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ABSTRACT

Then-dimensional sphere, 3.,,, can be seen asthe quatient between the group of
rotationsof R™ 1! and the subgroup of all therotationsthat fix one point. Using
representation theory, one can see that any operator on L (X, ) that commutes
with the action of the group of rotations (called multiplier) may be associated
with asequence of complex numbers. We provethat, if acertain“ discretederiva-
tive” of agiven sequence represents a bounded multiplier on LP (31 ), then the
given sequence represents a bounded multiplier on LP(33,,). As a corollary
of this, we obtain the multidimensional version of the Marcinkiewicz theorem
on multipliers. An associated problem related to expansions in ultraspherical
polynomialsis also studied
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1. Introduction

The results in this paper arise from an effort to apply the “transference method” of
Coifman and Weiss [5] to operators acting on the spaces LP(%,,), 1 < p < oo, ¥,
being the n-dimensional sphere in R™*!. Let us begin with a formal, brief description
of this method. Suppose G is a locally compact group and 7' is a representation of G
acting on an LP-space of functions defined on some measure space (M, u). Suppose
we have a bounded convolution operator ¢ — k¢ on LP(G, \) (say, we are dealing
with left Haar measure \ and the convolution is left-invariant). The representation
T can be used to transfer this convolution to an operator Hy on LP(M) by letting

def
(#0)@) [ KT 1) (@) d W),
Minkowski’s integral inequality, then, gives us

IHifllze oty < Rl @yell flloe (1.1)

where ¢ is sup,cq ||Tu||, || 7] being the norm of the operator T, acting on LP(M).
Inequality (1.1) is far from best possible in practically all examples of this situation,
even if ¢ < oo. Ideally, we would like the norm |Hg| of the operator Hy to be,
essentially, the norm N, (k) of the convolution operator ¢ — k * ¢. When G is
amenable this is indeed the case (see [5]):

1H || < Ny (k). (1.2)

Since it is often true that the ratio ||k||1(q)/Np(k) is arbitrarily large, we see that
(1.2) is a much stronger result than (1.1).

As we stated at the beginning, we show that such results are true when sub-
groups of G = SO(n + 1) act (in the obvious way) on LP(X,). This enables us to
obtain the boundedness of a class of “zonal operators” from known 1-dimensional
(Fourier series) convolution estimates. In fact, this program was initiated by the
first named author in his Ph.D. thesis and some parts of it appeared in a research
announcement [7]. In this thesis, as well as in the announcement, extensions of these
results were begun (the “transferred” results were associated with series involving
certain special functions; in particular, the development of functions in terms of
ultraspherical polynomials that include the spaces LP(X,,) as special cases). Each
of us has gone further in analogous directions. In order to present these advances,
however, we need a complete presentation of the original work. Since this has been
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formulated by both of us, we decided to present this in this paper. We will also de-
scribe other directions, but only in the last section, when all the necessary definitions
and notation will be available to us, and plan to write them up in different articles
in the near future. Thus, to be more explicit, this work concerns itself mainly with
the developments in terms of spherical harmonics (the LP(X,,) case) and the natural
extensions involving ultraspherical polynomials.

2. Preliminaries and notation

The following facts can be found in [11] and [5].
Let n be an integer greater than 1, ¥,, the unit sphere in R**!,

Sp={zeR" t|z|=1}

and e = (1,0,...,0) the “east pole” of ¥,. Let G = SO(n + 1) be the group
of orthogonal transformations of R"*! with determinant 1; that is, the group of
rotations of R"*!. The subgroup K of G composed by all the rotations that fix the
east pole e,

K:{UGG :ue:e}

is isomorphic to SO(n).

One can easily see that the sphere Y, is diffeomorphic to the homogeneous
space G/K (simply identify a point z € ¥,, with the coset of all the rotations that
take e to x).

DEFINITION 2.1. A function F on G is said to be right (left) invariant (with respect
to K) if F(uk) = F(u) (F(ku) = F(u)) for all w € G, k € K. If F is both left and
right invariant, it is called biinvariant. A zonal function on the sphere is a function
which is constant on the parallels Ly = {z € ¥,, : - e = cosf }.

Thanks to the diffeomorphism between G/K and ¥, we can identify right
invariant functions on G with functions on 3.,,. More precisely, if F' is a right invariant
function on G, we can associate with it a function F! on 3, by the relation F!(z) =
F(u) whenever ue = x € ¥,,. Conversely, any function f on ¥, determines a right
invariant function on G, f¥, given by f*(u) = f(ue). It is clear that f is zonal if and
only if £ is biinvariant. Also if f is zonal, we can associate to it a function f° defined
on [—1, 1] by the relation f°(cos@) = f(x) whenever z - e = cosf. Conversely, each
function f° on [—1, 1] defines a zonal function by the last equality.
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Proposition 2.2
If f € LY(%,) then f* € LY(G) and

/2n f(z)dr = wn/Gfﬂ(u) du (2.1)

n

ntl
where dx is the element of Lebesgue surface area on %, w, = F2Zr" fl) is the surface
2

area of ¥, and du is the normalized Haar measure of G.

Consider the subgroup A of G consisting of all the matrices a(f) € G having
the form

cos@ —sinf 0 ... 0 O
sinf cos®@ O ... 0 O
0 0 1 ... 00
a(f) = ; : Do (2.2)
0 0 O ... 1 0
0 0 0 ... 01

It is well known that each element of G can be written in the form kak’ with
k,k' € K and o € A. Thus G admits a Cartan decomposition

G = KAK.

Proposition 2.3
If F € LY(Q) then

/GF(u) du:cn/K/K/_: F(ka(0)k')|sin 0|~ do dk dk’ (2.3)

2wn
Wp—1"

where dk is the normalized Haar measure of K and c,! = ffﬂ |sin@|"~tdf =

Suppose F is a biinvariant function, then for all u € G there are k, k' € K such
that kuk’ = () for some 6 and

F(u) = F(kuk') = F(a(f)) = F'(a(f)e)
= (F')°((a(9)e - €) = (F)"(cos0).

DEFINITION 2.4. The restriction to ¥, of a homogeneous harmonic polynomial of
degree | in n + 1 variables is called a spherical harmonic of degree I. The space of
these functions will be denoted by H;(%,,). A finite sum of elements of [ J;°, H;(X,,)
is called a generalized trigonometric polynomial and the space of these functions will
be denoted by P(X,,).
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The typical generalized trigonometric polynomial has the form Zf:o f1, where
fl GHZ(En), lzo,,k’

Proposition 2.5
The space H;(X,,) has finite dimension

o — n—+1 _ n+l—2
T 1—2 )

Furthermore L*(X,) = @2, Hi(X,) (direct sum) and P(X,) is dense in LP(X,),
whenever 1 < p < o0.

DEFINITION 2.6. A zonal multiplier on ¥, is a linear operator from P(%,,) to C(%,,)
that commutes with rotations.

The following theorem gives us a characterization of zonal multipliers, and
explains why the term “multiplier” is used in this last definition.

Theorem 2.7

Let T be a zonal multiplier on ¥.,,. For each | > 0, the elements f; of H;(%,)
are proper vectors of T' corresponding to the same proper value, my, of T

In other words, T is a zonal multiplier if and only if there is a sequence of
complex numbers {m;}7°, (called the Fourier transform of T') such that, for every
generalized trigonometric polynomial Z?:o fi , T has the form

k k
T (Zfl) = Zmlfl-
1=0 1=0
Let 1 < p < oo and suppose that for every f € P(X,,), we have

175l < Apll £l

where A, is a constant independent of f, then we say that 7" is a bounded zonal
multiplier on L?(X,,), since then T" admits a unique extension to a bounded operator
on LP(%,).

Basic examples of such operators are provided by “convolutions”:

DEFINITION 2.8. Suppose G, F € L!(G), the convolution in G between G and F is
a function G * F defined by

G« F(u) dof /GG(U_IU)F(U) dv.
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If g, f € L*(%,), the convolution in ¥,, between g and f is a function g * f defined
by

g% f(2)  wagh * 1! ()

2.4
:wn/g(v_lx)f(ve)dv 24)
G

where ¢! * f! denotes the convolution in the group G previously defined.
Note that the definition is consistent since g# * f* is right invariant. Also, if ¢
is zonal,

g* f(x) :/2 9 (z - y) f(y) dy. (2.5)

It is easy to see that convolution itself provides us with a basic example of zonal
multipliers bounded on LP(X,,). Indeed, let g € L(%,,). Since, for 1 < p < oo, we
have g # fll, < lgll1]| fllp» the operator

Ty :P(X,) — C(X,)
fr—gx*f

is linear, commutes with rotations and is bounded on LP(X,). A convolution kernel
that will be used often is the Poisson kernel
2
Pr(z) = W re0,1). (2.6)
This defines a bounded zonal multiplier on L?(%,,) given by T,.(f) = P, * f which
has LP-norm bounded by || P.||; = 1. Its Fourier transform is {r!},.

Hi(X,,) is a finite dimensional Hilbert space (with inner product induced by
L?*(%,,)), composed of continuous functions. Therefore, if y € %,,, F,p = p(y) defines
a bounded linear functional on H;(%,,). Thus, there is a function Zé’” € Hi(Zn),
called the zonal spherical harmonic of degree | with pole y, that represents this
functional:

Fop = ply) = / p(2) 25" (@) dz, Y p € Hy(S,).

