
Collect. Math. 51, 3 (2000), 225–236

c© 2000 Universitat de Barcelona
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Abstract

Mixed automorphic forms generalize elliptic modular forms, and they occur
naturally as holomorphic forms of the highest degree on families of abelian va-
rieties parametrized by a Riemann surface. We construct generalized Eisenstein
series and Poincaré series, and prove that they are mixed automorphic forms.

1. Introduction

Let E be an elliptic surface over a Riemann surface X (cf. [3]). Then the space of
holomorphic two-forms on an elliptic surface is isomorphic to the space of cusp forms
of weight three for the corresponding Fuchsian group Γ ⊂ SL(2, R) that determines
X if the monodromy representation is simply the inclusion map of Γ in SL(2, R)
(cf. [11]). However, when the monodromy representation is not the inclusion map,
the holomorphic two-forms on the elliptic surface should be identified with mixed
cusp forms whose automorphy factors involve the monodromy representation and
the period map of the elliptic surface (see [2]). A geometric interpretation of such
mixed automorphic forms of higher weights can be obtained by essentially taking
the fiber product of a finite number of elliptic surfaces (cf. [4]). It is well-known
that Eisenstein series and Poincaré series provide basic examples of elliptic modular
forms (see e.g. [10]). The goal of this paper is to construct the analog of Eisenstein
series and Poincaré series for mixed automorphic forms.
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Let Γ ⊂ SL(2, R) be a Fuchsian group of the first kind acting on the Poincaré
upper half plane H by linear fractional transformations. Let χ : Γ → SL(2, R) be
a homomorphism, and let ω : H → H be a holomorphic map such that ω(γz) =
χ(γ)ω(z) for all γ ∈ Γ and z ∈ H. We assume that the inverse image of a parabolic
subgroup of χ(Γ) under χ is parabolic. If J : SL(2, R) ×H → C is the automorphy
factor defined by J

((
a b
c d

)
, z

)
= cz + d, then a mixed automorphic (resp. cusp) form

of type (p, q) is a holomorphic function f : H → C satisfying

f(γz) = J(γ, z)pJ
(
χ(γ), ω(z)

)q
f(z)

for all γ ∈ Γ and z ∈ H that is holomorphic (resp. vanishes) at the cusps of Γ. Various
aspects of mixed automorphic forms of the above type have been investigated in a
number of papers (see e.g. [1], [5], [8]). Mixed automorphic forms of several variables
have also been studied in connection with holomorphic forms on families of abelian
varieties (cf. [6], [7], [9]). In this paper we construct Eisenstein series and Poincaré
series that are mixed automorphic forms in one variable of type (2k + 2, 2m) for
some nonnegative integers k and m.

2. Eisenstein series and Poincaré series

Let Γ ⊂ SL(2, R) be a Fuchsian group of the first kind acting on the Poincaré
upper half plane H by linear fractional transformations. Let χ : Γ → SL(2, R) be a
homomorphism, and let ω : H → H be a holomorphic map satisfying

(2.1) ω(γz) = χ(γ)ω(z)

for all γ ∈ Γ and z ∈ H. We assume that the inverse image of a parabolic subgroup
of Γ′ = χ(Γ) under χ is a parabolic subgroup of Γ so that the Γ-cusps and Γ′-cusps
correspond. In addition, we also assume that Imω(z) → ∞ as Im z → ∞. Thus we
can extend ω to a map

H ∪ {Γ-cusps} → H′ ∪ {Γ′-cusps},

which we also denote by ω, such that (2.1) holds for all z ∈ H ∪ {Γ-cusps} and
γ ∈ Γ. Let J : SL(2, R) ×H → C be the automorphy factor of SL(2, R) defined by
J(g, w) = cw + d if

g =
(

a b
c d

)
∈ SL(2, R)
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and w ∈ H. Thus we have

J(gg′, z) = J(g, g′z)J(g′, z)

for all z ∈ H and g, g′ ∈ G. Given a function f : H → C, an element γ in Γ, and
nonnegative integers p and q, we define the function f |(p,q)γ : H → C by

(
f |(p,q)γ

)
(z) = J(γ, z)−p J

(
χ(γ), ω(z)

)−q
f(γz)

for all z ∈ H.

