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Abstract

We give characterizations of orthogonal families, tight frames and orthonormal
bases of Gabor systems. The conditions we propose are stated in terms of
equations for the Fourier transforms of the Gabor system’s generating functions.

1. Introduction

In many studies one seeks a particular function g that produces an orthonormal
system or even a basis, as well as similar systems, when certain group actions are
performed on g. This is well known in the case of wavelets, where the object is to
find functions ψ ∈ L2(R), such that {ψj,k : j, k ∈ Z} forms an orthonormal basis.
In this particular case we first apply the group action of translations, followed by
dyadic dilations.

More than 50 years ago, Gabor proposed the study of systems defined by
gm,n(x) = e2πimxg(x − n),m, n ∈ Z. This, of course, is very natural from the
point of view of Fourier analysis. A simple example of such a system is provided by
g = χ[0,1]. In this case {gm,n : m,n ∈ Z} is an orthonormal basis for L2(R). This
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example is typical for such systems since one cannot expect to have both smooth-
ness and rapid decay at infinity for g, if we are seeking an orthonormal basis of this
type. The well known result of Balian and Low states that in such a case either∫
x2|g(x)|2dx = ∞ or

∫
ξ2|ĝ(ξ)|2dξ = ∞.

One can consider somewhat more general systems, where translations and mod-
ulations have the form: translations by bn and modulations of the form e2πiamx,
where a and b are nonzero, real numbers.Again it was observed that there are lim-
itations to such choices. In fact, Rieffel [13] has shown that if ab > 1, then such
a system cannot be complete. If ab = 1, we are back to the situation of Gabor
systems. If ab < 1 orthonormal bases are not possible; nevertheless one can obtain
tight frames by forming these systems. For more information on this topic, we refer
the reader to the book of Daubechies [8], or to the survey [1].

In the case of wavelet systems, simple equations have been found to completely
characterize orthonormality, completeness and other important properties of these
systems. Moreover, these equations are valid for various d-dimensional versions of
wavelets. For references see the book of Hernández and Weiss [11], where the two
equations of Wang [15] and Gripenberg, for wavelets with dyadic dilations appeared.
For other dilations see [9], [6] or [4]. We also refer the reader to the works of Lemarié
[12] and Daubechies [7], for similar considerations.

In this paper we shall consider the d-dimensional case as well, and we will present
equations that characterize the orthogonal families, tight frames and orthonormal
bases of Gabor systems. In a later paper we shall present the extension of the result
of Rieffel and the special case of Daubechies, for multidimensional Gabor systems.

The characterizations of orthogonal families and tight frames, in case of one
generating function of one variable, have been recently obtained by Casazza and
Christensen, [5].

Before we proceed further let us present here the notation and several results
that will be of use to us.

Definition 1.1. Let gk ∈ L2(Rd), for k = 1, . . . , L. By the Gabor system defined
by the functions gk, we mean the set of functions {gkm,n : m,n ∈ Z

d, k = 1, . . . , L},
where

gkm,n(x) = e2πiAm·xgk(x−Bn),
for some nondegenerate linear maps A,B on R

d.

We shall use the following notation: let a be the Jacobian of A and b be the
Jacobian of B. Moreover, let B′ denote Bt−1. We use the Fourier transform defined
by:

f̂(ξ) =
∫
f(x)e−2πix·ξdx.
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Proposition 1.2

The system {g0,n : n ∈ Z
d} is orthogonal if and only if

∑
k∈Zd

|ĝ(ξ −B′k)|2 = b‖g‖2
2 a.e. ξ ∈ R

d.

The proof presented in [11] (Proposition 2.1.11) can be adapted to this case.

Proposition 1.3 (see [11])

Let H be a Hilbert space and {ej : j = 1, 2, . . .} be a family of elements of H.

Then:

‖f‖2 =
∞∑
j=1

|〈f, ej〉|2 holds for all f ∈ H

if and only if

f =
∞∑
j=1

〈f, ej〉ej , with convergence in H, for all f ∈ H.

A system {ej : j = 1, 2, . . .} is called a tight frame for H, with constant 1, if
either of the two above conditions is satisfied.

Proposition 1.4 (see [11])

Suppose {ej : j = 1, 2, . . .} is a family of elements of Hilbert space H, such that

the first equality in Proposition 1.3 holds for all f in a dense subset of H. Then this

equality is valid for all f ∈ H.

Theorem 1.5 (see [11])

Suppose {ej : j = 1, 2, . . .} is a tight frame with constant 1. If ‖ej‖ ≥ 1, for all

j, then {ej : j = 1, 2, . . .} is an orthonormal basis for H.

Acknowledgments. I would like to express my gratitude to Professor Guido Weiss,
who introduced me to this subject. Methods used in this paper, I learned from his
wonderful lectures at Washington University, and from his book, [11]. I also thank
him for help and many suggestions during my work on this paper.
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2. Orthogonal Gabor systems

Our first theorem will characterize the orthogonality of Gabor systems in terms of
the Fourier transforms of the functions gi.