Proposition 2.9

(i) ZL™ is real valued and zonal.
(i) Zh™(x) = ZL (ux) forall z,y € By, ueG.
(iii) For all f € L?(X%,), Z."x f= Pf (projection onto H;(X,)).
(iv) Forallz € S, | ZL7(z)| < |25 (e)] = dim(Hy(Sn)) /wn = A, (1) and Ay (1) has

polynomial growth of degree n — 1.
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Proof. (i), (ii) and the first part of (iv) can be found in [11]. As for (iii), assume
{Y;}7L, is an orthonormal basis for H;(%,,). Then

2" 5 f(a) =wn |

Z'm (v te) f(ve) dv = wy, / ZL(x) f(ve) dv
G

G

al

= wn /G S (2, Y)Y () | flve) dv

Jj=

Yj(x)

— wn; [/G f(ve)Y;(ve) dv

S| [ rwnw | vie) = Sy = (o))

Jj=1

where (-, -) denotes the inner product in L?(%,,). Observe that

An(l)zw:i [(nH) - <”+l_2>} :w<n+l—2>

Wn Wn, l -2 wpl -1
n+2-1(n+1-2)(n+1-3)...(1+1)
o wyl (n—1)!
1 n42-1,,,
RENCEY] l " +...)

which proves (iv). O

We make a final observation. All we have said so far holds for n = 1 as well,
with some important exceptions. First of all note that, if G = SO(2), then K =
{Identity} and therefore SO(2) and ¥; are canonically identified by

[COSG —sind

sind  cosf ] «—— (cos b, sin6).

With this notation, the Haar measure of G is %. Keeping this in mind, it is
easy to check that all definitions and propositions 2.1 through 2.5, 2.8 and 2.9
hold for n = 1. In this case H;(X;) = Span{e??, e} for I > 1, Ho(3;) =
{constant functions}, P(X;) is the space of classical trigonometric polynomials and
Zéi)s $.sin ¢)((cos 0,sin0)) = COSZ(WM. As for the differences with the n-dimensional
case, first of all note that all functions on SO(2) are biinvariant (with respect to
K), whereas the zonal functions on 3; are only those for which f((cos#,sinf)) =

f((cos@,—sinf)) (in other words, even functions, when considered as functions of
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0, —m < 0 < 7). If n =1, Theorem 2.7 is no longer true, essentially because the
spaces ‘H;(X,,) are invariant but not minimal invariant under the representation of

SO(2) given by

. def .
S [ cosl —sind ] f(cosp, sing) = f(cos(cp + 6), sin(p + 9))
sinf cosf

Indeed, SO(2) being abelian, the minimal invariant spaces of the representation S
are 1-dimensional, namely Span{e??}, for all [ € Z. This implies that any operator
of the form

k k
T (ao + E ae™? + blezw) = Mmoao + E myae™® + ulbleﬂw
=1 =1

commutes with rotations. We will then call zonal multiplier on ¥; any operator
from P(X;1) to C(X;) of the above form, with the additional condition m; = p; for
alll > 1.

3. The main theorem

Let n >1and N = [%], the biggest integer less than or equal to 5. Let J be the

operator on the space of sequences defined by
lml — (l — 1)ml_1 if [ > 1

(Jm)l:{o ifl=0.

Define JY¥ = Jo Jo...oJ (Ntimes).

The following is the main result of this paper.

Theorem 3.1

Letn>1, N = [g}, 1 <p<oo, m={m}, a bounded sequence of complex
numbers. If JNm defines a bounded zonal multiplier on LP(X;), then m defines a
bounded zonal multiplier on LP(%,,).
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The proof of Theorem 3.1 will follow from a series of results contained in this and
the next two sections. More precisely, in this section we will show how to deduce
the boundedness of a zonal multiplier on LP(X,,) from the boundedness of three
associated zonal multipliers on LP(X,,_2) (Theorem 3.9). If n is an odd integer,
by applying this step N times, we arrive at the »; case, which is essentially our
goal. But if n is even, after N — 1 steps we arrive at the X5 case. In Section 4,
we study how to deduce the boundedness of a zonal multiplier on LP(X5) from the
boundedness of a zonal multiplier on L”(¥;) (Theorem 4.9). Finally, in Section 5,
we put together all these results and use some facts about multipliers on LP(%;)
to polish our theorem and get it in the final, simple version that we just stated
(Theorem 3.1).

Theorem 3.2

Let n > 2,1 < p < oo, k € L'(X,) be zonal. Assume that h°(cos) =
k9(cos 0)| sin 0| defines a zonal function h on %,,_; which defines a bounded convo-
lution operator on LP(%,,_1) with norm A,. Then k defines a bounded convolution
operator on LP(X,,), with norm less than or equal to "= A, (assume wy = 2).

Proof. Let f € LP(%,,). Then

P 1/p
k= fll, = [wn/‘ (u) f¥(vu™t) du dv]
P 1/p
w;ll+1/pcn[ kﬁ 0)) f* (vya(—0)y")|sin 8"~ 1d6 dvy' dvy d’l)}
p 1/p
_ wnllwn “’n L U // h(cos 0) f* (vya(—0))| sin ]~ >d6 d dv] :

Let H = {u € G| ue =euée =éy C K, where ¢ = (0,...,0,1) is the “north
pole” of 3,. Obviously, H = SO(n — 2). Since dv is the Haar measure of K, we
can replace v with v, for any § € H, and integrate in d@ over H. Thus the last
expression equals
P 1/p
dv] .

Applymg Fubini’s theorem to the integrals in H and K, and then Minkowski’s
integral inequality we see that the last expression is majorized by

w}z/pwn 1/ |:

wn wn1|:

hO cos 0) f¥ (vyBa(—0))|sin 8|"~2d6 dv dS

wn Wn 1|:
— 1T

p

1/p
hO cos 0) f¥(vyBa(—0))|sin 8|"~2d6 d dv] dry

—Tr

hO cos 0) f*(vBa(—0)3")|sin 0" ~2dA dS dS’

p ]1/10

—Tr
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Now observe that Q@ {u € G | ué = é} is isomorphic to SO(n) and, therefore, has
the following Cartan decomposition

Q = HAH.

Thus, by Proposition 2.3 applied to @), the last expression equals

wi/p;vn—l [/ / () fH(on~ ") dn
A [ o

The innermost integral is the convolution (in Q) of h* with (f*),, where (f*), is
defined on Q by (f%),(n) = et fE(vn). If we define f, on ¥,,_1 = {x € B, | Tpy1 =

0} = Q/H by f,(x) et f(vx), the corresponding right invariant (with respect to H)
function on Q will be precisely (f*),, since

(f9)o(n) = f(on) = f(vne) = fu(ne).

Thus, denoting by x the convolution in ¥,_1,

1

Cn—1

’ dv] v (3.1)

/p

d77 dv]

h* f,(ne
/‘/hﬁ )(f)w('n ™! dndn /‘fn '
Wn—1
= hx f,(x)|Pdx
uJiﬂi/znﬂ @)
< w}ﬁ a [ G

:w;n /‘fﬁ wn |pd77

-1
We can therefore conclude that

1/p /p 1/p 1/p
Ity < ity [ [ [ 17 |pdndv] s | [ pwra)

n—2

et [ fpepar] = a0

Wp—2 n—

Observation. The last part of the proof of Theorem 3.2 is really a transference result.
Indeed the proof could have finish as follows:
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Consider the representation of @ acting on LP(G) given by
T,F(v) = F(uvn).

Notice that ||T}|| = 1, for all n € Q. Suppose F = f# for some f € LP(%,);
then for all v € G, the function on @

n— f*(on)

is H-right invariant. We can thus apply the transference theorem we discussed
in the introduction, obtaining

J

Applying this inequality to (3.1) we have the desired result.
In this particular context, we decided to present a proof that could be more easily

# Blom—1 ?(REY || £1|P A
Qh (m) f*(vn~ ") dn dv <Ny (RIS "Lp(g) = HfHLp(zn)

followed by the reader non familiar with transference.

Theorem 3.3

Let n > 3,1 < p < oo, {my}2, be a bounded sequence of complex numbers
and define T on P(X,,) by

Tf(x) = lm (k= )

where k,(z) Lo SortmZin(z), for 0 < r < 1. Let S, be the convolution operator
on LP(%,_5) given by the zonal kernel kO(cos)|sin6|?. If the operators S, have
uniformly bounded (by a constant A,) norms as r — 17, then T is bounded on
LP(%,), with norm less than or equal to <*=* —Ap.