Definition 2.1. Let p and q be nonnegative integers. A holomorphic function
f : H → C is said to be a mixed automorphic form of type (p, q) associated to Γ, ω

and χ if f satisfies the following conditions:
(i) f |(p,q)γ = f for all γ ∈ Γ.
(ii) f is holomorphic at each Γ-cusp.

The function f is said to be a mixed cusp form of type (p, q) associated to Γ, ω and
χ if (ii) is replaced by

(ii)′ f vanishes at each Γ-cusp (see [5] for details).

Remark 2.2. A mixed automorphic form of type (p, 0) associated to Γ, ω and χ is
a usual elliptic modular form of weight p for Γ. On the other hand, if ω and χ are
the identity maps, then a mixed automorphic form of type (p, q) associated to Γ,
ω and χ becomes a modular form of weight p + q for Γ. Mixed automorphic forms
of type (p, q) with p even can be identified with holomorphic forms of the highest
degree on the fiber product of a finite number of elliptic surfaces (see e.g. [4]). Mixed
automorphic forms can be extended to the case of several variables, and they are
linked to holomorphic forms on families of more general abelian varieties, (cf. [6],
[7], [8]).

Let s be a cusp of Γ with σs = ∞ for some σ ∈ SL(2, R). Then there is a
parabolic element α ∈ Γ such that αs = s. By our assumption on χ, χ(α) is a
parabolic element of χ(Γ), and hence there is a cusp sχ of χ(Γ) and an element
σχ ∈ SL(2, R) such that

χ(α)sχ = sχ, σχsχ = ∞.

Given a function f : H → C and nonnegative integers k, m, we set

(2.2)
(
f |(2k+2,2m)σ

−1
)
(z) = J

(
σ−1, z

)−2k−2
J
(
σ−1
χ , ω(z)

)−2m
f
(
σ−1z

)
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for all z ∈ H. Let Γs = {γ ∈ Γ | γs = s} be the stabilizer of s in Γ, and let h be a
positive real number such that

σΓsσ
−1 · {±1} =

{
±

(
1 h
0 1

)n ∣∣∣ n ∈ Z

}
.

Then, for a nonnegative integer ν, we define the holomorphic function φν : H → C

associated to the cusp s by

(2.3) φν(z) = J(σ, z)−2k−2J
(
σχ, ω(z)

)−2m exp(2πiνσz/h)

for all z ∈ H.

Lemma 2.3

If s is a cusp of Γ, then the associated function φν satisfies

φν |(2k+2,2m)γ = φν

for all γ ∈ Γs.

Proof. For z ∈ H and γ ∈ Γs we have

φν(γz) = J(σ, γz)−2k−2J(σχ, ω(γz))−2m exp(2πiνσγz/h)

= J(σ, γz)−2k−2J(σχ, χ(γ)ω(z))−2m exp(2πiνσγz/h)

= J(σγ, z)−2k−2J(γ, z)2k+2J(σχχ(γ), ω(z))−2m

× J(χ(γ), ω(z))2m exp(2πiν(σγσ−1)σz/h).

Since σγσ−1 and σχχ(γ)σ−1
χ stabilize ∞, we have

J
(
σγσ−1, w

)
= J

(
σχχ(γ)σ−1

χ , σχw
)

= 1

for all w ∈ H, and hence we see that

J(σγ, z) = J
(
σγσ−1, σz

)
· J(σ, z) = J(σ, z),

J
(
σχχ(γ), ω(z)

)
= J

(
σχχ(γ)σ−1

χ , σχω(z)
)
· J

(
σχ, ω(z)) = J(σχ, ω(z)

)
,

and σγz/h = (σγσ−1)σz/h = σz/h + d for some integer d. Thus we obtain

φν(γz) = J(σ, z)−2k−2J(γ, z)2k+2

× J
(
σχ, ω(z)

)−2m
J
(
χ(γ), ω(z)

)2m exp(2πiνσz/h)

= J(γ, z)2k+2J
(
χ(γ), ω(z)

)2m
φν(z),

and therefore the lemma follows. �
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Let s be a cusp of Γ as above, and set

(2.4) P ν
(2k+2,2m)(z) =

∑
γ∈Γs\Γ

(φν |(2k+2,2m)γ)(z)

for all z ∈ H. The convergence of this series will be proved in Section 3.