Theorem 2.1

System {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is orthogonal if and only if

(2.1)
∑
k∈Zd

|ĝi(ξ −B′k)|2 = b‖gi‖2
2 a.e. ξ ∈ R

d, i = 1, . . . L,

(2.2)
∑
l∈Zd

ĝi(ξ +B′l −Aj)ĝi(ξ +B′l) = 0 a.e. ξ ∈ R
d,

for every j �= 0, i = 1, . . . L, and

(2.3)
∑
l∈Zd

ĝi(ξ +B′l −Aj)ĝk(ξ +B′l) = 0 a.e. ξ ∈ R
d,

for every j and i �= k.

Corollary 2.2

System {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is orthonormal if and only if

(2.1′)
∑
k∈Zd

|ĝi(ξ −B′k)|2 = b a.e. ξ ∈ R
d, i = 1, . . . L,

and equations (2.2) and (2.3) are satisfied.

Remark. One can easily translate the above conditions, into conditions involving
the functions gi, rather than their Fourier transforms ĝi. The reason we do it this
way is that, in the future, we want to discuss similar problems for wave packets,
which as in the case of wavelets, require this approach.

Proof. First let us assume that the system {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is

orthogonal. Proposition 1.2 implies then, that the first equation is satisfied, for
every i. Moreover, using the Plancherel theorem we obtain



Characterizations of Gabor Systems via the Fourier Transform 209

0 = 〈gij,k, gi
′〉 = 〈ĝij,k, ĝi

′〉 =
∫
e2πiBk·Aje−2πiBk·ξ ĝi(ξ −Aj)ĝi′(ξ)dξ

= e2πiBk·Aj
∑
l∈Zd

∫
Ql

e−2πiBk·ξ ĝi(ξ −Aj)ĝi′(ξ)dξ

= e2πiBk·Aj
∑
l∈Zd

∫
Q0

e−2πiBk·ξ ĝi(ξ +B′l −Aj)ĝi′(ξ +B′l)dξ,

where for l = (l1, . . . ld), define Ql = B′(l + [0, 1)d). By Beppo-Levi’s theo-
rem, we can interchange the order of summation and integration in the integral∫
Q0

∑
l∈Zd e−2πiBk·ξ ĝi(ξ +B′l −Aj)ĝi′(ξ +B′l), if the following series converges:

∑
l∈Zd

∫
Q0

|e−2πiBk·ξ ĝi(ξ +B′l −Aj)ĝi′(ξ +B′l)|.

Observe, however, that

∑
l∈Zd

∫
Q0

∣∣∣e−2πiBk·ξ ĝi(ξ +B′l −Aj)ĝi′(ξ +B′l)
∣∣∣ =

∫ d

R

∣∣∣ĝi(ξ −Aj)ĝi′(ξ)∣∣∣dξ
≤

( ∫ d

R

|ĝi(ξ −Aj)|2dξ
)1/2( ∫ d

R

|ĝi′(ξ)|2dξ
)1/2

<∞,

since we assumed that gi ∈ L2(Rd). This shows that for i = i′, j �= 0 and k ∈ Z
d,

or for i �= i′ and j, k ∈ Z
d we have:

0 =
∫
Q0

( ∑
l∈Zd

ĝi(ξ +B′l −Aj)ĝi′(ξ +B′l)
)
e−2πiBk·ξdξ.

Since {e2πiBk· : k ∈ Z
d} is a basis for L2(Q0) and

∑
l∈Zd ĝi(ξ+B′l−Aj)ĝi′(ξ +B′l)

is a Q0-periodic function, we conclude that for i = i′ and j �= 0, or for i �= i′ and all
j: ∑

l∈Zd

ĝi(ξ +B′l −Aj)ĝi′(ξ +B′l) = 0,

for a.e. ξ ∈ R
d. This completes the proof of the first implication.
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Now let us assume that all the three conditions are satisfied. It is easy to see
that

〈gij,k, gi
′

m,n〉 = e2πiA(j−m)·Bn〈gij−m,k+n, g
i′〉.

Moreover, Proposition 1.2 implies that the systems {gi0,n : n ∈ Z} are orthogonal
for each i. Therefore to finish the proof, we can use Beppo-Levi’s theorem, the
Plancherel formula and the second and third conditions, to prove, as above, that

〈gij,k, gi
′〉 = 0,

for i = i′, j �= 0, l ∈ Z
d and for i �= i′ and j, k ∈ Z

d. �
In order to present the following results, we assume that BtA maps Z

d into
Z
d. Let W i

j = span{gij,k : k ∈ Zd} and suppose the system {gim,n : m,n ∈ Z
d, i =

1, . . . , L} is orthogonal. Let Qi
j denote the orthogonal projection onto the spaceW i

j .
We have:

Qi
jf =

∑
k∈Zd

〈f, gij,k〉gij,k,

for every f ∈ L2(Rd). Then:

〈f̂ , ĝij,k〉 =
∫

Rd

f̂(ξ)e2πiBk·ξ−2πiAj·Bkĝi(ξ −Aj)dξ

=
∑
l∈Zd

∫
Ql

f̂(ξ)e2πiBk·ξ ĝi(ξ −Aj)dξ

=
∑
l∈Zd

∫
Q0

f̂(ξ +B′l)e2πiBk·(ξ+B′l)ĝi(ξ +B′l −Aj)dξ.