Observation. The series defining k, converges uniformly, by Proposition 2.9 (iv). If
[ is a generalized trigonometric polynomial, f = Y"7_, fi, fi € Hi(%,), then

Tf(z)= lim (k, x f)(z) = lim Zr mZ5" x f(x)

r—1- r—1-—
J
= lim E rmlfl E mlfl
r—1-—

thus, T" is the zonal multiplier associated with the sequence {m;};°.
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Proof. Applying Theorem 3.2 twice, first to the kernel k2(cos)|sinf| and then
to k(cos @), we see that k(cos) defines a convolution kernel on ¥,,, bounded on
LP(¥,) by the constant J*=-=»=2A, = z»=L A, for all 0 < r < 1. Now observe
that, for f € P(%,),

1/p
5l = | [t 106 Do)Pe]

1/p
gliminf{/ |(kT*f)(x)\pdx] <=L A0 ]l O
Y

r—1- Wn—3

Theorem 3.3 allows us to conclude that a certain sequence m defines a zonal
multiplier bounded on LP(%,,) if some family of convolution operators is uniformly
bounded in LP(3,_2) (n > 3). The next step expresses these operators in terms of
their Fourier transform.

DEFINITION 3.4. Let A > 0. If we write
(1—2rt+12) 7 =3 Coy!
1=0

where |r| < 1, |t| < 1, then the coefficient C{(¢) is called the Gegenbauer (or
ultraspherical) polynomial of degree [ associated with \.

Proposition 3.5
Let I > 0 be an integer. C} is a polynomial of degree | and the following
identities hold.

(i) For A = 251 n > 2 integer,

D

WA

Zg" (x) Cl(a-e).

(ii) For any A > 1,

(142X = 2)(1+2X = 1)C)(cos 0) — (14 1)(1 + 2)C} (cos 0)

sin? HC[\(COS ) = AN =1)(A+1) -

(iii) sin®@C}(cos@) = sinfsin(l + 1) = L[cos 10 — cos(l + 2)d].
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Proof. The proof of (i) can be found on [11], as for (ii) and (iii) see [13], page 83. O

In what follows we will put A = ”Tfl

Lemma 3.6

Let n > 3 and let {m;};°, be a sequence of complex numbers with exponential
decay. Then

Zml sin? 6 (Zé’")o (cosf) = :;;2 Z [(Dm); + (Tam),] (Zé’”_Q)O (cos9)
1=0 ™ 1=0

where Dm and T\m are sequences defined by

(Dm)l = lml — (l — 2)ml,2
AN —1)
I+Xx-1

for alll > 0 (define m_; =m_o =0).

(Thm), = (my —my—2) + (BA—2)m; + (A —2)my_2

Proof. First of all observe that both series converge uniformly. Then, assuming
n > 3, by Proposition 3.5,

lz:;ml sin? 6 (Zé’”)o (cosf) = win ; mll —;A

sin? 0C; (cos 0)

o0

1 1
:w_nzzl()\—l))\

1=0
x [(1+2X = 2)(1 +2X — 1)mC} " (cos ) — (1 +1)(1 + Z)mlC[\+_21 (cosd)]

_ Wp—2 o0 (I+2Xx=2)(1+2)— l)ml (Zl’n_Q)o (cos 0)+

T D, & I+A—1
(I+1)(1+2) 142.n—210
o~ N 0 7 Z 1
S ml( . ) (cosf)
Wno2 = [T+ 22 =2)(1+2X - 1) I(1-1) L n_on0
_ — N | (2 0
Py lo[ [+ A1 = o miee] (2T (eos)

and the lemma is proved, once we observe that

(I+2\—2)(+2\—1) A= 1)
B Gt R
It A—1 i1t
W=D gy ARy

l+X2-1 l+X—-1
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The case n = 3 follows in a similar way; we only need to remember that

cos 10

Zb (cos ) = .0

™

Lemma 3.7
Letn>3,1<p<o0.
o0
(i) The sequence {ljr\;_l }l defines a bounded multiplier Qy on LP(%, _5).
=0

(ii) H% [(r—1) P HLl(zn_Q) are uniformly bounded as r — 17.

Proof. (i) If n = 3, that is if A\ = 1, there is nothing to prove. Assume A > 1. Recall
that

1 o0
hO 6 dgf — C)\—l 9 l
r(cos®) (1 —2rcos+r2)*-1 ; i (cosO)r

lwn_2(>\ - 1)

e (Zl’"_2)0 (cos0).

e

0

=0

Thus h, is a zonal convolution kernel with Fourier transform

{wn_ﬂzi}m .
1S,

It is easy to see that, for all 7 € [0,1),

Wn

I lzrcs, = 252 [ HE(cosO) s8] 28 < s,

If f € P(S,_2) has the form f =1 f, with f; € Hy(E,_s), then

k

1@ fllzr(s,_n) =

Lp(Zn72)
1
Wn—2
TTWn—3

IA

hmi{lf Hhr * fHLp(anﬂ

IN

£l (s,_2)-

n—2
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(ii) & [(r — %) P,] is zonal and

T

2 [ o] =3 (2]

_ 0 1 1—r?

Cor [(T B ;> Wn—2(1? — 2rcos + 1)@—1)/2}

rcosO[(7T—n)r2 +1+n]+[(n —4)r* — (n + 3)r? — 1]
r2(r?2 — 2rcosf + 1)

= —P%cosh)

T

It is enough to check that the second factor in the above product is uniformly
bounded in absolute value. Put ¢t = cosf, t € [—1,1], and define

def TH(7—n)r? + 1+ ]+ [(n—rt — (n+3)r® — 1]
fr(t> - 7.2(742 — 2t + 1) 5

fr is differentiable in [—1,1] for all r € (0, 1) and, for those values of r and ¢,

pon . m—1 (7‘2—1)2
(1) = ro (r2—=2rt+1)>2 > 0.

Thus f, achieves its minimum at —1 and its maximum at 1. But

(n—4r*+(1-n)r—1
)

n—4r2+n—-1)r—1
72 .

fr(_l) -
fr(l) =

This proves that the absolute maximum of f, is bounded as r — 17.

DEFINITION 3.8. For any integer k > 0, we will denote by 75 the operator on the
space of sequences given by

mi—k lle/{?
(Tem) =
0 Hfo<i<k.

Theorem 3.9

Letn > 3,1 <p < oco. Let m = {m;}°, be a bounded sequence of complex
numbers and let M be the zonal multiplier on ¥, defined by m. If Dm, m, Tom
define bounded zonal multipliers on LP(%,,_2), respectively My, My, Ms, then M is
bounded on LP(%,,).
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Proof. According to Theorem 3.3, it suffices to show that the convolution operators
S, with zonal kernels

sin? 9k%(cos 0) = Z rlmy sin® 6 (Zé’”)o (cos0)

1=0
are uniformly bounded on LP(X,,_2) as » — 17. Observe that the sequence R, m o
{r'm;}$°, has exponential decay (if 0 < r < 1). We can therefore apply Lemma 3.6
to the sequence R, m and obtain

- l 2 In 0 _ Wp—2 e - o
;T mysin® 0 (Z,")" (cos ) = D, ; [(DR,m); + (TxRrm)i] (Zg"72) (cosb).

We must, therefore, prove that the sequences DR, m + Th\R,m define uniformly
bounded multipliers on LP(3,,_2). Observe that

(DR,m), = r'(Dm); + [+ Dt — (1 - 1)Tl_2}ml,2 - [37‘l - TZ_Z]ml,g

A(A—=1 _
(TAR;m), = li)\—i(rlml — ! zmlfz) + (3A = 2)rtmy + (A = 2)r' " Zmy sy
Thus, assuming f € P(X,,—2), we have

i DR,m), ZL" 2 x f

=0 LP(Sn-2)
< Zrl(Dm)lZé’”fz * f
1=0 Lo(S )
+ Z [+ Dt — (1 — l)r(l_z)] (o) Zb" 72 % f
1=0 Lr(Sh_a)
+ Z (37"l — 7“172)(72771)1253’"72 x f
1=0 Lo(S )
< [P My f]| I A (R « Msf
ST e o r) T s

1
+H<3— —2> P, x Msf
r LP(Sy_2)

SAMyfllLes, o) + CullMsfllLes, o) + 3MsfllLes,_.) -
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Similarly

D (TaRym) ZL" 2« f
=0

LP(En-2)
= - 1)

Zl,n—2
I+ A— rmZe" " x f

1=0 Lp(Z,_2)

)‘(A B 1) T‘l_le_QZl’n_Q " f

* l+X-1

Mg

N
Il
=

LP(Sh_2)

(BX = 2)rtmyZLn =2 « f

LP(E’IL—z)

Mg T[]

+ (AN =2)r12my o 2L 2 f

l

Il
=)

LP(En-2)

1
= AP+ QxMa fl 1oz, ) + H)\T—QPT « QrMsf

1
3N = 2P x Maf s, 2)+H<A SEVSTY

1
S AMOAMaf | pr(s, o) + )‘T_QHQAMBJCHLP(E”_Q)

1
+BA=2IMfllrrm, ) + A =215 1Maf Loz, ) O

LP(Sh_2)
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Suppose n is an odd integer. We can apply Theorem 3.9 to a sequence m on

>, then to the sequences Dm, m, T9m on >, o, and so on, so that, eventually,

we obtain that the boundedness on LP(%;) of a certain (finite) family of multipliers

will imply the boundedness of m on LP(3,). This is the basic idea in the proof of

Theorem 3.1. If n is even, though, by reducing the dimension of the sphere two units

at each step, we arrive at the >, case. The next section, as we anticipated at the

beginning, will be devoted precisely to the answer to the question: the boundedness

of which multipliers (if any) on LP(3;) imply the boundedness of a given multiplier

on LP(¥s) ?
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4. The 2-dimensional case

We begin this section with some facts about SU(2) and its relation to the sphere
Y5. For the details, see [16], [12] Chapters 1 and 2, [3], page 105 and [5].
The group SU (2) (special unitary group of degree 2) consists of all 2x 2 matrices
u satisfying
uw'u=1 and detu=1.
The space M af all matrices of the form

x1 T2 + 123
X =
T2 — 13 —X1

with x1, 9, 23 € R, is clearly isomorphic to R3.