Definition 2.4. The function P ν
(2k+2,2m)(z) is called a Poincaré series for mixed

automorphic forms if ν ≥ 1, and the function P 0
(2k+2,2m)(z) is called an Eisenstein

series for mixed automorphic forms.

3. Convergence and holomorphy

In this section, we show that the series in (2.4) defining the function P ν
(2k+2,2m)(z)

converges and is holomorphic on H.

Lemma 3.1

Let z0 ∈ H, and let ε be a positive real number such that

N3ε =
{
z ∈ C | |z − z0| ≤ 3ε

}
⊂ H,

and let k and m be nonnegative integers. If ψ is a continuous function on N3ε that

is holomorphic on the interior of N3ε, then there exists a constant C such that

|ψ(z1)| ≤ C

∫
N3ε

|ψ(z)|(Im z)k+1(Imω(z))mdV

for all z1 ∈ Nε = {z ∈ C | |z − z0| ≤ ε}, where dV = dxdy/y2 with x = Re z and

y = Im z.

Proof. Let z1 be an element of Nε, and consider the Taylor expansion of ψ(z) about
z1 of the form

ψ(z) =
∞∑

n=0

an(z − z1)n.

We set N ′
ε = {z ∈ C | |z − z1| < ε}. Then N ′

ε ⊂ N3ε, and we have

∫
N ′

ε

ψ(z)dxdy =
∫ 2π

0

∫ ε

0

∞∑
n=0

anrn+1einθdrdθ = πε2a0 = πε2ψ(z1).
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Hence we obtain

|ψ(z1)| ≤ (πε2)−1

∫
N3ε

|ψ(z)|dxdy

= (πε2)−1

∫
N3ε

|ψ(z)|(Im z)k+1(Imω(z))m

(Im z)k−1(Imω(z))m
dV

≤ (πε2C1)−1

∫
N3ε

|ψ(z)|(Im z)k+1(Imω(z))mdV,

where
C1 = inf

{
(Im z)k−1(Imω(z))m | z ∈ N3ε

}
.

Thus the lemma follows by setting C = (πε2C1)−1. �
If U is a connected open subset of H, then we define the norm ‖ · ‖U on the

space of holomorphic functions on U by

‖ψ‖U =
∫
U

|ψ(z)|(Im z)k+1(Imω(z))mdV,

where ψ is a holomorphic function on U .

Lemma 3.2
Let {fn} be a Cauchy sequence of holomorphic functions on U with respect to

the norm ‖ · ‖U . Then the sequence {fn} converges absolutely to a holomorphic
function on U uniformly on any compact subsets of U .

Proof. Let {fn} be a Cauchy sequence of holomorphic functions on an open set
U ⊂ H. Then by Lemma 3.1, for each z ∈ U , there is a constant C such that∣∣fn(z) − fm(z)

∣∣ ≤ C
∥∥fn − fm

∥∥
U

for all n,m ≥ 0. Thus the sequence {fn(z)} of complex numbers is also a Cauchy
sequence, and therefore it converges. We set f(z) = limn→∞ fn(z) for all z ∈ U .
Let z0 ∈ U , and choose δ > 0 such that

N3δ =
{
z ∈ C | |z − z0| ≤ 3δ

}
⊂ U.

Using Lemma 3.1 again, we have∣∣fn(z) − fm(z)
∣∣ ≤ C ′∥∥fn − fm

∥∥
U

for all z ∈ Nδ = {z ∈ C | |z− z0| ≤ δ}. Given ε > 0, let N be a positive integer such
that ‖fn − fm‖U < ε/(2C ′) whenever m,n > N . For each z ∈ Nδ, if we choose an
integer n′ > N so that |fn′(z) − f(z)| < ε/2, then we obtain∣∣fn(z) − f(z)

∣∣ ≤ ∣∣fn(z) − fn′(z)
∣∣ +

∣∣fn′(z) − f(z)
∣∣ < ε

for all n > N . Thus the sequence {fn} converges to f uniformly on Nδ and therefore
on any compact subsets of U . Hence it follows that f is holomorphic function on
U . �
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Let φν be as in (2.3), and let {s1, . . . , sµ} be the set of all Γ-inequivalent cusps
of Γ. We choose a neighborhoods Ui of si for each i ∈ {1, . . . , µ}. Then we have

(3.1)
∫

Γ0\H′
|φν(z)|(Im z)p(Imω(z))qdV < ∞ ,

where p and q are nonnegative integers and

(3.2) H′ = H−
µ⋃

i=1

⋃
γ∈Γ

γUi.