Notice that:∑
l∈Zd

∫
Q0

∣∣∣f̂(ξ +B′l)e2πiBk·ξ ĝi(ξ +B′l −Aj)
∣∣∣dξ =

∫
Rd

∣∣∣f̂(ξ)ĝi(ξ −Aj)∣∣∣dξ
≤

( ∫
|f̂(ξ)|2dξ

)1/2( ∫
|ĝi(ξ −Aj)|2dξ

)1/2
= ‖f̂‖2‖ĝ‖2 <∞.

Thus, we can use Beppo-Levi’s theorem, to obtain:

〈f̂ , ĝij,k〉 =
∫
Q0

( ∑
l∈Zd

f̂(ξ +B′l)ĝi(ξ +B′l −Aj)
)
e2πiBk·ξdξ.

But these are evidently the Fourier coefficients of the Q0 periodic function∑
l∈Zd f̂(ξ +B′l)ĝi(ξ +B′l −Aj), so we can write:∑

l∈Zd

f̂(ξ +B′l)ĝi(ξ +B′l −Aj) = b
∑
k∈Zd

〈f̂ , ĝij,k〉e−2πiBk·ξ.

Multiplying both sides of this equation by ĝi(ξ−Aj), we obtain the following result:
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Lemma 2.2

Let BtA : Z
d → Z

d. For the orthogonal projection operator Qi
j we have

∑
l∈Zd

f̂(ξ +B′l)ĝi(ξ +B′l −Aj)ĝi(ξ −Aj)

= b
∑
k∈Zd

〈f̂ , ĝij,k〉ĝij,k(ξ) = Q̂i
jf(ξ) a.e. ξ ∈ R

d.

Having proved this result, we are ready to consider the completeness of Gabor
systems when A−1 = Bt. (In particular this means that ab = 1.)

Theorem 2.3

Let A = Bt−1 = B′. Suppose that gi ∈ L2(Rd), i = 1, . . . , L are such that the

following equations hold:∑
k∈Zd

|ĝi(ξ −B′k)|2 = b‖gi‖2
2 a.e. ξ ∈ R

d, i = 1, . . . , L,

∑
l∈Zd

ĝi(ξ +B′l −Aj)ĝi(ξ +B′l) = 0 a.e. ξ ∈ R
d,

for every j �= 0, i = 1, . . . , L, and

∑
l∈Zd

ĝi(ξ +B′l −Aj)ĝk(ξ +B′l) = 0 a.e. ξ ∈ R
d,

for every j and i �= k. Then the system {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is complete

in L2(Rd).

Proof. It is enough to show that

L∑
i=1

∑
j∈Zd

Q̂i
jf(ξ) =

( L∑
i=1

‖gi‖2
2

)
f̂(ξ) a.e. ξ ∈ R

d,

and

lim
M→∞

∥∥∥ L∑
i=1

∑
|j|≤M

Q̂i
jf

∥∥∥
2

=
( L∑

i=1

‖gi‖2
2

)
‖f̂‖2,

for f ∈ L2(Rd). But by Propositions 1.3 and 1.4, it suffices to prove the above
equalities for f in some dense subset of L2(Rd). Therefore, we consider only these
functions f , such that supp(f̂) is compact.



212 Czaja

Remark. To clarify the meaning of the series in the first of the equations, we point
out that the convergence is to be taken as the convergence of the symmetric partial
sums that are explicitly considered in the second equation. This applies repeatedly
below.

By Theorem 2.1, we already know that system {gim,n : m,n ∈ Z
d, i = 1, . . . , L}

is orthogonal; hence, Lemma 2.2 applies to the projections Qi
j , and we can write:

L∑
i=1

∑
j∈Zd

Q̂i
jf(ξ) =

1
b

L∑
i=1

∑
j∈Zd

( ∑
l∈Zd

f̂(ξ +B′l)ĝi(ξ +B′l −Aj)ĝi(ξ −Aj)
)

=
1
b

L∑
i=1

∑
j∈Zd

(
f̂(ξ)|ĝi(ξ −Aj)|2 +

∑
l 	=0

f̂(ξ +B′l)ĝi(ξ +B′l −Aj)ĝi(ξ −Aj)
)

=
1
b

L∑
i=1

∑
j∈Zd

f̂(ξ)|ĝi(ξ −Aj)|2 +
1
b

L∑
i=1

∑
j∈Zd

∑
l 	=0

f̂(ξ +B′l)

× ĝi(ξ +B′l −Aj)ĝi(ξ −Aj)

=
1
b
f̂(ξ)

L∑
i=1

∑
j∈Zd

|ĝi(ξ −Aj)|2 +
1
b

L∑
i=1

∑
l 	=0

f̂(ξ +B′l)

×
∑
j∈Zd

ĝi(ξ +B′l −Aj)ĝi(ξ −Aj)

= f̂(ξ)
L∑

i=1

‖gi‖2
2.

Here we have used our assumptions on the functions gi and the fact that A = B′.
The change in the order of summation is valid since f̂ has compact support, which
implies that the sum over l �= 0 is finite.