DEFINITION 4.1. For any u € SU(2), define ®(u) as the linear map on M given by
O(u)X =uXu®.
One can check that uXu* € M, so that ®(u) maps into M, and that ®(uv) =
®(u)®(v), so that @ is a homomorphism. Note that, defining

cos g 7 8in g eie/2 0
a(f) = b(p) = .
[ 0 0 e—up/?

7811 5 COS 5

we have a(f), b(¢) € SU(2). ®(a(f)) and ®(b(y)) are then linear maps on M and
their matrix representation with respect to the basis of M

o S (o) (5]

is given by
cosf 0 siné 1 0 0
®(a(f)) = [ 0 1 0 ] D(b(p)) = [ 0 cosp —sing J
—sinf 0 cosf 0 sinp cosy

It is well known that each u € SU(2) can be written as u = b(p1)a(0)b(p2), and
that each n € SO(3) can be written as n = ®(b(p1))P(a(0))P(b(p2)) (¢1, 0, P2
are the so-called Euler angles). Thus ®(SU(2)) = SO(3) and, as one can check,
ker & = {I, —I}. We can define an action
SU(2) X 22 — 22
(u,z) — ®(u)x.

Proposition 4.2
Let e = (1,0,0) be the “east pole” of ¥5, B = {b(¢) | ¢ € [0,4n]}, a subgroup
of SU(2). Then ¥4 is diffeomorphic to the homogeneous space SU(2)/B.
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Proof. 1t is enough to show that
B={ueSUQ2) | P(u)e=e},
and this follows easily from the fact that

1 0 0
O(b(p)) = [ 0 cosp —sing ] O
0 sinp cose

Notation. For any f € L*(33), we will define f on SU(2) by

fu) = f(@(ue).

Note that f is right invariant with respect to B.

Proposition 4.3
If f € L'(Zy), then f € LY(SU(2)) and
f(x)dx—47r/ f(u)du.
ol SU(2)

As usual, dx denotes the element of Lebesgue surface area and du is the normalized
Haar measure of SU(2).

Proof.

f(x da:—/ f(® dxdu-/ / x)dudx
O SU(2) /5, 5, JSU(2)

/ / dudx—4ﬂ'/ f(u)du. O
39 JSU(2) SU(2)

Let L be a non-negative integer and P’ the vector space of homogeneous
polynomials of degree L in the complex variables z1, zo. The L 4+ 1 polynomials
ej(z) =e;(z1, 22) def (L)z{zQL I 5=0,..., L, form a basis for this space and P
can be considered to be a Hilbert space if we impose the condition that {e; }f:O be
an orthonormal basis. Consider the following mapping

St . SU(2) — U(PY) (unitary operators on PF)

u— Sk

where SLp(z) def p(u'z) (v =transpose of u).
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Lemma 4.4

ST is an irreducible unitary representation of SU(2) and any irreducible repre-
sentation of SU(2) is equivalent to one of the S*.

See [12], pages 48 and 58 for the proof.

Let [Sﬁ]{ej} be the matrix representation of the unitary operator SZ with res-
pect to the basis {e;}, and let its entries be té,j (u), 0 < k,j < L. We know (see
[16]) that if u € SU(2), then

U= —i X X
N X X,

with Xl, X2 € C and |X1|2 + |X2|2 =1.

Proposition 4.5

With the above notation, we have

thy () = 5= Y (i)

X / ( - 726” + 71649)]' (Xlew + Xzeiw)L_jeii(%iL)ede'

Proof. Observe that

L
Skej(z) = th(wex(2).
k=0
The left hand side of the above equality is

6'(’[/2) —e: [ —i —72 71 [ 21 ] — e Z'YQZl — iylzg
J J X1 X2 Z2 J —inzl — iXQZQ

I o -
= L(_i)L(—XQZE + X122) (X121 + Xozo) 7.

JNL =)

On the other hand,

L L
D tigwen(z) = Yt (u) —m—==atzy .
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If we restrict ourselves to the values z = (21, 22) = (%, e~%), we have

(i) 1 (—X2e + X1e70) (X e + Xpe )L i Lme
JUL = j)! = (L k)

The desired result now follows once we integrate both sides against e~ #(2ko—L)¢gp
over the interval [—m, 7]. O

Proposition 4.6

Suppgse L is even, L = 2l. Using the notation after Proposition 4.2, we have
tg (u) =Y} (u), where

1) VEN21 - k)!/"(
I ,ﬂ

2

Vi, 2. us) < — Y1 + iy2 sin 20 + iy cos 29)l6_2i(k_l)9d0

is defined on Y. Furthermore, {Y}!}?L  is an orthogonal basis of H;(X2), the space
4

of spherical harmonics of degree 1, and ||Y}||3 = 4T

Proof. We have to show that tél(u) = Y}(®(u)e). Note that e = (1, 0, 0) are the
coordinates, with respect to the above mentioned basis of M, of the element

0 _I :
I hllS,

1 0y .
P(u)e =u [0 _1] u
[ | Xa|? — | X1 |? —2X1X, ] def [ Y1 Y2 + 1ys3 ]
—2X1Xo X - X Y2 —iys  —h
By Proposition 4.5 we have that tﬁ,l(“) equals

k(L —k)! g — . _ . A
; l' ) (_Z)L/ (_ Xlee’LQQ 4 X1X2€7129 4 |X1|2 _ |X2’2)lefz(2k7L)9d9
T

—Tr

2rl! 2 2

—1)! ,/k;!(zz—k)!/” (
1l .

21

_ k(L — k)! (—1)! /7r (?JZ + Y3 pi20 _ Y2 iys o120 _ y1>le—i(2k—L)0d9

— Y1 + iy2 8in 20 + iys cos 29)l6_2i(k_l)9d9_
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By the Peter—Weyl Theorem, {tf,};L, are mutually orthogonal in L?(SU(2)) each
having norm

L?(35), and

2l — . Thus, by Pr0p051tlon 4.3, {Y'}3L , are mutually orthogonal in

4
204+ 1°

Finally, we have to check that Y} € H;(X2). Since dimH;(32) = 21 + 1, this will
prove the proposition. The definition of ka (y) makes sense if we assume y € R3

1Yl3 =

instead of just ¥s. Clearly, this extension is a homogeneous polynomial of degree
. So, we only have to check that Ykl is harmonic. By the mean value theorem for

harmonic functions, it is enough to show that G (y) def (—y1 +iys sin 20 +iys cos 20)!
is harmonic for all §. Consider the following rotation of R3

Ry =

1 0 0
0 cos20 —sin26 ]
0 sin26 cos260

and define F! by F'(zy, w2, x3) & (—x1 +ix3)!. Then
Gy(y) = F'(Rey).

Since F! is trivially harmonic (by inspection), G} is also harmonic. [J

We now recall some facts about harmonic analysis on SU(2) (see [16]). If
we define H; span{tgj}ogk,jgj;, by the Peter-Weyl Theorem, L?(SU(2)) =
@D;_, Hr. Also, the characters of SU(2)

trsL = Zt

df
xr(u) =

are, as all characters of compact groups, central functions (i.e. xr(vuv™!) = xr(u)
for all u, v € SU(2)). It is well known that, for all u € SU(2), there is a v € SU(2)
and a ¢ € [0,2n] such that u = vb(2¢)v~!. Thus

def
xo(u) = x2(b(29)) = x3(9), ¢ €[0,27]
(€', e~ are the eigenvalues of u). We have

sin(L 4+ 1)p
sin
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and for all f € L?(SU(2))
F=Y (L+)xp=f
L=0

where (L + 1)x 1 * f equals the projection of f onto Hp.

Theorem 4.7

Let 1 < p < oo, m = {mp}7>, a bounded sequence of complex numbers and
M, the convolution operators on SU(2) given by the central kernels k,, where

K2(0) =D (L + Dmprtx2,(6).
L=0

If h2(0) 4 in? 0k2(0) define uniformly bounded (by some constant A,) convolution

operators on LP(X;) as r — 1, then M, are uniformly bounded on LP(SU(2)),
with norms bounded above by %.