Theorem 3.3

The series in (2.4) defining P ν
(2k+2,2m)(z) converges absolutely on H and uni-

formly on compact subsets, and, in particular, the function P ν
(2k+2,2m)(z) is holo-

morphic on H.

Proof. Let s1, . . . , sµ be the Γ-inequivalent cusps of Γ as above, and let z0 be an
element of H. We choose neighborhoods W of z0 and Ui of si for 1 ≤ i ≤ µ such
that

(3.3)
{
γ ∈ Γ | γW ∩ W �= ∅

}
= Γz0 , γW ∩ Ui = ∅

for all γ ∈ Γ and 1 ≤ i ≤ µ, where Γz0 is the stabilizer of z0 in Γ. Then, using (2.3)
and

Im γw = |J(γ,w)|−2 · Imw, Imω(γw) = |J(χγ, ω(w))|−2 · Imω(w)

for γ ∈ Γ and w ∈ H, we have

‖P ν
(2k+2,2m)‖W =

∫
W

∣∣∣∣
∑

γ∈Γs\Γ
(φν |(2k+2,2m)γ)(z)

∣∣∣∣(Im z)k+1(Imω(z))mdV

≤
∫
W

∑
γ∈Γs\Γ

∣∣(φν |(2k+2,2m)γ)(z)
∣∣(Im z)k+1(Imω(z))mdV

=
∑

γ∈Γs\Γ

∫
W

|φν(γz)|(Im γz)k+1(Imω(γz))mdV

=
∑

γ∈Γs\Γ

∫
γW

|φν(z)|(Im z)k+1(Imω(z))mdV.
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In order to estimate the number of terms in the above sum, let γ′ ∈ Γ and set

Ξ =
{
γ ∈ Γ | γ′′γW ∩ γ′W �= ∅ for some γ′′ ∈ Γs

}
.

Then by (3.3) we see that γ′W ∈ H′ and

|Γs\Ξ| ≤ |Γs\Γsγ
′Γz0 | ≤ |Γz0 |,

where | · | denotes the cardinality. Thus, using this and (3.1), we have
∑

γ∈Γs\Γ

∫
γW

|φν(z)|(Im z)k+1(Imω(z))mdV

≤ |Γz0 |
∫

Γs\H′
|φν(z)|(Im z)k+1(Imω(z))mdV < ∞ .

Hence we obtain ‖P ν
(2k+2,2m)‖W < ∞, and by Lemma 3.2 we see that P ν

(2k+2,2m)(z)
converges absolutely on W and uniformly on compact subsets of W . Thus it follows
that the function P ν

(2k+2,2m)(z) is holomorphic on W , and therefore is holomorphic
on H as well. �

4. Cusp conditions

In this section, we show that the function P ν
(2k+2,2m)(z) is holomorphic at each cusp

for all nonnegative integers ν and that it vanishes at each cusp for ν > 0.

Lemma 4.1
Let s′ be a cusp of Γ such that σ′s′ = ∞ with σ′ ∈ SL(2, R), and let σ′

χ ∈
SL(2, R) be an element with σ′

χω(s) = ∞. Using the notation in (2.2), the function
φν given in (2.3) satisfies the following conditions.

(i) If s′ is not Γ-equivalent to s, then there exist positive real numbers M and λ
such that

(4.1)
∣∣(φν |(2k+2,2m)σ

′−1)(z)
∣∣ ≤ M |z|−2k−2

whenever Im z > λ.
(ii) If s′ is Γ-equivalent to s, then there exist positive real numbers M and λ such
that

(4.2)
∣∣(φν |(2k+2,2m)σ

′−1)(z)
∣∣ ≤ M

whenever Im z > λ. If in addition ν > 0, then we have

(4.3) (φν |(2k+2,2m)σ
′−1)(z) → 0

as Im z → ∞.
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Proof. Using (2.2) and (2.3), for z ∈ H we have

(
φν |(2k+2,2m)σ

′−1
)
(z) = J(σ′−1, z)−2k−2J

(
σ′
χ
−1, ω(z)

)−2m

× J
(
σ, σ′−1z

)−2k−2
J
(
σχ, ω(σ′−1z)

)−2m

× exp(2πiνσσ′−1/h) .

