Collect. Math. 51, 3 (2000), 225-236

(c) 2000 Universitat de Barcelona

Eisenstein series and Poincaré series for mixed automorphic forms

Min Ho Lee

Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614, U.S.A.

E-mail: lee@math.uni.edu

Received August 28, 1998. Revised February 18, 2000

Abstract

Mixed automorphic forms generalize elliptic modular forms, and they occur naturally as holomorphic forms of the highest degree on families of abelian varieties parametrized by a Riemann surface. We construct generalized Eisenstein series and Poincaré series, and prove that they are mixed automorphic forms.

1. Introduction

Let E be an elliptic surface over a Riemann surface X (cf. [3]). Then the space of holomorphic two-forms on an elliptic surface is isomorphic to the space of cusp forms of weight three for the corresponding Fuchsian group $\Gamma \subset SL(2,\mathbb{R})$ that determines X if the monodromy representation is simply the inclusion map of Γ in $SL(2,\mathbb{R})$ (cf. [11]). However, when the monodromy representation is not the inclusion map, the holomorphic two-forms on the elliptic surface should be identified with mixed cusp forms whose automorphy factors involve the monodromy representation and the period map of the elliptic surface (see [2]). A geometric interpretation of such mixed automorphic forms of higher weights can be obtained by essentially taking the fiber product of a finite number of elliptic surfaces (cf. [4]). It is well-known that Eisenstein series and Poincaré series provide basic examples of elliptic modular forms (see e.g. [10]). The goal of this paper is to construct the analog of Eisenstein series and Poincaré series for mixed automorphic forms.

Let $\Gamma \subset SL(2,\mathbb{R})$ be a Fuchsian group of the first kind acting on the Poincaré upper half plane \mathcal{H} by linear fractional transformations. Let $\chi:\Gamma\to SL(2,\mathbb{R})$ be a homomorphism, and let $\omega:\mathcal{H}\to\mathcal{H}$ be a holomorphic map such that $\omega(\gamma z)=\chi(\gamma)\omega(z)$ for all $\gamma\in\Gamma$ and $z\in\mathcal{H}$. We assume that the inverse image of a parabolic subgroup of $\chi(\Gamma)$ under χ is parabolic. If $J:SL(2,\mathbb{R})\times\mathcal{H}\to\mathbb{C}$ is the automorphy factor defined by $J\left(\binom{a}{c}\binom{b}{d},z\right)=cz+d$, then a mixed automorphic (resp. cusp) form of type (p,q) is a holomorphic function $f:\mathcal{H}\to\mathbb{C}$ satisfying

$$f(\gamma z) = J(\gamma, z)^p J(\chi(\gamma), \omega(z))^q f(z)$$

for all $\gamma \in \Gamma$ and $z \in \mathcal{H}$ that is holomorphic (resp. vanishes) at the cusps of Γ . Various aspects of mixed automorphic forms of the above type have been investigated in a number of papers (see e.g. [1], [5], [8]). Mixed automorphic forms of several variables have also been studied in connection with holomorphic forms on families of abelian varieties (cf. [6], [7], [9]). In this paper we construct Eisenstein series and Poincaré series that are mixed automorphic forms in one variable of type (2k+2, 2m) for some nonnegative integers k and m.

2. Eisenstein series and Poincaré series

Let $\Gamma \subset SL(2,\mathbb{R})$ be a Fuchsian group of the first kind acting on the Poincaré upper half plane \mathcal{H} by linear fractional transformations. Let $\chi:\Gamma \to SL(2,\mathbb{R})$ be a homomorphism, and let $\omega:\mathcal{H}\to\mathcal{H}$ be a holomorphic map satisfying

(2.1)
$$\omega(\gamma z) = \chi(\gamma)\omega(z)$$

for all $\gamma \in \Gamma$ and $z \in \mathcal{H}$. We assume that the inverse image of a parabolic subgroup of $\Gamma' = \chi(\Gamma)$ under χ is a parabolic subgroup of Γ so that the Γ -cusps and Γ' -cusps correspond. In addition, we also assume that $\operatorname{Im} \omega(z) \to \infty$ as $\operatorname{Im} z \to \infty$. Thus we can extend ω to a map

$$\mathcal{H} \cup \{\Gamma\text{-cusps}\} \to \mathcal{H}' \cup \{\Gamma'\text{-cusps}\},\$$

which we also denote by ω , such that (2.1) holds for all $z \in \mathcal{H} \cup \{\Gamma\text{-cusps}\}$ and $\gamma \in \Gamma$. Let $J: SL(2,\mathbb{R}) \times \mathcal{H} \to \mathbb{C}$ be the automorphy factor of $SL(2,\mathbb{R})$ defined by J(g,w) = cw + d if