For the second equality, since Qi
j ’s are mutually orthogonal projections, we

have: ∥∥∥ L∑
i=1

∑
|j|≤M

Q̂i
jf

∥∥∥
2
≤

( L∑
i=1

‖gi‖2
2

)1/2
‖f̂‖2,

for every M > 0. The orthogonality of Qi
j ’s implies that

∥∥∥ L∑
i=1

∑
|j|≤M

Q̂i
jf

∥∥∥
2

=
( L∑

i=1

∑
|j|≤M

‖Q̂i
jf‖2

2

)1/2
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is an increasing sequence, bounded by
(∑L

i=1 ‖gi‖2
2

)1/2

‖f̂‖2. Therefore,

lim
M→∞

∥∥∥ L∑
i=1

∑
|j|≤M

Q̂i
jf

∥∥∥
2
≤

( L∑
i=1

‖gi‖2
2

)1/2
‖f̂‖2.

The inequality

lim
M→∞

∥∥∥ L∑
i=1

∑
|j|≤M

Q̂i
jf

∥∥∥
2
≥

( L∑
i=1

‖gi‖2
2

)1/2
‖f̂‖2

follows from Fatou’s lemma. �
Notice that this proof also yields the following corollary:

Corollary 2.4

Let A = Bt−1 = B′. Let gi ∈ L2(Rd), i = 1, . . . , L, be such that
∑L

i=1 ‖gi‖2
2 =

1. Then with the assumptions of Theorem 2.3, the system {gim,n : m,n ∈ Z
d, i =

1, . . . , L} is a tight frame with constant 1.

Corollary 2.5

Let A = Bt−1 = B′. If the system {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is an

orthogonal system, then L = 1.

Proof. Notice that each of the systems {gim,n : m,n ∈ Z}, for i = 1, . . . , L, satisfies
the assumptions of the Theorem 2.3, and thus each of these systems is complete. It
is then impossible for the whole system to orthogonal, if L > 1. (We would like to
mention, that we use in the above the special case of Theorem 2.1, when A = B′.) �

Now, combining Corollary 2.4 with Theorem 1.5, we can obtain the following
result for Gabor systems generated by a single function:

Theorem 2.6

Let A = Bt−1 = B′. Let g ∈ L2(Rd), such that ‖g‖2
2 = 1. Then the system

{gm,n : m,n ∈ Z
d} is a tight frame with constant 1 if and only if the following

equations hold: ∑
k∈Zd

|ĝ(ξ −B′k)|2 = b a.e. ξ ∈ R
d,

∑
l∈Zd

ĝ(ξ +B′l −Aj)ĝ(ξ +B′l) = 0 a.e. ξ ∈ R
d,

for every j �= 0.
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As an immediate application of Theorems 2.1 and 2.5, we obtain the following
corollary:

Corollary 2.7

Let A = Bt−1 = B′. For any function g ∈ L2(Rd), such that ‖g‖2
2 = 1, the

system {gm,n : m,n ∈ Z
d} is a tight frame with constant 1, if and only if it is an

orthogonal system.

Example. The above corollary allows us to easily verify whether a given Gabor
system is an orthonormal basis since we only need to check the orthonormality of
that system. For example, one can consider a Gabor system {gm,n : m,n ∈ Z

d},
with g(x) = χK(x), where K is a measurable subset of R

d. It is an orthonormal
basis for L2(Rd), if and only if the set K is translation equivalent to [0, 1)d. (For
the definition of the translation equivalence see [11].)

3. Tight frames of Gabor systems

We will now turn to the characterization of tight frames of Gabor systems, following
the methods presented in [9].

Theorem 3.1

The Gabor system: {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is a tight frame for L2(Rd),

if and only if it satisfies the two conditions:

(3.1)
L∑

i=1

∑
j∈Zd

|ĝi(ξ −Aj)|2 = b a.e. ξ ∈ R
d,

and

(3.2)
L∑

i=1

∑
j∈Zd

ĝi(ξ −Aj)ĝi(ξ +B′l −Aj) = 0 a.e. ξ ∈ R
d,

for every l �= 0.
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Proof. By Proposition 1.4, it is enough to assume that the functions f , represented
by this system, belong to some dense subset of L2(Rd). Thus, let D be the set of all
functions in L2(Rd), such that their Fourier transforms have compact support and
are bounded. Let f ∈ D. For fixed i ∈ {1, . . . , L} and j ∈ Z

d, define:

F (ξ) = F i
j (ξ) = f̂(ξ −Aj)ĝi(ξ).

Then,

F̂ (Bk) =
∫

Rd

F (ξ)e−2πiBk·ξdξ =
∑
m∈Zd

∫
Qm

F (ξ)e−2πiBk·ξdξ

=
∫
Q0

e−2πiBk·ξ
( ∑

m∈Zd

F (ξ +B′m)
)
dξ.