If σσ′−1 =
(
a b
c d

)
and if Im z > 2|d|/|c|, then we have

∣∣J(σ, σ′−1z) · J(σ′−1, z)
∣∣ =

∣∣J(σσ′−1, z)
∣∣ = |cz + d|

≥ |c||z| − |d| ≥ |c||z| − (|c|/2)Im z

= |c||z| − (|c|/2)|z| = |c||z|/2 .

On the other hand, if σ′
χ
−1 =

(
a′ b′

c′ d′
)

and σχ =
(
a′′ b′′

c′′ d′′
)
, then we obtain

|J(σ′
χ
−1, ω(z))||J(σχ, ω(σ′−1z))| = |c′ω(z) + d′||c′′ω(σ′−1z) + d′′| .

Since Imω(z) → ∞ and ω(σ′−1z) → ω(s′) as Im z → ∞, there exist real numbers
A, λ′ > 0 such that

|J(σ′
χ
−1, ω(z))||J(σχ, ω(σ′−1z))| ≥ A

whenever Im z > λ′. We set λ = max(λ′, 2|d|/|c|). Then, whenever Im z > λ, we
have

∣∣(φν |(2k+2,2m)σ
′−1)(z)

∣∣ ≤ (|c||z|/2)−2k−2A−2m exp(−2πνσσ′(Im z)/h) .

Thus (4.1) holds for M = (|c|/2)−2k−2A−2m exp(−2πνσσ′λ/h), and therefore (i)
follows. As for (ii), if s′ is equivalent to s, we may assume that σ = σ′. Thus we
have (

φν |(2k+2,2m)σ
′−1

)
(z) = J(1, z)−2k−2J

(
σ−1
χ , ω(z)

)−2m

× J
(
σχ, ω(σ−1z)

)−2m exp(2πiνz/h) .

Since J(1, z) = 1, we obtain (4.2) by arguing as in the case of (i). �

Theorem 4.2

Let s0 be a cusp of Γ. Then the function P ν
(2k+2,2m)(z) is holomorphic at s0 for

all nonnegative integers ν. Furthermore, P ν
(2k+2,2m)(z) vanishes at s0 if ν > 0.



234 Lee

Proof. Let Γs0 ⊂ Γ be the stabilizer of the cusp s0, and let {δ} be a complete set of
representatives of Γs\Γ/Γs0 . Given δ, let {η} be a complete set of representatives
of δ−1Γsδ ∩ Γs0\Γs0 , so that we have Γ =

∐
δ,η Γsδη. We set

φν,δ(z) =
∑
η

(φν |(2k+2,2m)δη)(z)

for all z ∈ H. Then we have

P ν
(2k+2,2m)(z) =

∑
δ

∑
η

(φν |(2k+2,2m)δη)(z) =
∑
δ

φν,δ(z) .

By Theorem 3.3 there is a neighborhood U of s0 in H such that P ν
(2k+2,2m)(z)

converges uniformly on any compact subset of U . Hence, if σ0s0 = ∞ with σ0 ∈
SL(2, R), then the function

P ν
(2k+2,2m)|(2k+2,2m)σ

−1
0 =

∑
δ

φν,δ |(2k+2,2m)σ
−1
0

converges uniformly on any compact subset of {z ∈ H | Im z > d} for some positive
real number d. Therefore it suffices to show that each φν,δ|(2k+2,2m)σ

−1
0 is holomor-

phic at ∞ and that it has zero at ∞ if ν > 0. First, suppose that δs0 is not a cusp
of Γs. Then δ−1Γsδ ∩ Γs0 coincides with {1} or {±1}, and hence we have

φν,δ|(2k+2,2m)σ
−1
0 = C ·

∑
η∈Γs0

(
φν |(2k+2,2m)δσ

−1
0 σ0ησ−1

0

)

with C = 1 or 1/2, respectively. Applying (4.1) for s = δs0, σ = σ0δ
−1, we obtain