Proof. (cfr. [16], page 216). Recall the following formula for the Haar measure on
SU(2)

1 us
/ f(u)du=— / f(vb(@)v™1) sin? 0 db dv.
SU(2) ™ Jsu(@2) J-=n

‘ | mfto
SU(2)

1 p 1/p
== / du .
T 1JsU(2)

By Minkowski’s integral inequality, we see that the last expression is dominated by

1 p 1/p
— / / du dv.
™ Jsu(2) |Jsu@)

Because of the right invariance of Haar measure, the integral within the parentheses
is unchanged if we multiply u on the right by vb(p)v~!. Doing so and averaging
over all ¢ € [—m, 7] we obtain that the last expression equals

oo o2 1.
T Jsue) |Jsue) 2T U

Thus:

& * fllLe(suc))

LP(SU(2))

/ /7T hO(0) f (uvb(—0)v ™) dfdv
SU((2) J—m

/ " R0(6) f(uvb(—0)v") do

—T

/7r h2(0) f (uwvb(p — 0)v~ ") df

—Tr

» 1/p
dgp} du] dv.
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The expression in curly brackets is the pth power of the LP norm of the convolution of

hY with the function g having values g(p) = f(uvb(p)v~1t). Thus, the last expression
is no larger than

1 AP 1/p

P —1,\|P
— fluvb(p)v dodu dv
™ /SU(Q) [/SU(Z) 2m /—71" (wblp)o™)|

A 1 7 1/p
P —1\|P
= —= — fuvb(p)v du dy dv
T Jsu(2) [27T /71' /SU(Z) [#uvble)o™)|
P

1/
/ 1 (w)Pdu
SU(2)

DEFINITION 4.8. For any sequence m = {m;};°, define the associated sequences
Zm and Wm by

Ap

™

.0

m if [ is even
(Zm), f { V2
0 if [ is odd

and
def { (I+1)mye — (I =1)mye—y if I is even

(Wm)l =
0 if [ is odd.

The following theorem answers the question we posed at the end of the last
section.

Theorem 4.9

Let 1 < p < oo and m = {my;};°, a bounded sequence of complex numbers.
Suppose 7aZm and Wm define bounded zonal multipliers on LP(¥1). Then m is a
bounded zonal multiplier on LP(Xs).

Proof. The proof can be divided into four steps.

Step 1. Once again, for any r € (0, 1) and for any sequence a = {ar,}72, define the

sequence R a def {rta 172 - We will prove that DR, Zm + TR, Zm are uniformly
bounded multipliers on LP(¥;) as r — 1~ (D and T3 are defined in Lemma 3.6).
First of all note that

('DRTZm)L + (TlRTZm)L
= (RWm)p + [(L+ 1)t 4+ (L — 1)r*2](e2Zm) — 2(R,mZm) .
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Suppose f € P(X1); that is, f = 2'2:0 fr with fr, € Hr(21). Then

k k

> (RWm)Lfr = |Pox > (Wm)Lfr

L=0 LP(Zy) L=0 LP(Zy)

k
< Z(Wm>LfL ;
L=0 Lr(Zy)
k
> UL L (=1 (nZm) fr
L=0 Lr(%1)
0 1 b
= 67" (T‘Pr — ;Pr> * Z(ngm)LfL
L=0 Lr (%)
k
Z T Zm)r f1, ;
L=0 Lr(%1)

k k
Z(Rer)LfL =2 Pr * Z(ngm)LfL
L=0 LP (1) L=0 Lr(%y)

k
<2 Z(T2zm)LfL
L=0 LP(%q)

(the second to last inequality follows from Lemma 3.7 (ii)). This proves Step 1.

Step 2. We will prove that the central kernels in SU(2) given by

[e.e]

Z (L +1)(Zm) X3 (60)

define uniformly bounded convolution operators on LP(SU(2)) as r — 1~. Consider
the following equalities (where we define (Zm)_1 = (Zm)_o = 0):
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i r (L +1)(2Zm)p sin® 0xY (0) = i rP(L +1)(Zm) g sinOsin((L + 1)6)
L=0 L=0

T cos LO — cos((L +2)8) 7 —
= — (L+1)( =—
2 LZ e PP

cos Lo

r—|

Zm )L+ (Zm)L — (L — 2)TL_2(Zm)L_2 — TL_2(Zm)L_2}

Z (DR, Zm)s + (T\R,Zm)L] (Z51)° (cosh).

By Step 1, these are uniformly bounded convolution kernels on LP(3;); thus, by
Theorem 4.7, k, are uniformly bounded convolution kernels on L?(SU(2)).

Step 3. The multipliers M, associated with the sequences R,m are uniformly

bounded on LP(33) as r — 1. Indeed, let f be a trigonometric polynomial on ¥o;
that is, in the notation of Proposition 4.6,

Y.

72
B V2I+ 1\ V2i+1
f_zko(f’ 2v/m Y’“) NG

=0 k=

Then

j 2l
F =33 (£ Y5 ) U

In particular, denoting by P, the projection of L?(SU(2)) onto Hr,

ti(u).

=0 k=0

Mg

rE/2(L+ 1) (Zm)pxr * f(u Zrm Zm) Py f (u)
0 L=0

! (Zm) g Py f (u) + ZTHI/Q Zm)or 1 Pory1f(u)
1=0

h
I

tnqg

N
Il
o

21

l
Azma S 2L (1) )

k=0

|
M~

~

I
M- L

~

21

o S EEL (V) VL] () = AT (),
k=0

N
Il
o
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Thus,
1M P11z sy = 4TI M S) 502y = A7 Mk * FITo(su )
< 4nCN %0 suy = Cl Lo ()

Step 4. M, the multiplier given by the sequence m, is bounded on LP(33). Indeed,
let f = Zf:o f1 be a trigonometric polynomial (f; € H;(32)); then
P

dw:/ lim
b r—1-

k
> rtmyfi()

=0

k p
Zmlfl(!E) dx

=0

< lim inf/
r—l1-— Mo

k
> rtmufi()
=0

p _
1MWy = [, 2

P
iz < C / F@IPdz = C| £, 5, O

5. Conclusion of the proof

In order to conclude the proof of Theorem 3.1, we need to establish some facts about
zonal multipliers on LP(X;). First of all, recall that we can identify functions on ¥
with 27-periodic functions on the real line,

£0(0) X f(cos6,sin0)

and, with this notation,

. f(z)de = ng(@)d&.

—T

JFrom now on, we shall identify f and fj.

Lemma 5.1

Let 1 < p < oo, m = {m;}2, be a bounded sequence of complex numbers. If
m defines a bounded zonal multiplier on LP(¥;), then Zm defines a bounded zonal
multiplier on LP(%y).
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Proof. (The Authors owe the following simple proof to Dr. Gustavo Garrigés.) Call
I1(%;) the space of w-periodic functions in LP(X). II(X;) is a Banach space with the
norm induced by LP(X;). Consider the following operators from LP(31) to II(X;):

def 1

TF(0)= 3 (f(0) + £(0+)
51(6) < f(26).

T, 6 and 6! are bounded linear operators (where defined). Denoting by M,, and
M z,,, the zonal multipliers associated with m and Zm respectively, we have

SMpm6™'T = Mzp,.
k ilf —ilf
Indeed, let f € P(S1), f(0) = a0+ >, (we"® + be™?), then

[5]
6Mm6—1Tf(9) = 6M,,6 " (ao + Z a2j€i2j9 + b2j6—¢2j9>

j=1

=o0M,, <CLO + Z azje”e + b2j€”9>
j=1
=0 (moao + ij (CLQjC”g + sze_”e) >
j=1
= moag + ij (a2;€™7? + byje~"2%) = Mz, f(0). O
j=1

Lemma 5.2

Let 1 < p < oo and m = {m}{2, a bounded sequence of complex num-
bers. If m is a bounded zonal multiplier on LP(3;), then (i) m,m and (ii)

Am & {lj%l 22.:0 m]} are bounded on LP(%,). Also, if (iii) Dm or (iv) Jm

are bounded on LP(X1), then m is bounded on LP(31).

Proof. (i) Consider the following operators, bounded on LP(3;) (here f(6) = ao +
SF L (@el® + e it?) € P(S)):
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Mmf((g) déf moQo + Z my (aleiw + blefiw)
=1

Hf () def f(6) (the conjugate function, see [9])

k
bFO) Y —Lag+ L (r0) + it F0) =3 we
=1

2 2
b7(0) S —Lag+ L(r(0) - iry(0) = Zk:b o-ilo
T 20Ty _Zzll ‘

We will show that the operator
bB\M,,B_y + bB_, My By

has 7ym as its Fourier transform. This will prove that 7ym defines a bounded
multiplier on LP(%;). Part (i) will then follow immediately.

k
bB1 M, B_1 f(0) = bBy M,, <a0e—i9 +) a0 ble—“l“)@)
=1

k
=bB; (mmoew + Z my_yage=H0 4 mlﬂblei(l“)@)
=1

k k
=b <m1a0 + g my_qa;e™? + ml+1ble”9> = g my_qa;e?.
=1 =1

Similarly

~ k
bB_1 My Brf(0) = my_1be .
=1

(ii) This is a trivial application of the Marcinkiewicz Theorem on multipliers
(see [10]).

(iii) Without loss of generality, we can assume mo = 0 (if not, recall that the
sequence m = {my,0,...,0,...} defines a bounded multiplier on LP(X%;), namely
convolution with the constant function g = mg, that Dm = D(m — m) and that
m = m + (m —m)). Applying Lemma 5.1 to the identity map, we see that the
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sequence p = {}7°, = {1,0,1,0,...} defines a bounded multiplier on L?(3;) and,
by part (ii), the same is true for

o0

I
oo def 1
v={n}tZo = 1 ;Mj(pm)j

and et
Yy = {2

Note that l

—=m; [ even
e = { H
0 [ odd.