The interchange of the order of summation and integration is valid, since we have
assumed that function f̂ is compactly supported, and, thus is function F , and,
consequently the sum over m is finite. Therefore, we can write

b
∑
k∈Zd

|F̂ (Bk)|2 =
∥∥∥ ∑

m∈Zd

F (· +B′m)
∥∥∥2

L2(Q0)

=
∫
Q0

( ∑
m∈Zd

F (ξ +B′m)
)( ∑

p∈Zd

F (ξ +B′p)
)
dξ

=
∫

Rd

( ∑
m∈Zd

F (ξ +B′m)
)
F (ξ)dξ.

Therefore, from the definition of F , we obtained the following equality:

b
∑
k∈Zd

∣∣∣∣
∫

Rd

f̂(ξ +Aj)ĝi(ξ)e−2πiBk·ξ
∣∣∣∣
2

=
∫

Rd

f̂(ξ +Aj)ĝi(ξ)
( ∑

m∈Zd

f̂(ξ +B′m+ j)ĝi(ξ +B′m)
)
dξ.

Our task is to analyze the sum:

L∑
i=1

∑
j∈Zd

∑
k∈Zd

|〈f, gij,k〉|2 =
L∑

i=1

∑
j∈Zd

∑
k∈Zd

|〈f̂ , ĝij,k〉|2

=
L∑

i=1

∑
j∈Zd

∑
k∈Zd

∣∣∣ ∫
Rd

f̂(ξ)ĝi(ξ −Aj)e−2πiBk·ξdξ
∣∣∣2

=
L∑

i=1

∑
j∈Zd

∑
k∈Zd

∣∣∣ ∫
Rd

f̂(ξ +Aj)ĝi(ξ)e−2πiBk·ξdξ
∣∣∣2.
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Using the previous equality, we obtain:

L∑
i=1

∑
j∈Zd

∑
k∈Zd

|〈f, gij,k〉|2

=
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

f̂(ξ +Aj)ĝi(ξ)
( ∑

k∈Zd

f̂(ξ +B′k +Aj)ĝi(ξ +B′k)
)
dξ

=
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

|f̂(ξ +Aj)|2|ĝi(ξ)|2dξ

+
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

f̂(ξ +Aj)ĝi(ξ)
( ∑

0 	=k∈Zd

f̂(ξ +B′k +Aj)ĝi(ξ +B′k)
)
dξ

=
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

|f̂(ξ)|2|ĝi(ξ −Aj)|2dξ

+
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

f̂(ξ)ĝi(ξ −Aj)
( ∑

0 	=k∈Zd

f̂(ξ +B′k)ĝi(ξ +B′k −Aj)
)
dξ.

For future reference let us introduce the following notation:

I(f) =
L∑

i=1

∑
j∈Zd

∑
k∈Zd

|〈f, gij,k〉|2,

I0(f) =
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

|f̂(ξ)|2|ĝi(ξ −Aj)|2dξ,

and

I1(f) =
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

f̂(ξ)ĝi(ξ −Aj)
( ∑

0 	=k∈Zd

f̂(ξ +B′k)ĝi(ξ +B′k −Aj)
)
dξ.

Thus, our decomposition can be written I(f) = I0(f) + I1(f). To perform the next
step, we will need the following result.

Fact 3.2
For gi ∈ L2(Rd), i = 1, . . . , L, and f ∈ D, we have∑
j∈Zd

∫
Rd

|f̂(ξ +Aj)||ĝi(ξ)|
( ∑

0 	=k∈Zd

|f̂(ξ +B′k +Aj)||ĝi(ξ +B′k)|
)
dξ <∞.
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This is an easy consequence of the inequality:

|ĝi(ξ)||ĝi(ξ +B′k)| ≤ |ĝi(ξ)|2 + |ĝi(ξ +B′k)|2,

and the fact, that f has compact support and is bounded.

Fact 3.2 allows us to change the orders of integration and summation in
the expression for

∑L
i=1

∑
j∈Zd

∑
k∈Zd |〈f, gij,k〉|2. Thus, using the equations (3.1)

and (3.2), we obtain:

L∑
i=1

∑
j∈Zd

∑
k∈Zd

|〈f, gij,k〉|2 =
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

|f̂(ξ)|2|ĝi(ξ −Aj)|2dξ

+
L∑

i=1

∑
j∈Zd

1
b

∫
Rd

f̂(ξ)ĝi(ξ −Aj)
( ∑

0 	=k∈Zd

f̂(ξ +B′k)ĝi(ξ +B′k −Aj)
)
dξ

=
1
b

∫
Rd

|f̂(ξ)|2
L∑

i=1

∑
j∈Zd

|ĝi(ξ −Aj)|2dξ

+
1
b

∫
Rd

f̂(ξ)
L∑

i=1

∑
0 	=k∈Zd

f̂(ξ +B′k)
( ∑

j∈Zd

ĝi(ξ −Aj)ĝi(ξ +B′k −Aj)
)
dξ

=
∫

Rd

|f̂(ξ)|2dξ = ‖f‖2
2,

which completes the proof of the fact, that any Gabor system satisfying the two
equations is a tight frame.

Now we will prove the converse implication. Namely, we assume that

L∑
i=1

∑
j∈Zd

∑
k∈Zd

|〈f, gij,k〉|2 = ‖f‖2
2,

for all f ∈ L2(Rd), and we will derive from this the two equations (3.1) and (3.2).
Clearly, our condition holds, in particular, for all functions f ∈ D. This leads to the
following observation.