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$$

and $w \in \mathcal{H}$. Thus we have

$$J(gg',z) = J(g,g'z)J(g',z)$$

for all $z \in \mathcal{H}$ and $g, g' \in G$. Given a function $f : \mathcal{H} \to \mathbb{C}$, an element γ in Γ , and nonnegative integers p and q, we define the function $f|_{(p,q)}\gamma : \mathcal{H} \to \mathbb{C}$ by

$$(f|_{(p,q)}\gamma)(z) = J(\gamma,z)^{-p} J(\chi(\gamma),\omega(z))^{-q} f(\gamma z)$$

for all $z \in \mathcal{H}$.

DEFINITION 2.1. Let p and q be nonnegative integers. A holomorphic function $f: \mathcal{H} \to \mathbb{C}$ is said to be a mixed automorphic form of type (p, q) associated to Γ , ω and χ if f satisfies the following conditions:

- (i) $f|_{(p,q)}\gamma = f$ for all $\gamma \in \Gamma$.
- (ii) f is holomorphic at each Γ -cusp.

The function f is said to be a mixed cusp form of type (p,q) associated to Γ , ω and χ if (ii) is replaced by

(ii)' f vanishes at each Γ -cusp (see [5] for details).

Remark 2.2. A mixed automorphic form of type (p,0) associated to Γ , ω and χ is a usual elliptic modular form of weight p for Γ . On the other hand, if ω and χ are the identity maps, then a mixed automorphic form of type (p,q) associated to Γ , ω and χ becomes a modular form of weight p+q for Γ . Mixed automorphic forms of type (p,q) with p even can be identified with holomorphic forms of the highest degree on the fiber product of a finite number of elliptic surfaces (see e.g. [4]). Mixed automorphic forms can be extended to the case of several variables, and they are linked to holomorphic forms on families of more general abelian varieties, (cf. [6], [7], [8]).

Let s be a cusp of Γ with $\sigma s = \infty$ for some $\sigma \in SL(2,\mathbb{R})$. Then there is a parabolic element $\alpha \in \Gamma$ such that $\alpha s = s$. By our assumption on χ , $\chi(\alpha)$ is a parabolic element of $\chi(\Gamma)$, and hence there is a cusp s_{χ} of $\chi(\Gamma)$ and an element $\sigma_{\chi} \in SL(2,\mathbb{R})$ such that

$$\chi(\alpha)s_{\chi}=s_{\chi}, \quad \sigma_{\chi}s_{\chi}=\infty.$$

Given a function $f: \mathcal{H} \to \mathbb{C}$ and nonnegative integers k, m, we set

$$(2.2) \qquad (f|_{(2k+2,2m)}\sigma^{-1})(z) = J(\sigma^{-1},z)^{-2k-2}J(\sigma_{\chi}^{-1},\omega(z))^{-2m}f(\sigma^{-1}z)$$

for all $z \in \mathcal{H}$. Let $\Gamma_s = \{ \gamma \in \Gamma \mid \gamma s = s \}$ be the stabilizer of s in Γ , and let h be a positive real number such that

$$\sigma\Gamma_s\sigma^{-1}\cdot\{\pm 1\} = \left\{\pm \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}^n \mid n \in \mathbb{Z}\right\}.$$

Then, for a nonnegative integer ν , we define the holomorphic function $\phi_{\nu}: \mathcal{H} \to \mathbb{C}$ associated to the cusp s by

(2.3)
$$\phi_{\nu}(z) = J(\sigma, z)^{-2k-2} J(\sigma_{\chi}, \omega(z))^{-2m} \exp(2\pi i \nu \sigma z/h)$$

for all $z \in \mathcal{H}$.

Lemma 2.3

If s is a cusp of Γ , then the associated function ϕ_{ν} satisfies

$$\phi_{\nu}|_{(2k+2.2m)}\gamma = \phi_{\nu}$$

for all $\gamma \in \Gamma_s$.