The sequence & = {{l}io with

&déf 1 ifl=0
Bl if >0

is a bounded multiplier on L?(X;). Thus the sequence
m; [ even

0 lodd

is a bounded multiplier on LP(3;). A similar argument shows that the sequence

0 leven
m; [ odd
defines a bounded multiplier on LP(X%).
The proof of (iv) is similar to (but simpler than) that of part (iii). O

St = {

given by

Lemma 5.3

Let m = {m;};°, be a sequence of complex numbers and j a positive integer.

Then:

(1) Dszm = szDm + 2j7‘2jm — 2j7'2j+2m.

(ii) Jrym = 1;Jm + jT;m — jTipim.
(iii) Z71o;m = T4;2m.
(iv) ZDm = $DZm + 57 DZm.

(v) Dm = Jm+ 1 Jm.
(vi) DZm =2ZJm.

All these equalities are easily verified.
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Lemma 5.4

Let 1 < p < oo, m = {my};2, a bounded sequence of complex numbers and
N a positive integer. Suppose DY Zm is a bounded multiplier on LP(X1). Then
D*ZDim is a bounded multiplier on LP(%y), for k> 0,5 >0, k+j < N.

Proof. First note that, by Lemma 5.2 (iii), Zm, DZm, D*Zm, ..., DN Zm are all
bounded multipliers on LP(X;). The lemma is therefore true for j = 0. Applying an
induction argument on j, assume that the lemma is true for j —1, k =0,1,..., N —
j + 1, and let us prove it for j, k =0,1,...,N —j, (j > 0). Applying Lemma 5.3
(iv), we obtain

. 1 : 1 .
DFZDIm = §Dk+1ZDJ_1m + QIDKTQIDZ'D]_lm.

The first term is a bounded multiplier on LP(X;) by the induction hypothesis. As for
the second, note the following: for all positive integers ¢, for all non-negative integers
h and s and for all sequences M = {M;}°,, we have (applying Lemma 5.3 (i))

Diroy DM = D' 1oy DM + 20D L1, DS M — 20D Vg0 D°M (5.1)

The last equality implies that a sufficient condition for D*mDZDI~'m to be a
bounded multiplier on LP(X;) is that

DF gy, D ZDI7m (5.2)

be bounded multipliers on LP(X) for all Ay > 1 and for s; = 1, 2. Using (5.1) again,
(5.2) are bounded multipliers on LP(3;) if

DF 21y, D2 ZDI"Im

are bounded multipliers on LP(3;) for all hs > 1 and for s = 1, 2, 3. Continuing
this reasoning, we obtain that D¥m,DZD/~1m is a bounded multiplier on LP ()
if 795, D% ZDI~'m are bounded multipliers on LP(%;), for all hy > 1, for s, =
1,2,..., k+1. Lemma 5.2 (i) implies that it is enough to require that D ZD7~1m
be bounded multipliers for s = 1, 2,...,k + 1, which is true by the induction
hypothesis. [

Lemma 5.5

Let 1 < p < oo, m = {my};2, a bounded sequence of complex numbers and N
a positive integer. Suppose JNm is a bounded multiplier on LP(%1). Then J'D*m
is a bounded multiplier on LP(Xy), for k > 0,5 >0, j+k < N.
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Proof. First note that Lemma 5.2 (iv) implies that m, Jm, J?m,...,JVm are
bounded multipliers on LP(X;). Let h = j + k and let us make an induction on h:
h = 0 implies j = k = 0. Thus J?D*m = m, which is bounded on L?(%;).

h = 1 implies either j = 1 and £ = 0 (in which case we obtain Jm, which is
bounded on LP(¥;)) or j = 0 and k£ = 1. In the latter case we get Dm which, by
Lemma 5.3 (v), equals Jm + 71Jm and this is a bounded multiplier on LP(X;) (use
Lemma 5.2 (i) again).

Suppose now the lemma is true for all j’s and k’s such that j + k < h. We claim
that the induction hypothesis and the fact that J7D*m is a bounded multiplier
on LP(X1), j+k = h, j > 0, imply that J7~1D¥*1m is a bounded multiplier on
LP(%;). This claim, together with the fact that J"m is a bounded multiplier on
LP(X;), proves the lemma. Let us prove the claim. By Lemma 5.3 (v),

JITIDk = JIDEm + J 7 JDFm.

JDkEm is a bounded multiplier by the hypothesis of the claim. By Lemma 5.3 (ii),
the boundedness of J7 =17 JD¥m on LP(X;) is implied by the boundedness of

JI2n J*DEm,  J T 0D m, D m.
Being generous, we seek for the boundedness of
JIT20, 2D m, Yy >1, 85 =1,2

which, again using Lemma 5.3 (ii), is implied by the boundedness of

JIT3,, T3 D m, Vs >1,s3=1,2,3.
Proceeding similarly, all we need is the boundedness on LP(X;) of

7, J9DFm, Vor;>1,8;,=1,2,3,...,].
By Lemma 5.2 (i), we only need the boundedness of

J5DEm,  for s; =1,2,3,...,].

which follows from the induction hypothesis and the hypothesis of the claim. [J

The following is a corollary of Theorem 4.9.

Theorem 5.6

Let 1 < p < oo and m = {m;};°, a sequence of complex numbers. Suppose
DZm is a bounded multiplier on LP?(¥;). Then m is a bounded multiplier on LP(%5).
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Proof. This follows from Lemma 5.2 (i) and (iii) and the easily verified equality

Wm =DZm+ Zm — nZm.

DEFINITION 5.7. Let m = {m;};°, be a bounded sequence of complex numbers.
For any integer j > 0 we define the family of sequences A; by

A oy Dm0 < h <k < j}.
We can now state and prove a preliminary version of Theorem 3.1.

Theorem 5.8
Let 1 < p < o0, n a positive integer, N = [%] and m = {m;};°, a bounded
sequence of complex numbers.
(i) Assume n is odd. If DVm is a bounded multiplier on LP(¥;), then m is a
bounded multiplier on LP(%,,).
(ii) Assume n is even. If DN Zm is a bounded multiplier on LP(X;), then m is a
bounded multiplier on LP(%,,).

Proof. The case n = 1 is trivial, and the case n = 2 coincides with Theorem 5.6.
Suppose n > 3. We claim that, for any integer j, 1 < 5 < "T_l, if the sequences in
Aj; are bounded multipliers on L”(3,,_2;), then the sequences in A;_; are bounded
multipliers on LP (3, _2;4+2). Note that

Aj1 = {m1D"Fm, 0 < h <k < j}

and, for 7 = 1, this claim coincides with Theorem 3.9.

By Theorem 3.9, we have to show that, for any sequence 1 € A;_1, the se-
quences Dy, Top, 1 are bounded multipliers on LP(X,,_2;). Note that 7op and p
belong to A;, so we only have to worry about sequences of the type Dp, with
p € A;_;. But, by Lemma 5.3 (i),

D,U, = DTQhDj_km = TQhDj_k+1m + QthhDj_km - 2hT2h+2Dj_km
which is a bounded multiplier on LP(X,,_2;) since the three sequences
TghDj_(k_l)m, Ton DI Fm, Tg(h+1)Dj_km

belong to Aj, for 0 < h < k < j. This proves the claim.
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(i) Assume n is odd. Applying the above claim N times, we see that (starting
with j = 1) A9 = {m} is a bounded multiplier on LP(¥, _242) = LP(X,)
if (finishing with j = N) the sequences in Ay are bounded multipliers on
LP(X,,_on) = LP(X;). By Lemma 5.2 (i) and (iii), it is sufficient to assume
that DVm be a bounded multiplier on LP(%).

(ii) Assume n is even. Applying the claim N — 1 times, we obtain that m is a
bounded multiplier on L?(X,,) if the sequences in Ay _1 are bounded multipliers
on LP(33). Thus, the typical sequence that we have to prove to be bounded on
LP(EQ) is

7o DY Em, 0<h<E< N -1

By Theorem 5.6, this happens if

DZropy DN Fm, 0<h<k<N-1
are bounded multipliers on L”(3;). But, by Lemma 5.3 (i) and (iii),

DZ79, DV 1 Fm = D1y, ZDN 7 Em = 7, DZDN R m
+ 4hmyp ZDN TV — by 2D R,

By Lemma 5.2 (i) and (iii),

DZ7rp, DN "Fm, 0<h<k<N-1
is then a bounded multiplier on LP(%;) if

DEZDN 1"k, 0<k<N-1

are bounded multipliers on LP(X;), which, by Lemma 5.4, is true if DY Zm is
bounded on LP(%;). O

Proof of Theorem 3.1. Assume first n is odd. Since JVm is a bounded multi-
plier on LP(X;), Lemma 5.5 implies that DVm is a bounded multiplier on LP(X).
Theorem 5.8 implies that m is a bounded multiplier on LP(X%,,).
Suppose now that n is even. Just as in the proof of Theorem 5.8, all we need
to show is that
DZDN 1"k, 0<k<N-1

be bounded multipliers on LP(%;). But, by Lemma 5.3 (vi),
DZDN ' Fm =22ZJDN ",
and ZJDVN~17*m is a bounded multiplier on LP(¥;) if (Lemma 5.1)
JIDNflfkm

is a bounded multiplier on LP(X;), for any 0 < k < N — 1. The conclusion now
follows from the hypothesis of the theorem and Lemma 5.5. [J



Some multiplier theorems on the sphere 191

6. A theorem by Bonami and Clerc

In their paper [2], Bonami and Clerc proved an extension to the n-dimensional
sphere of the Marcinkiewicz theorem on multipliers (see [10]). Here we show how
their theorem can be obtained by “transferring” the 1-dimensional result to the
n-dimensional sphere by means of Theorem 3.1.