Remark. Recalling Fact 3.2, we see that for f ∈ D, I(f) < ∞ iff I0(f) < ∞. Now
taking f̂ = χC , where C ⊂ R

d is any compact set, we see that I0(f) < ∞, for all
f ∈ D iff

∑L
i=1

∑
j∈Zd |ĝi(ξ −Aj)|2 is locally integrable in R

d.
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Thus by our assumption, the function:

τ(ξ) =
1
b

L∑
i=1

∑
j∈Zd

|ĝi(ξ −Aj)|2,

is locally integrable. Hence, almost every point in R
d is a point of differentiability

of the integral of τ . This means, that if ξ0 is such a point, then

lim
δ→0+

1
|Bδ(ξ0)|

∫
Bδ(ξ0)

τ(ξ)dξ = τ(ξ0).

Fix δ > 0, and let fδ be a function such that:

f̂δ(ξ) =
1√

|Bδ(ξ0)|
χBδ(ξ0)(ξ).

Recall the decomposition, we have used in the proof of the first implication:

I(fδ) = I0(fδ) + I1(fδ).

Notice that
I(fδ) = ‖fδ‖2

2 = 1.

Thus, using the definition of I0, we obtain:

1 =
1

|Bδ(ξ0)|

∫
Bδ(ξ0)

τ(ξ)dξ + I1(fδ).

If we can show that limδ→0+ I1(fδ) = 0, then since ξ0 is a point of differentia-
bility of the integral of τ , we have the equality:

1 = lim
δ→0+

1
|Bδ(ξ0)|

∫
Bδ(ξ0)

τ(ξ)dξ + I1(fδ) = τ(ξ0) + lim
δ→0+

I1(fδ) = τ(ξ0).

Let us now look at |I1(fδ)|. Arguing as in the proof of Fact 3.2, we see, that
the above is bounded by the two following terms:

1
b

L∑
i=1

∑
j∈Zd

∫
Rd

∑
0 	=k∈Zd

|f̂δ(ξ)||f̂δ(ξ +B′k)||ĝi(ξ −Aj)|2dξ
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and
1
b

L∑
i=1

∑
j∈Zd

∫
Rd

∑
0 	=k∈Zd

|f̂δ(ξ)||f̂δ(ξ +B′k)||ĝi(ξ +B′k −Aj)|2dξ.

But if δ is small enough, then:

|f̂δ(ξ)||f̂δ(ξ +B′k)| = 0,

for every k �= 0. Thus I1(fδ) = 0, for δ << 1. This concludes the proof of the fact
that τ(ξ) = 1, a.e. ξ ∈ R

d. This also shows, that I1(f) = 0, for all f ∈ D, i.e.

1
b

∫
Rd

f̂(ξ)
L∑

i=1

∑
j∈Zd

∑
0 	=k∈Zd

f̂(ξ +B′k)ĝi(ξ −Aj)ĝi(ξ +B′k −Aj)dξ = 0.

Moreover, using the polarization identity, we obtain that for any f, h ∈ D:

1
b

∫
Rd

f̂(ξ)
L∑

i=1

∑
j∈Zd

∑
0 	=k∈Zd

ĥ(ξ +B′k)ĝi(ξ −Aj)ĝi(ξ +B′k −Aj)dξ = 0.

Remark. Using the inequality:

|ĝi(ξ −Aj)||ĝi(ξ +B′k −Aj)| ≤ |ĝi(ξ −Aj)|2 + |ĝi(ξ +B′k −Aj)|2,

we can argue as before, that the function:

L∑
i=1

∑
j∈Zd

ĝi(ξ −Aj)ĝi(ξ +B′k −Aj)

is locally integrable, and thus almost every point in R
d is a point of differentiability

of its integral.

Fix k0 �= 0. Let ξ0 be a point of differentiability of

L∑
i=1

∑
j∈Zd

ĝi(ξ −Aj)ĝi(ξ +B′k0 −Aj),

such that: ξ0 �= 0 �= ξ0 + k0. Let

f̂δ(ξ) =
1√
|Bδ|

χBδ(ξ0)(ξ),
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and
ĥδ(ξ) =

1√
|Bδ|

χBδ(ξ0+B′k0)(ξ).

Then, in particular, we have

f̂δ(ξ)ĥδ(ξ +B′k0) =
1

|Bδ|
χBδ(ξ0)(ξ).

Let us now write the equality I1 = 0, using the functions fδ and hδ:

0 =
1
b

∫
Rd

f̂δ(ξ)
L∑

i=1

∑
j∈Zd

∑
0 	=k∈Zd

ĥδ(ξ +B′k)ĝi(ξ −Aj)ĝi(ξ +B′k −Aj)dξ

=
1
b

∫
Rd

f̂δ(ξ)ĥδ(ξ +B′k0)
L∑

i=1

∑
j∈Zd

ĝi(ξ −Aj)ĝi(ξ +B′k0 −Aj)

+
1
b

∫
Rd

f̂δ(ξ)
L∑

i=1

∑
j∈Zd

∑
0,k0 	=k∈Zd

ĥδ(ξ +B′k)ĝi(ξ −Aj)ĝi(ξ +B′k −Aj)dξ

=
1
b

1
|Bδ|

∫
Bδ(ξ0)

L∑
i=1

∑
j∈Zd

ĝi(ξ −Aj)ĝi(ξ +B′k0 −Aj)dξ + Jδ.