Proof. For $z \in \mathcal{H}$ and $\gamma \in \Gamma_s$ we have

$$\begin{split} \phi_{\nu}(\gamma z) &= J(\sigma, \gamma z)^{-2k-2} J(\sigma_{\chi}, \omega(\gamma z))^{-2m} \exp(2\pi i \nu \sigma \gamma z/h) \\ &= J(\sigma, \gamma z)^{-2k-2} J(\sigma_{\chi}, \chi(\gamma)\omega(z))^{-2m} \exp(2\pi i \nu \sigma \gamma z/h) \\ &= J(\sigma \gamma, z)^{-2k-2} J(\gamma, z)^{2k+2} J(\sigma_{\chi} \chi(\gamma), \omega(z))^{-2m} \\ &\quad \times J(\chi(\gamma), \omega(z))^{2m} \exp(2\pi i \nu (\sigma \gamma \sigma^{-1}) \sigma z/h). \end{split}$$

Since $\sigma \gamma \sigma^{-1}$ and $\sigma_{\chi} \chi(\gamma) \sigma_{\chi}^{-1}$ stabilize ∞ , we have

$$J\!\left(\sigma\gamma\sigma^{-1},w\right)=J\!\left(\sigma_{\chi}\chi(\gamma)\sigma_{\chi}^{-1},\sigma_{\chi}w\right)=1$$

for all $w \in \mathcal{H}$, and hence we see that

$$J(\sigma\gamma, z) = J(\sigma\gamma\sigma^{-1}, \sigma z) \cdot J(\sigma, z) = J(\sigma, z),$$

$$J(\sigma_{\chi}\chi(\gamma), \omega(z)) = J(\sigma_{\chi}\chi(\gamma)\sigma_{\chi}^{-1}, \sigma_{\chi}\omega(z)) \cdot J(\sigma_{\chi}, \omega(z)) = J(\sigma_{\chi}, \omega(z)),$$

and $\sigma \gamma z/h = (\sigma \gamma \sigma^{-1})\sigma z/h = \sigma z/h + d$ for some integer d. Thus we obtain

$$\phi_{\nu}(\gamma z) = J(\sigma, z)^{-2k-2} J(\gamma, z)^{2k+2}$$

$$\times J(\sigma_{\chi}, \omega(z))^{-2m} J(\chi(\gamma), \omega(z))^{2m} \exp(2\pi i \nu \sigma z/h)$$

$$= J(\gamma, z)^{2k+2} J(\chi(\gamma), \omega(z))^{2m} \phi_{\nu}(z),$$

and therefore the lemma follows. \Box

Let s be a cusp of Γ as above, and set

(2.4)
$$P^{\nu}_{(2k+2,2m)}(z) = \sum_{\gamma \in \Gamma_s \backslash \Gamma} (\phi_{\nu}|_{(2k+2,2m)}\gamma)(z)$$

for all $z \in \mathcal{H}$. The convergence of this series will be proved in Section 3.

DEFINITION 2.4. The function $P^{\nu}_{(2k+2,2m)}(z)$ is called a *Poincaré series* for mixed automorphic forms if $\nu \geq 1$, and the function $P^0_{(2k+2,2m)}(z)$ is called an *Eisenstein series* for mixed automorphic forms.

3. Convergence and holomorphy

In this section, we show that the series in (2.4) defining the function $P^{\nu}_{(2k+2,2m)}(z)$ converges and is holomorphic on \mathcal{H} .

Lemma 3.1

Let $z_0 \in \mathcal{H}$, and let ε be a positive real number such that

$$N_{3\varepsilon} = \{ z \in \mathbb{C} \mid |z - z_0| \le 3\varepsilon \} \subset \mathcal{H},$$

and let k and m be nonnegative integers. If ψ is a continuous function on $N_{3\varepsilon}$ that is holomorphic on the interior of $N_{3\varepsilon}$, then there exists a constant C such that

$$|\psi(z_1)| \le C \int_{N_{3\varepsilon}} |\psi(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^m dV$$

for all $z_1 \in N_{\varepsilon} = \{z \in \mathbb{C} \mid |z - z_0| \le \varepsilon\}$, where $dV = dxdy/y^2$ with $x = \operatorname{Re} z$ and $y = \operatorname{Im} z$.