DEFINITION 6.1. Let m = {m;};°, be a bounded sequence of complex numbers.
The sequence Am is defined by

def
(Am)l = m; —m;—1
where, as usual, we assume m_; = 0.

Lemma 6.2

Let N > 1, m = {m;}2, a bounded sequence of complex numbers. Then J¥m
is a linear combination of sequences of the type

{lh(Asm)l}?im
with0 < h<s<N.

Proof. By induction. We have (Jm); = [(Am); — (Am); + m; and the lemma is true
for N = 1. Suppose the lemma is true for N — 1. Then
(JVm) =1V m) = (1= 1D)(IV 'm)i

= Z ah75 [thrl(Asm)l — (l — 1)h+1(Asm)l_1]
0<h<s<N-1

= Z an,s [(l — DML AT Im), + (Zh*1 — (- 1)h+1)(Asm)l] .
0<h<s<N-1

Since "1 — (I — 1)"*! is a polynomial of degree h, the lemma is true for N. O

Lemma 6.3

Let N > 1, m = {m;}{°, a bounded sequence of complex numbers. Then
AJNm is a linear combination of sequences of the type

{lh(As+1m)l}?i07

with 0 < h < s < N.
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Proof. Applying the previous lemma, we have
(AJNm)l = (JN’ITL)[ — (JNm)l_1
— Z ahys [lh(Asm)l — (l — 1)h(ASm)l_1]

0<h<s<N

= Y ans [(=1)"AT )+ (1" = (- DM (Am),] .

0<h<s<N
Since I" — (I — 1)" has degree h — 1, the lemma is proved. [J

Theorem 6.4 (Bonami and Clerc.)
Letl<p<oo,n>1, N = [%] Suppose
(i) m = {my};2, is a bounded sequence of complex numbers.
(i) sup20 27 Ty [(AVHm)| < o0,

then m is a bounded multiplier on LP(%,,).

Proof. Note that, for n = 1, we have exactly the Marcinkiewicz Theorem for multi-

pliers. Assume n > 1. Our goal is to show that (i) and (ii) imply that

(iii) JNm is bounded, and

(iv) sup;>q 212;; ‘(AJNm)l} < 00.

By the Marcinkiewicz Theorem on multipliers, this implies that J¥m is a bounded

multiplier on L”(X;) and, by Theorem 3.1, that m is a bounded multiplier on LP(%,,).
Define u = (AN¥m);. The sequence {uy}32, is Cauchy. Indeed, if k > j and

2" < j < 2"t then

k 2t +1
=gl = | D (ANTEm) <3 D (AN Im)
I=j+1 t>r =2t
1 2t+1
=2 g |27 2 (AT m 6
t>r =2t

1 1
SCZ?—N:C'QNTHQ asT — 00.

t>r
Let b = limg_. o 4. Then
k k
b= klirgo Pl Zu] = Jim o= Z(ANm)] = lin;o k‘——i—l(AN_lm)k =0,
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since (i) implies AN ~1m is a bounded sequence. Taking limits as k — oo in (6.1),
we have )
il < C’W, for 2" < j < 271

and, therefore,
Nl < €2V, v >0, (6.2)

We claim that for any s < N there exists a constant Ds; > 0 such that for any
[l >0, |[I°(A®*m);| < Ds. Indeed, by (6.2) we know the claim is true for s = N.
By induction, suppose it is true for s + 1 and let us prove it for s. Let j < k,
2" < j < 2"t then

k 2ttl_1
[(A%m)y, — (Am);| < Y (A ), <> > (A m
I=j+1 t2r [=2¢
2t+1_1 (6.3)
1
s+l
< Z Z ls—‘rl — 525r
t>r =2t

Thus, A®*m is a Cauchy sequence. Let b be its limit; then
k

1 s : 1 s—1
b= klingok—HZ(A m); = lim ——(A*"'m);, = 0.

Taking limits as k — oo in (6.3), we obtain
s / 1 r . r+1
|(A%m);| < DSQ?, for 2" < j <2
and, therefore,

17°(A°m);| < DL2°, Vj >0,

which proves the claim.
We can now use the claim and Lemma 6.2 to prove that JVm is bounded:

(Nmu|<B Y ["(A*m)|<B Y [I"*|<B’ <.
0<h<s<N 0<h<s<N
Note that, for 0 < s < N — 1,

9 +1 2J+1

i Ds+1 1
sup23$ (ASThm),| < sup 27¢ <supD 1+ =) <
w2 3 I(AM i < sup2 30 T <o Do (14 5
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(the above inequality is also true for s = N, by hypothesis). Thus, using Lemma 6.3,

9d+1 git1
supZ] (ATNm),| < Csupz Z 1" (AT m),|
320,55 3201255 0<h<s<N
2J+1
<Csp Y 20D T |AH iy,
320 g<p<s<N 1=27
2J+1
<2NC Z sup 2%/ Z\ AsTIm) || < infty. O
0<h<s<N [I20 |25

7. Ultraspherical series

Let A be a non-negative real number and, for all 1 < p < 0o, define

Lf\:{f [0, 7] = C: / x)[Pdnx( )<oo}

where dny(z) = (sinz)?**dz. Define also the L}-norm of f by

1l 2 { / ' If(:v)lpdm(x)}l/p.

If A > 0, the functions {C}(cosz)}52, (recall C}* are the ultraspherical polynomials.
See Definition 3.4.) form an orthogonal basis for the space L3 (see [13]); define

C(cos x)
Rz 4 Cileos)
T o)

R} () o cos(lx).

for A > 0,

Note that {R?}%2, is an orthogonal basis for LZ. For any A > 0 define the ultras-
pherical series of any f € L% as the formal sum
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where f(I) is the Fourier coefficient of f given by
sy def [T
O [ 1@ R ) s
0

— . A
and ¢; ' = ||R}||2,. For any A\ > 0 we can define a convolution * on the regular

complex measures on [0, 7] that makes the couple ([0, 7], >>k\) into a hypergroup (see
[1], [8], [14]). Here we will only be interested in convolutions between functions and,
therefore, shall present only the definitions that are pertinent to this particular case.
For any f € C([0, 7]), define the A-translation of f by x evaluated at y (z, y € [0, 7))
by

T2 f(y) def 7/\/ f(arccos(cos z cosy + sinzsiny cos §))(sin0)*}~*df if A >0,
0

1
T f(y) o §f(arccos(cos zcosy +sinxsiny))

+ §f(arccos(cos xcosy — sinzsiny))

where ~; ! def foﬂ(sin 0)2*~1do = 1\“/(;;\1:2% These translation operators satisfy the

following property (see, for example, [14], page 8): for all z € [0, 7] and f € C([0, 7]),
we have

T2 Fllpx < [1fllp,a-

Notice that the density of C([0, n]) in LY, 1 < p < oo, and the above mentioned
property, allow us to extend the definition of A-translation to the spaces LY, 1 <
p < 0.

A
The convolution g * f of two functions g and f in L} is defined by

def [T
9% 1@ [ g (0) dnno).
0
Using Fubini’s theorem, the fact that T f(y) = TyA f(z) and the inequality
HTyf”l,)\ < HfHLAv

A
we see that g * f is a well defined function in Lj.
This convolution is commutative, associative and

A
lg * fllox < lglluallfllpa, 1<p<oo

A~

(9% £)™ () = a0 fQ), 1=0,...,00.
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We shall now motivate the “transference type” theorem that will be proved
later. For any zonal function f € L'(X,), n > 2, define fo on [0, 7] by fo(f) =
f%(cos8) = f(a(f)e) (see §2). Let f and g be zonal functions in L1(3,), n > 2. Tt is
easy to check that f x g is zonal as well. Furthermore, keeping in mind the formulas
from §2, we have

(f * 9)o / £(e(®)e - v)gly) dy = wn [S oy, @ ()

:wncn/ / fO(a(B)e - ka(p)k'e)g(ka(p)k'e)| sinp|" " tdyp dk dk’
KJK J—m

Wn—1

= 2_ /K T; fO(k;a(H)e ~a(p)e)go()] Sin<,0|n_1d(p dk.

