn” from the left hand side. Specifically,
if we define un to be the element of �∞ whose n-th coordinate is 1 and all other
coordinates are 0, then for all bounded sequences (an) we have

sup
i≥n

|ai| ≤
∣∣∣
∥∥∥

∞∑
i=n

aiui

∣∣∣
∥∥∥ ≤ (1 + 2−n+1) sup

i≥n
|ai|.

It is also worth noting that since (�∞, |‖ · |‖) is strictly convex it does not contain
an isometric copy of �∞.

We will see that removal of the “1 + εn” from the right hand side leads us to
asymptotically isometric copies of �∞, and concept which we now define.

Definition 4. A Banach space X is said to contain an asymptotically isometric
copy of �∞ if there is a null sequence (εn)n in (0, 1) and a bounded linear operator
T : �∞ → X so that

sup
n

(1 − εn)|an| ≤
∥∥T ((an)n)

∥∥ ≤ sup
n

|an| ,

for all (an)n ∈ �∞.
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The relationship between asymptotically isometric copies of �∞ and the last
remark can be found in the following proposition, the proof of which is almost
identical to the proof of Theorem 2 of [7], and is therefore omitted.

Proposition 5

A Banach space X contains an asymptotically isometric copy of �∞ if and only

if there is a null sequence (εn)n in (0, 1) and an operator T : �∞ → X so that

(1 − εn) sup
i≥n

|ai| ≤
∥∥T ((ai)i≥n)

∥∥ ≤ sup
i≥n

|ai| ,

for all (ai)i ∈ �∞ and for all n ∈ N.

We are now ready for our main result.

Theorem 6

Let X be a Banach space containing an asymptotically isometric copy of �∞.

Then X contains an isometric copy of �∞.

Proof. Since X contains an asymptotically isometric copy of �∞, there is a null
sequence (εn) in (0, 1) and a bounded linear operator T : �∞ → X such that

sup
n

(1 − εn)|tn| ≤
∥∥T (

(tn)n
)∥∥ ≤ sup

n
|tn| ,

for all (tn)n ∈ �∞.
Partition N into an infinite number of infinite (disjoint) subsets (Nj). For each

j ∈ N, let uj be the element of �∞ whose n-th coordinate is 1 if n ∈ Nj , and is 0
otherwise. Let (ai) be a sequence with sup |ai| ≤ 1 and for each j ≥ 1 consider the
expression ∥∥∥T (

uj +
∑
i>j

aiui

)∥∥∥.

Since sup |ai| ≤ 1 and the uj ’s are disjointly supported norm 1 elements of �∞ we
have ∥∥∥T (

uj +
∑
i>j

aiui

)∥∥∥ ≤ 1.

On the other hand, since uj has infinite support, we also have
∥∥∥T (

uj +
∑
i>j

aiui

)∥∥∥ ≥ sup
n∈Nj

(1 − εn) = 1.
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Therefore, by Lemma 2, we have

∥∥∥T ( ∞∑
i=1

aiui

)∥∥∥ = 1, whenever sup |ai| = 1.

This clearly implies that X contains an isometric copy of �∞. �
Remark. As we mentioned earlier, the proof of Theorem 6 is not difficult but it is
somewhat surprising because it says that if, in the expression (∗) of Theorem 3, we
remove the “1+ εn” from the right hand side, then we gain an isometric copy of �∞.
However, removing the “1−εn” from the left hand side does not necessarily yield an
isometric copy of �∞, as the example in the remark following Theorem 3 illustrates.
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