Proof. Let z_1 be an element of N_{ε} , and consider the Taylor expansion of $\psi(z)$ about z_1 of the form

$$\psi(z) = \sum_{n=0}^{\infty} a_n (z - z_1)^n.$$

We set $N'_{\varepsilon} = \{z \in \mathbb{C} \mid |z - z_1| < \varepsilon\}$. Then $N'_{\varepsilon} \subset N_{3\varepsilon}$, and we have

$$\int_{N_{\varepsilon}'} \psi(z) dx dy = \int_0^{2\pi} \int_0^{\varepsilon} \sum_{n=0}^{\infty} a_n r^{n+1} e^{in\theta} dr d\theta = \pi \varepsilon^2 a_0 = \pi \varepsilon^2 \psi(z_1).$$

Hence we obtain

$$\begin{aligned} |\psi(z_1)| &\leq (\pi \varepsilon^2)^{-1} \int_{N_{3\varepsilon}} |\psi(z)| dx dy \\ &= (\pi \varepsilon^2)^{-1} \int_{N_{3\varepsilon}} \frac{|\psi(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^m}{(\operatorname{Im} z)^{k-1} (\operatorname{Im} \omega(z))^m} dV \\ &\leq (\pi \varepsilon^2 C_1)^{-1} \int_{N_{3\varepsilon}} |\psi(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^m dV, \end{aligned}$$

where

$$C_1 = \inf \left\{ (\operatorname{Im} z)^{k-1} (\operatorname{Im} \omega(z))^m \mid z \in N_{3\varepsilon} \right\}.$$

Thus the lemma follows by setting $C = (\pi \varepsilon^2 C_1)^{-1}$. \square

If U is a connected open subset of \mathcal{H} , then we define the norm $\|\cdot\|_U$ on the space of holomorphic functions on U by

$$\|\psi\|_U = \int_U |\psi(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^m dV,$$

where ψ is a holomorphic function on U.

Lemma 3.2

Let $\{f_n\}$ be a Cauchy sequence of holomorphic functions on U with respect to the norm $\|\cdot\|_U$. Then the sequence $\{f_n\}$ converges absolutely to a holomorphic function on U uniformly on any compact subsets of U.

Proof. Let $\{f_n\}$ be a Cauchy sequence of holomorphic functions on an open set $U \subset \mathcal{H}$. Then by Lemma 3.1, for each $z \in U$, there is a constant C such that

$$\left| f_n(z) - f_m(z) \right| \le C \left\| f_n - f_m \right\|_U$$

for all $n, m \geq 0$. Thus the sequence $\{f_n(z)\}$ of complex numbers is also a Cauchy sequence, and therefore it converges. We set $f(z) = \lim_{n \to \infty} f_n(z)$ for all $z \in U$. Let $z_0 \in U$, and choose $\delta > 0$ such that

$$N_{3\delta} = \{ z \in \mathbb{C} \mid |z - z_0| \le 3\delta \} \subset U.$$

Using Lemma 3.1 again, we have

$$\left| f_n(z) - f_m(z) \right| \le C' \left\| f_n - f_m \right\|_U$$

for all $z \in N_{\delta} = \{z \in \mathbb{C} \mid |z - z_0| \leq \delta\}$. Given $\varepsilon > 0$, let N be a positive integer such that $||f_n - f_m||_U < \varepsilon/(2C')$ whenever m, n > N. For each $z \in N_{\delta}$, if we choose an integer n' > N so that $|f_{n'}(z) - f(z)| < \varepsilon/2$, then we obtain

$$|f_n(z) - f(z)| \le |f_n(z) - f_{n'}(z)| + |f_{n'}(z) - f(z)| < \varepsilon$$

for all n > N. Thus the sequence $\{f_n\}$ converges to f uniformly on N_{δ} and therefore on any compact subsets of U. Hence it follows that f is holomorphic function on U. \square

Let ϕ_{ν} be as in (2.3), and let $\{s_1, \ldots, s_{\mu}\}$ be the set of all Γ -inequivalent cusps of Γ . We choose a neighborhoods U_i of s_i for each $i \in \{1, \ldots, \mu\}$. Then we have

(3.1)
$$\int_{\Gamma_0 \setminus \mathcal{H}'} |\phi_{\nu}(z)| (\operatorname{Im} z)^p (\operatorname{Im} \omega(z))^q dV < \infty,$$

where p and q are nonnegative integers and

(3.2)
$$\mathcal{H}' = \mathcal{H} - \bigcup_{i=1}^{\mu} \bigcup_{\gamma \in \Gamma} \gamma U_i.$$

Theorem 3.3

The series in (2.4) defining $P^{\nu}_{(2k+2,2m)}(z)$ converges absolutely on \mathcal{H} and uniformly on compact subsets, and, in particular, the function $P^{\nu}_{(2k+2,2m)}(z)$ is holomorphic on \mathcal{H} .