By examining the term Jδ we see, as before, that for δ small enough, it is equal to
0. Therefore, employing the fact that ξ0 was chosen to be a point of differentiability

of
∑L

i=1

∑
j∈Zd ĝi(ξ −Aj)ĝi(ξ +B′k0 −Aj), we obtain the second equality:

0 = lim
δ→0+

1
|Bδ|

∫
Bδ(ξ0)

L∑
i=1

∑
j∈Zd

ĝi(ξ0 −Aj)ĝi(ξ0 +B′k0 −Aj)dξ

=
L∑

i=1

∑
j∈Zd

ĝi(ξ0 −Aj)ĝi(ξ0 +B′k0 −Aj),

for all k0 �= 0 and a.e. ξ ∈ R
d. This completes the proof of Theorem 3.1. �

Remark. Notice that our characterization of tight frames of Gabor systems, gives
a different approach to the general result obtained in [14], (Corollary 3.3.6, see
also [2]).

We also would like to alert the reader to the fact that the roles of the matrices
A and B are interchanged in Theorems 2.1 and 3.1. A short reflexion about this
phenomenon is useful for avoiding some confusion about these matters.
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4. Orthogonal bases of Gabor systems

In this section we will use previous results, to give characterizations of orthonormal
bases of Gabor systems of L2(Rn). In the first result we will make use of the
equations we employed for the description of tight frames, in Section 3.

Theorem 4.1
The Gabor system: {gim,n : m,n ∈ Z

d, i = 1, . . . , L} is an orthonormal basis
for L2(Rd), if and only if it satisfies equations (3.1) and (3.2), and ‖gi‖2 ≥ 1, for
i = 1, . . . , L.

Proof. If {gim,n : m,n ∈ Z
d, i = 1, . . . , L} is an orthonormal basis, then it clearly

is a tight frame. Then, by Theorem 3.1, equations (3.1) and (3.2) are satisfied.
Orthonormality of the system implies also, that ‖gi‖2 ≥ 1, for i = 1, . . . , L.

Conversely, in view of Theorem 3.1, equations (3.1) and (3.2) imply that the
system is a tight frame. Since ‖gi‖2 = ‖gim,n‖2, we see that by Theorem 1.5, the
whole system is an orthonormal basis. �

The above result characterizes orthonormal bases using the description of tight
frames. In the next theorem, we would like to consider a different set of conditions,
based on the characterizing equations for orthonormality of a Gabor system.

Theorem 4.2
The Gabor system: {gim,n : m,n ∈ Z

d, i = 1, . . . , L} is an orthonormal basis for
L2(Rd), if and only if it satisfies equations (2.1’), (2.2), (2.3) and (3.1).

Proof. An orthonormal basis is both, an orthonormal system (which implies equa-
tions (2.1’), (2.2), (2.3)) and a tight frame (which provides us with equation (3.1)).

The proof of the other implication follows closely a method from [3], adapted to
the case of Gabor systems. Namely, notice that the calculations of the dual Gramian
matrix G̃(ξ) associated with the Gabor system {gim,n : m,n ∈ Z

d, i = 1, . . . , L},
defined by (2.15) in [2], give us that:

〈G̃(ξ)ek, ek〉 =
L∑

i=1

∑
j∈Zd

|ĝi(ξ −Aj +B′k)|2,

for k ∈ Z
d (for more about the Gramian matrices see, for instance, [2] or [14]). Thus,

equation (3.1) implies that 〈G̃(ξ)ek, ek〉 = 1. Since our system is an orthonormal
basis, it follows from Theorem 2.5(i) in [2], that ‖G̃(ξ)‖ ≤ 1. Therefore:

1 ≥ ‖G̃(ξ)ek‖2 =
∑
l∈Zd

∣∣∣〈G̃(ξ)ek, el〉
∣∣∣2 = 1 +

∑
l∈Zd,l 	=k

∣∣∣〈G̃(ξ)ek, el〉
∣∣∣2.
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Therefore, 〈G̃(ξ)ek, el〉 = 0, for l �= k, and G̃(ξ) is an identity on l2(Zd) for a.e. ξ.
Hence, by Theorem 2.5(ii) in [2], our Gabor system is a tight frame. Since it is an
orthonormal system, ‖gim,n‖ ≥ 1, and Theorem 1.5 implies that we have in fact an
orthonormal basis. �

The next two observations we make, result from the comparison between the
results of Section 2 and Section 3. They reflect the very special, symmetric structure
of Gabor systems.

Theorem 4.3

If L = 1, i.e. there is only one generating function g, the following are equivalent:

The system {gm,n(x) = e2πiAm·xgk(x− Bn) : m,n ∈ Z
d} is a tight frame with

constant 1.