∣∣(φν |(2k+2,2m)δσ
−1
0 )(z)

∣∣ ≤ M |z|−2k−2

for all z with Im z > λ for some M,λ > 0. Thus we obtain

(4.4)
∣∣(φν,δ|(2k+2,2m)σ

−1
0 )(z)

∣∣ ≤ 2M
∑
α∈Z

|z + αb|−2k−2,

where b is a positive real number such that

σ0Γs0σ
−1
0 · {±1} =

{
±

(
1 b
0 1

)α ∣∣α ∈ Z

}
.
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By comparing the series on the right hand side of (4.4) with the series
∑

α∈Z
α−2k−2,

we see that it converges uniformly on any compact subset of the domain Im z >

λ. Hence it follows that φν,δ|(2k+2,2m)σ
−1
0 is holomorphic at ∞. Furthermore,

φν,δ |(2k+2,2m)σ
−1
0 vanishes at ∞ because the right hand side of (4.4) approaches

zero as z → ∞. Next, suppose δs0 is a cusp of Γs. Then δ−1Γsδ ∩Γs0 is a subgroup
of Γs0 of finite index; hence the sum on the right hand side of

φν,δ|(2k+2,2m)σ
−1
0 =

∑
η

(
φν |(2k+2,2m)δσ

−1
0 σ0ησ−1

0

)
,

where the summation is over η ∈ δ−1Γsδ ∩ Γs0\Γs0 , is a finite sum. Using (4.2) for
s = δs0 and σ = σ0δ

−1, for each δ we obtain

∣∣(φν |(2k+2,2m)δσ
−1
0 )(z)

∣∣ ≤ M

for all Im z > λ for some M,λ > 0. For each η ∈ Γs0 we have

σ0ησ−1
0 = ±

(
1 βb
0 1

)

for some β ∈ Z; hence we have

∣∣(φν,δ|(2k+2,2m)σ
−1
0 )(z)

∣∣ ≤ M

for all Im z > λ, and it follows that φν,δ|(2k+2,2m)σ
−1
0 is holomorphic at ∞. Further-

more, if ν > 0, then by (4.3) we have

(
φν |(2k+2,2m)δσ

−1
0

)
(z) → 0

as Im z → ∞; hence we see that φν,δ|(2k+2,2m)σ
−1
0 vanishes at ∞. �

Theorem 4.3

The Eisenstein series P 0
(2k+2,2m)(z) is a mixed automorphic form and the

Poincaré series P ν
(2k+2,2m)(z) is a mixed cusp form for Γ of type (2k + 2, 2m).

Proof. Using the relations

J(γ, γ′z) = J(γ′, z)−1J(γγ′, z) ,

J
(
χ(γ), χ(γ′)ω(z)

)
= J

(
χ(γ′), ω(z)

)−1
J
(
χ(γγ′), ω(z)

)
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for γ, γ′ ∈ Γ and z ∈ H, we obtain

P ν
(2k+2,2m)(γ

′z) =
∑

γ∈Γs\Γ
(φν |(2k+2,2m)γ)(γ′z)

=
∑

γ∈Γs\Γ
J(γ, γ′z)−2k−2J

(
χ(γ), ω(γ′z)

)−2m
φν(γγ′z)

= J(γ′, z)2k+2J
(
χ(γ′), ω(z)

)2m

×
∑

γ∈Γs\Γ
J(γγ′, z)−2k−2J

(
χ(γγ′), ω(z)

)−2m
φν(γγ′z)

= J(γ′, z)2k+2J
(
χ(γ′), ω(z)

)2m
P ν

(2k+2,2m)(z)

for all γ′ ∈ Γ and z ∈ H; hence P ν
(2k+2,2m) satisfies the condition (i) in Definition 2.1.

Therefore the theorem follows from the cusp conditions given in Theorem 4.2. �
Remark 4.4. If ω and χ are the identity maps, then P 0

(2k+2,2m)(z) and P ν
(2k+2,2m)(z)

for ν > 0 are the Eisenstein series and the Poincaré series, respectively, for elliptic
modular forms for Γ of weight 2(k + m + 1). Poincaré series were also considered
in [5] for mixed cusp forms of type (2, 2m).
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