Proof. Let s_1, \ldots, s_{μ} be the Γ -inequivalent cusps of Γ as above, and let z_0 be an element of \mathcal{H} . We choose neighborhoods W of z_0 and U_i of s_i for $1 \leq i \leq \mu$ such that

(3.3)
$$\left\{ \gamma \in \Gamma \mid \gamma W \cap W \neq \emptyset \right\} = \Gamma_{z_0}, \quad \gamma W \cap U_i = \emptyset$$

for all $\gamma \in \Gamma$ and $1 \le i \le \mu$, where Γ_{z_0} is the stabilizer of z_0 in Γ . Then, using (2.3) and

$$\operatorname{Im} \gamma w = |J(\gamma, w)|^{-2} \cdot \operatorname{Im} w, \quad \operatorname{Im} \omega(\gamma w) = |J(\chi \gamma, \omega(w))|^{-2} \cdot \operatorname{Im} \omega(w)$$

for $\gamma \in \Gamma$ and $w \in \mathcal{H}$, we have

$$||P_{(2k+2,2m)}^{\nu}||_{W} = \int_{W} \left| \sum_{\gamma \in \Gamma_{s} \backslash \Gamma} (\phi_{\nu}|_{(2k+2,2m)} \gamma)(z) \right| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^{m} dV$$

$$\leq \int_{W} \sum_{\gamma \in \Gamma_{s} \backslash \Gamma} \left| (\phi_{\nu}|_{(2k+2,2m)} \gamma)(z) \right| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^{m} dV$$

$$= \sum_{\gamma \in \Gamma_{s} \backslash \Gamma} \int_{W} |\phi_{\nu}(\gamma z)| (\operatorname{Im} \gamma z)^{k+1} (\operatorname{Im} \omega(\gamma z))^{m} dV$$

$$= \sum_{\gamma \in \Gamma} \int_{V} \int_{\gamma W} |\phi_{\nu}(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^{m} dV.$$

In order to estimate the number of terms in the above sum, let $\gamma' \in \Gamma$ and set

$$\Xi = \{ \gamma \in \Gamma \mid \gamma'' \gamma W \cap \gamma' W \neq \emptyset \text{ for some } \gamma'' \in \Gamma_s \}.$$

Then by (3.3) we see that $\gamma'W \in \mathcal{H}'$ and

$$|\Gamma_s \setminus \Xi| \le |\Gamma_s \setminus \Gamma_s \gamma' \Gamma_{z_0}| \le |\Gamma_{z_0}|,$$

where $|\cdot|$ denotes the cardinality. Thus, using this and (3.1), we have

$$\sum_{\gamma \in \Gamma_s \setminus \Gamma} \int_{\gamma W} |\phi_{\nu}(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^m dV$$

$$\leq |\Gamma_{z_0}| \int_{\Gamma_s \setminus \mathcal{H}'} |\phi_{\nu}(z)| (\operatorname{Im} z)^{k+1} (\operatorname{Im} \omega(z))^m dV < \infty.$$

Hence we obtain $||P^{\nu}_{(2k+2,2m)}||_W < \infty$, and by Lemma 3.2 we see that $P^{\nu}_{(2k+2,2m)}(z)$ converges absolutely on W and uniformly on compact subsets of W. Thus it follows that the function $P^{\nu}_{(2k+2,2m)}(z)$ is holomorphic on W, and therefore is holomorphic on \mathcal{H} as well. \square

4. Cusp conditions

In this section, we show that the function $P^{\nu}_{(2k+2,2m)}(z)$ is holomorphic at each cusp for all nonnegative integers ν and that it vanishes at each cusp for $\nu > 0$.

Lemma 4.1

Let s' be a cusp of Γ such that $\sigma's' = \infty$ with $\sigma' \in SL(2,\mathbb{R})$, and let $\sigma'_{\chi} \in SL(2,\mathbb{R})$ be an element with $\sigma'_{\chi}\omega(s) = \infty$. Using the notation in (2.2), the function ϕ_{ν} given in (2.3) satisfies the following conditions.

(i) If s' is not Γ -equivalent to s, then there exist positive real numbers M and λ such that

(4.1)
$$\left| (\phi_{\nu}|_{(2k+2,2m)} \sigma'^{-1})(z) \right| \le M|z|^{-2k-2}$$

whenever $\operatorname{Im} z > \lambda$.