The system {gm,n(x) = e2πiB
′m·xgk(x − A′n) : m,n ∈ Z

d} is an orthogonal

system and ‖g‖2
2 = ab.

Equations (3.1) and (3.2) hold.

Theorem 4.4

If L = 1, and A = B′ = Bt−1
, then equations (2.1’), (2.2) and (2.3) are the

same as equations (3.1) and (3.2).

Especially the last theorem may be viewed as another approach to the results
obtained at the end of Section 2 - Theorem 2.6 and Corollary 2.7.

5. Miscellaneous remarks

Now we may try to attempt proving some results about the Gabor systems using
the characterizing equations. In [16], analogous characterizations for wavelets were
used to study the wavelet multipliers. The following result is an immediate corollary
of our characterizations, in case of Gabor multipliers.

Corollary 5.1

Assume that ν is a unimodular function on R, such that ν(· + 1)/ν(·) is a

1-periodic function. Then ν is a Gabor multiplier.
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This provides us with an interesting example of a class of Gabor multipliers.
Using a general method of [16], it is easy to show that all Gabor multipliers must
be unimodular functions. Unfortunately to characterize them fully we would need a
version of a multiresolution analysis of Gabor systems. That however, is impossible,
as the following argument shows.

Assume that for every j, function g(· − j) is an element of the set {e2πi·g(· −
k), k ∈ Z}. On the Fourier transform side it means, that for every j, there exists a
1-periodic function mj , such that:

ĝ(ξ) = ĝ(ξ − j)mj(ξ).

If we assume that the system {g(· − j), j ∈ Z} is a Riesz basis for the closure of
its span, then (as in [2] or [14]), we see that it satisfies:

0 < A ≤
∑
k

|ĝ(ξ − k)|2 ≤ B <∞,

for a.e. ξ ∈ R. In view of the previous equality, it gives us:

A ≤
∑
k

|ĝ(ξ − k − j)mj(ξ)|2 =
( ∑

k

|ĝ(ξ − k)|2
)
|mj(ξ)|2 ≤ B,

or
A/B ≤ |mj(ξ)|2 ≤ B/A.

But now, if |ĝ| is greater than some constant C > 0, on a set of positive measure,
it will be greater than the constant AC/B, on all integer translates of this set. This
contradicts the fact that g ∈ L2(R). For a different approach to the problem of
nonexistence of Gabor multiresolution analyses, we refer the reader to [10].

Also, now it may be possible to combine the results of Sections 2 and 3, with
those of [9], [11] and [15], to obtain similar characterizations of wave packets. As
an introduction to this, let us have the following observation, which is a simple
consequence of our results.

Fact 5.2

There are no orthonormal bases of wave packets of the form {gl,m,n(x) =
e2πiAm·xgk(2lx−At−1

n) : m,n ∈ Z
d, l ∈ Z}.

Further study of wave packets, especially of their completeness, will be the subject
of our future work.



224 Czaja

References

1. J. Benedetto, C. Heil and D. Walnut, Differentiation and the Balian-Low theorem, J. Fourier
Anal. Appl. 1(4) (1995), 355–402.

2. M. Bownik, The structure of shift invariant subspaces of L2(Rn), preprint.
3. M. Bownik, Characterization of multiwavelets in L2(Rn), to appear in Proc. Amer. Math. Soc..
4. M. Bownik, A characterization of affine dual frames in L2(Rn), Appl. Comput. Harmon. Anal.

8(2) (2000), 203–221.
5. P. Casazza and O. Christensen, Classifying tight Weyl-Heisenberg frames, preprint.
6. A. Calogero, Wavelets on general lattices, associated with general expanding maps of R

n, Elec-
tron. Res. Announc. Amer. Math. Soc. 5 (1999), 1–10.

7. I. Daubechies, The wavelet transform, time frequency localization and signal analysis, IEEE
Trans. Inform. Theory 36 (1990), 961–1005.

8. I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied
Mathematics 61, 1992.

9. M. Frazier, G. Garrigós, K. Wang and G. Weiss, A characterization of functions that generate
wavelet and related expansions, J. Fourier Anal. Appl. 3 (1997), 883–906.

10. C. Heil, J. Ramanathan and P. Topiwala, Linear independence of time-frequency translates, Proc.
Amer. Math. Soc. 124(9) (1998), 2787–2795.

11. E. Hernández and G.Weiss, A first course on wavelets, CRC Press, 1996.
12. P.G. Lemarié, Ondelettes à localisation exponentiells, J. Math. Pures Appl. (9) 67 (1988), 227–

236.
13. M. Rieffel, Von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann.

257(4) (1981), 403–418.
14. A. Ron and Z. Shen, Frames and stable bases for shift invariant subspaces of L2(Rd), Canad.

J. Math. 47(5) (1995), 1051–1094.
15. X. Wang, The study of wavelets from properties of their Fourier transforms, Ph.D. Thesis,

Washington University in St. Louis, 1995.
16. The Wutam Consortium, Basic properties of wavelets, J. Fourier Anal. Appl. 4(4/5) (1998),

575–594.