(ii) If s' is Γ -equivalent to s, then there exist positive real numbers M and λ such that

(4.2)
$$\left| (\phi_{\nu}|_{(2k+2,2m)} \sigma'^{-1})(z) \right| \leq M$$

whenever $\text{Im } z > \lambda$. If in addition $\nu > 0$, then we have

(4.3)
$$(\phi_{\nu}|_{(2k+2,2m)}\sigma'^{-1})(z) \to 0$$

as $\operatorname{Im} z \to \infty$.

Proof. Using (2.2) and (2.3), for $z \in \mathcal{H}$ we have

$$(\phi_{\nu}|_{(2k+2,2m)}\sigma'^{-1})(z) = J(\sigma'^{-1},z)^{-2k-2}J(\sigma'_{\chi}^{-1},\omega(z))^{-2m} \times J(\sigma,\sigma'^{-1}z)^{-2k-2}J(\sigma_{\chi},\omega(\sigma'^{-1}z))^{-2m} \times \exp(2\pi i\nu\sigma\sigma'^{-1}/h).$$

If $\sigma \sigma'^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and if Im z > 2|d|/|c|, then we have

$$|J(\sigma, \sigma'^{-1}z) \cdot J(\sigma'^{-1}, z)| = |J(\sigma\sigma'^{-1}, z)| = |cz + d|$$

$$\geq |c||z| - |d| \geq |c||z| - (|c|/2) \operatorname{Im} z$$

$$= |c||z| - (|c|/2)|z| = |c||z|/2.$$

On the other hand, if $\sigma_{\chi}^{\prime -1} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ and $\sigma_{\chi} = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$, then we obtain

$$|J(\sigma_{\chi}'^{-1}, \omega(z))||J(\sigma_{\chi}, \omega(\sigma'^{-1}z))| = |c'\omega(z) + d'||c''\omega(\sigma'^{-1}z) + d''|.$$

Since $\operatorname{Im} \omega(z) \to \infty$ and $\omega(\sigma'^{-1}z) \to \omega(s')$ as $\operatorname{Im} z \to \infty$, there exist real numbers $A, \lambda' > 0$ such that

$$|J(\sigma_{\chi}^{\prime-1},\omega(z))||J(\sigma_{\chi},\omega(\sigma^{\prime-1}z))| \ge A$$

whenever $\text{Im } z > \lambda'$. We set $\lambda = \max(\lambda', 2|d|/|c|)$. Then, whenever $\text{Im } z > \lambda$, we have

$$|(\phi_{\nu}|_{(2k+2,2m)}\sigma'^{-1})(z)| \le (|c||z|/2)^{-2k-2}A^{-2m}\exp(-2\pi\nu\sigma\sigma'(\operatorname{Im} z)/h).$$

Thus (4.1) holds for $M=(|c|/2)^{-2k-2}A^{-2m}\exp(-2\pi\nu\sigma\sigma'\lambda/h)$, and therefore (i) follows. As for (ii), if s' is equivalent to s, we may assume that $\sigma=\sigma'$. Thus we have

$$(\phi_{\nu}|_{(2k+2,2m)}\sigma'^{-1})(z) = J(1,z)^{-2k-2}J(\sigma_{\chi}^{-1},\omega(z))^{-2m} \times J(\sigma_{\chi},\omega(\sigma^{-1}z))^{-2m} \exp(2\pi i\nu z/h).$$

Since J(1,z)=1, we obtain (4.2) by arguing as in the case of (i). \square

Theorem 4.2

Let s_0 be a cusp of Γ . Then the function $P^{\nu}_{(2k+2,2m)}(z)$ is holomorphic at s_0 for all nonnegative integers ν . Furthermore, $P^{\nu}_{(2k+2,2m)}(z)$ vanishes at s_0 if $\nu > 0$.

Proof. Let $\Gamma_{s_0} \subset \Gamma$ be the stabilizer of the cusp s_0 , and let $\{\delta\}$ be a complete set of representatives of $\Gamma_s \backslash \Gamma / \Gamma_{s_0}$. Given δ , let $\{\eta\}$ be a complete set of representatives of $\delta^{-1}\Gamma_s \delta \cap \Gamma_{s_0} \backslash \Gamma_{s_0}$, so that we have $\Gamma = \coprod_{\delta,\eta} \Gamma_s \delta \eta$. We set

$$\phi_{\nu,\delta}(z) = \sum_{\eta} (\phi_{\nu}|_{(2k+2,2m)} \delta \eta)(z)$$

for all $z \in \mathcal{H}$. Then we have

$$P^{\nu}_{(2k+2,2m)}(z) = \sum_{\delta} \sum_{\eta} (\phi_{\nu}|_{(2k+2,2m)} \delta \eta)(z) = \sum_{\delta} \phi_{\nu,\delta}(z).$$

By Theorem 3.3 there is a neighborhood U of s_0 in \mathcal{H} such that $P^{\nu}_{(2k+2,2m)}(z)$ converges uniformly on any compact subset of U. Hence, if $\sigma_0 s_0 = \infty$ with $\sigma_0 \in SL(2,\mathbb{R})$, then the function

$$P_{(2k+2,2m)}^{\nu}|_{(2k+2,2m)}\sigma_0^{-1} = \sum_{\delta} \phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1}$$

converges uniformly on any compact subset of $\{z \in \mathcal{H} \mid \text{Im } z > d\}$ for some positive real number d. Therefore it suffices to show that each $\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1}$ is holomorphic at ∞ and that it has zero at ∞ if $\nu > 0$. First, suppose that δs_0 is not a cusp of Γ_s . Then $\delta^{-1}\Gamma_s\delta \cap \Gamma_{s_0}$ coincides with $\{1\}$ or $\{\pm 1\}$, and hence we have

$$\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1} = C \cdot \sum_{\eta \in \Gamma_{s_0}} \left(\phi_{\nu}|_{(2k+2,2m)} \delta \sigma_0^{-1} \sigma_0 \eta \sigma_0^{-1} \right)$$

with C = 1 or 1/2, respectively. Applying (4.1) for $s = \delta s_0$, $\sigma = \sigma_0 \delta^{-1}$, we obtain

$$\left| (\phi_{\nu}|_{(2k+2,2m)} \delta \sigma_0^{-1})(z) \right| \le M|z|^{-2k-2}$$

for all z with $\text{Im } z > \lambda$ for some $M, \lambda > 0$. Thus we obtain

(4.4)
$$|(\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1})(z)| \le 2M \sum_{\alpha \in \mathbb{Z}} |z + \alpha b|^{-2k-2},$$

where b is a positive real number such that

$$\sigma_0 \Gamma_{s_0} \sigma_0^{-1} \cdot \{\pm 1\} = \left\{ \pm \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}^{\alpha} \mid \alpha \in \mathbb{Z} \right\}.$$

By comparing the series on the right hand side of (4.4) with the series $\sum_{\alpha \in \mathbb{Z}} \alpha^{-2k-2}$, we see that it converges uniformly on any compact subset of the domain $\operatorname{Im} z > \lambda$. Hence it follows that $\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1}$ is holomorphic at ∞ . Furthermore, $\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1}$ vanishes at ∞ because the right hand side of (4.4) approaches zero as $z \to \infty$. Next, suppose δs_0 is a cusp of Γ_s . Then $\delta^{-1}\Gamma_s\delta \cap \Gamma_{s_0}$ is a subgroup of Γ_{s_0} of finite index; hence the sum on the right hand side of

$$|\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1} = \sum_{\eta} (\phi_{\nu}|_{(2k+2,2m)}\delta\sigma_0^{-1}\sigma_0\eta\sigma_0^{-1}),$$

where the summation is over $\eta \in \delta^{-1}\Gamma_s \delta \cap \Gamma_{s_0} \backslash \Gamma_{s_0}$, is a finite sum. Using (4.2) for $s = \delta s_0$ and $\sigma = \sigma_0 \delta^{-1}$, for each δ we obtain

$$\left| (\phi_{\nu}|_{(2k+2,2m)} \delta \sigma_0^{-1})(z) \right| \le M$$

for all $\text{Im } z > \lambda$ for some $M, \lambda > 0$. For each $\eta \in \Gamma_{s_0}$ we have

$$\sigma_0 \eta \sigma_0^{-1} = \pm \begin{pmatrix} 1 & \beta b \\ 0 & 1 \end{pmatrix}$$

for some $\beta \in \mathbb{Z}$; hence we have

$$\left| (\phi_{\nu,\delta}|_{(2k+2,2m)} \sigma_0^{-1})(z) \right| \le M$$

for all Im $z > \lambda$, and it follows that $\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1}$ is holomorphic at ∞ . Furthermore, if $\nu > 0$, then by (4.3) we have

$$\left(\phi_{\nu}|_{(2k+2,2m)}\delta\sigma_0^{-1}\right)(z)\to 0$$

as Im $z \to \infty$; hence we see that $\phi_{\nu,\delta}|_{(2k+2,2m)}\sigma_0^{-1}$ vanishes at ∞ . \square

Theorem 4.3

The Eisenstein series $P^0_{(2k+2,2m)}(z)$ is a mixed automorphic form and the Poincaré series $P^{\nu}_{(2k+2,2m)}(z)$ is a mixed cusp form for Γ of type (2k+2,2m).

Proof. Using the relations

$$J(\gamma, \gamma'z) = J(\gamma', z)^{-1} J(\gamma \gamma', z) ,$$

$$J(\chi(\gamma), \chi(\gamma')\omega(z)) = J(\chi(\gamma'), \omega(z))^{-1} J(\chi(\gamma \gamma'), \omega(z))$$

for $\gamma, \gamma' \in \Gamma$ and $z \in \mathcal{H}$, we obtain

$$\begin{split} P^{\nu}_{(2k+2,2m)}(\gamma'z) &= \sum_{\gamma \in \Gamma_s \backslash \Gamma} (\phi_{\nu}|_{(2k+2,2m)}\gamma)(\gamma'z) \\ &= \sum_{\gamma \in \Gamma_s \backslash \Gamma} J(\gamma,\gamma'z)^{-2k-2} J\big(\chi(\gamma),\omega(\gamma'z)\big)^{-2m} \phi_{\nu}(\gamma\gamma'z) \\ &= J(\gamma',z)^{2k+2} J\big(\chi(\gamma'),\omega(z)\big)^{2m} \\ &\quad \times \sum_{\gamma \in \Gamma_s \backslash \Gamma} J(\gamma\gamma',z)^{-2k-2} J\big(\chi(\gamma\gamma'),\omega(z)\big)^{-2m} \phi_{\nu}(\gamma\gamma'z) \\ &= J(\gamma',z)^{2k+2} J\big(\chi(\gamma'),\omega(z)\big)^{2m} P^{\nu}_{(2k+2,2m)}(z) \end{split}$$

for all $\gamma' \in \Gamma$ and $z \in \mathcal{H}$; hence $P^{\nu}_{(2k+2,2m)}$ satisfies the condition (i) in Definition 2.1. Therefore the theorem follows from the cusp conditions given in Theorem 4.2. \square

Remark 4.4. If ω and χ are the identity maps, then $P^0_{(2k+2,2m)}(z)$ and $P^{\nu}_{(2k+2,2m)}(z)$ for $\nu > 0$ are the Eisenstein series and the Poincaré series, respectively, for elliptic modular forms for Γ of weight 2(k+m+1). Poincaré series were also considered in [5] for mixed cusp forms of type (2,2m).

References

- 1. Y. Choie, Construction of mixed automorphic forms, *J. Austral. Math. Soc. Ser. A* **63** (1997), 390–395.
- 2. B. Hunt and W. Meyer, Mixed automorphic forms and invariants of elliptic surfaces, *Math. Ann.* **271** (1985), 53–80.
- 3. K. Kodaira, On compact analytic surfaces II, Ann. of Math. 77 (1963), 563-626.
- 4. M. H. Lee, Mixed cusp forms and holomorphic forms on elliptic varieties, *Pacific J. Math.* **132** (1988), 363–370.
- M. H. Lee, Mixed cusp forms and Poincaré series, Rocky Mountain J. Math. 23 (1993), 1009– 1022.
- 6. M. H. Lee, Mixed Siegel modular forms and Kuga fiber varieties, *Illinois J. Math.* **38** (1994), 692–700.
- 7. M. H. Lee, Mixed automorphic vector bundles on Shimura varieties, *Pacific J. Math.* **173** (1996), 105–126.
- 8. M. H. Lee, Mixed cusp forms and parabolic cohomology, *J. Austral. Math. Soc. Ser. A* **62** (1997), 279–289.
- 9. M. H. Lee, Mixed Hilbert modular forms and families of abelian varieties, *Glasgow Math. J.* **39** (1997), 131–140.
- 10. T. Miyake, Modular forms, Springer-Verlag, Heidelberg, 1989.
- 11. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59.