Since K is isomorphic to SO(n), we have the following Cartan decomposition:
K =LBL,

where L = {u € SO(n+1) : ue = e and u(0,1,0,...,0) = (0,1,0,...,0)} and B is
the subgroup of K consisting of all the matrices 3(¢) of the form

1 0 0 0 . 0
0 cosy —siny 0 .0
0 siny cosy O .0
def
B)I="10 o 0 1 .0
0 0 0 0 1
Thus, the last integral equals
) / /
x fo(hﬁ (W) a(0)e: alg)e)go()lsinel™ ™ siny["dip dy dh di’
Wn— T : n— : n—
s [ fo(ﬂ(w)a@)e-a(w)e)go(w)lsmw *Jsin | db dy
= w’;lQ/ £9(cos 0 cos ¢ + sin O sin @ cos 1) go ()| sin 1| 2| sin |~ dyp dip

T P
= Wn-2 / /
0 0

X fo(arccos(cos @ cos ¢ + sin @ sin @ cos1)))| sin |~ 2dapgo ()| sin p|" " dyp

Wn— T n— (n—1)/2
= 2 / go(@)Tg( e dNn-1y/2(¢) = wn—1 (fo * 90> (0).
Y(n-1)/2 Jo
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Note that HfH’ip(En) = wn—le0|!§,(n_1)/2 and, if we define M, ,,(h) as the smallest
constant such that, for all zonal ¢ € LP(X,,) we have

1A Dllirs,) < Mpa(R)|@llLe(s,)

and N, (,—1)/2(ho) as the smallest constant such that, for all ¢ € L’(’n_l)/2 we have

(n—1)/2
lho  *" ollp,(n-1)/2 < Np,(n=1),2(ho)l|P0llp,(n-1)/2,

we obtain the equality
wn—le,(n—l)/Q(hO) = Mp,n(h)-

Similar equalities hold for n = 1, namely, if f and g are zonal functions in LP(X;),
then (recall that wy = 2)

(f*9)o=2(fo * 90);
10 s,y = 211follp,0;
M, 1(h) = 2N, o(ho).

We can now restate Theorem 3.2 in this new setting as follows.

Theorem 7.1

Let A = "T_l, with n > 2 an integer, and suppose 1 < p < co. Let ko € L} and
define hg by ho(0) = ko(0)sinf. Suppose hy, as a convolution operator on L§_1/2
has norm N, x_1/2(ho). Then ko, as a convolution operator on L%, has norm less

than or equal to Ny, y_1/2(ho).

Proof. First of all, observe that the proof of Theorem 3.2 holds if we assume f to be
zonal, and M, ,_1(h) = A, to be the norm of the convolution operator associated
with h acting on the subspace of LP(X,,_1) of all p-integrable zonal functions on
Yn—1. Thus, using Theorem 3.2 and the observations preceding the statement of
Theorem 7.1,

A 1
1Ko * follp.x = —57 1k * flle sz,
wn—l
M ,n—l(h) Wn—1
ST Ml = Noaca 200 oll O
e
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Our goal is to generalize Theorem 7.1. More precisely, we shall prove that for
any real A > 0 and for any ¢ > 0 such that A — ¢ > 0, the norm of the convolution
operator on L% given by k € L} is bounded above by the norm of the convolution
operator on Lf s given by h(z) = k(z)(sinz)?®. Before we do this, let us present

some definitions and lemmas.

DEFINITION 7.2. Let A > 0. For any f € C([0, 71]) and for any b € [0, 5], define the
function f, on [0, 7] by

fo(z) def f(arccos(cosbcos x)).

For any 6 > 0 such that A\ — 6 > 0, define the measures my s and py s on [0, | by

o

dm 5 (1) = (sin 1)2* =) (cos 1)~ Ldyp

€

dux.s(b) = (cosb)*} 2+ (sin b)?~1db

o,
-

and define the constant dy s by

. 2 (A + 4 1
dy.s def (1 +3) _ </ (1- U2)A61/2U261dv)
L (A1 -6)T(6) 0

-1

Define, finally, the function @ : [0, 7] x [0, 5] — [0,7] x [0, 5] by

e . b
Q(a,b) def (arccos (cosacosb), arcsin ( sin a cos )) .

V1 —cosZacos?b

Q@ will serve us in future in a change of variables.

Lemma 7.3
Let A>0,6>0and A — 6 > 0. For any f € C([0, 7]), we have

/2
10 = s [ 1l adin )
Proof. The proof is a simple substitution:
/2
s [ I s s
0

/2 pm
:dMg/ / | f (arccos(cos b cos ))|P (sin )2~ da:(cos b) A 20+ (sin b) 25~ db.
0 0
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Making the change of variable cosbcosx = cost in the innermost integral, we obtain
that the last expression equals

/2
dAé/ / (t)|P(cos? b — cos® £)*~071/2(sin b)?0~ cos bsin t dt db

w/2—|mw/2—t|
=ds / |f ()P {/ (cos? b — cos® t)/\_6_1/2 (sin b)2°~L cos bdb} sint dt
0

0

T sint
_dké/ | f(@)P {/ (Sin2 t— u2)>‘61/2u2‘51du} sint dt
0 0
T 1
:d/\«?/ LF)P {/ (1- 02))‘61/21)2616%} (sint)?*
0 0

DEFINITION 7.4. For A >0, § >0, A\—§ > 0 and ¢ € [0, 5], define the (A — 6, )-
pseudo translations by x of a function f € C([0, 7]), evaluated at y by

T2 Y f(y) = acs /077 f(arccos(cos x cos y + sin x sin y cos # sin 1)) ) (sin 8)>*~2° 14
if A\—6>0, and
T (y) = %f(arccos(cosx cosy + sinzsinysin))
+ %f(arccos(cos xcosy —sinxsinysiny)),
where z, y € [0, 7].

Lemma 7.5
For A\, 6 >0, A\—6 >0, f € C([0, 7]) and for all x, y € [0, 7], we have

/2
) = das [ T F) dms(0).
0
Proof. We will prove the case A — ¢ > 0 (the case A — 6 = 0 is similar).
/2
dx,a/ T2 f(y) dimas(¥)
0

w/2 T
= d,\,(s/ ’YA—é/ f(arccos(cos z cos y + sin x sin y cos fsin 1))
0 0

(5in 07201 df (sin ) (cos )~ dy.
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Making the substitution cosfsiny = cos ¢ in the innermost integral, and defining
D(x,y,0) def arccos(cos x cos y + sin z siny cos ¢)),

we get

=d)67rn—5

/2 7r/2+1/1
/ / (2,9, ¢))(sin? 1 — cos? ©)* "L sin  dyp(cos )2~ sin v dip
T/2—

= dA’é"y)\_(s/O f((I)(x,y, ¢))

w/2
X {/ (sin® ¢ — cos? ) 74" (cos )21 sinwdw} sin p de
|

m/2—|

T sin ¢
= d>\,57>\_5/ f(@(x,y,9)) {/ (sim2 ©— u2)’\_6_1u26_1 du} sin p dp
0 0

m 1
= dmm—a/ f(@(z,y,9)) {/ (1 — 0N 07 1y201 dv} (sin ) dyp
0

d,\ 1/2,6 dA—1/2,6'7>\

Lemma 7.6
Let \,6 >0 and A\ — 6 > 0. Let G € L* ([0,71'] X [0, %] S 1IN ®m>\75). Then

/2 /2
/ /G V) dna(x) dmy s(¢ / /G Q(a,b)) dnr—s(a) dpx 5(b)

and, for all a, y € [0, 7], b€ [0, Z] and f € C([0, 7]), we have

A—0, a,b _
T 22 f(y) = T2 fi(y).

Proof. The first part is just a substitution. By the definition of ), we have

CcoS & = cosbcosa
sinysinx = cosbsina.

This implies that
sin? x cos 1 dx dip = sinbcosbda db.
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Thus

/2 T
/ / G(x,v)(sin x)**dw(sin 1) ?* 2% (cos 1) ~Ldy
0 0

/2 T
- / / G(Q(a, b)) (sin a)2* 2 da(cos b)>* =20+ (sin b) 20~ 1 db,
0 0

and this proves the first part. For the second part, it is enough to observe that, for
any 6 € [0, 7],

arccos(cos Q1(a,b) cosy + sin Q1 (a, b) siny cos  sin Q2(a, b))

= arccos(cos b(cos a cosy + sinasiny cosf)). O

We can now state and prove a generalization of Theorem 7.1.

Theorem 7.7

Let \,6 > 0and A— 6 > 0, 1 < p < oo. Let k € L} and define h by
h(x) = k(z)(sinz)?®, z € [0,7]. Suppose h, as a convolution operator on L% s, has
norm Np(h). Then the convolution operator on L% given by k has norm less than
or equal to Np(h).

Proof. Let f € C([0, 7]). Then, applying Lemma 7.5,

A

k2 ) = / " k)T () dnn(y)
T pw/2
_ A—6,1 m
ds / / Ry T2 £ () dimo o) dna (9)

/2 7
=d h(y)T2—%% dns_s(y) d .
o / / WT25 F(y) dns—o(y) dma5(®)

Thus, using Jensen’s inequality and Lemmas 7.6 and 7.3,
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f(zx) dm(:v)

/

dnx(z)

7T/

/ [/

YT~ %Y f(y) dnr—s(y) dx,s dma,s(1)

/ yY)TA %Y f(y )dm_é(y)‘dA,é dmx,é(?ﬁ)] dna(z)

/2 p

<d /0 /0 / DTN () dna—s(y)| dia (@) dims o()
2 p

_dw/o /0 / Vot F(y) dma-s ()| dnr—s(a) dpn s (b)
/2 p

— dys / 0 / T fo(y) dna—s ()| dnr_s(a) ditza (D)

D‘

)
*fb

/0

Np ()P [1£ 115

/2
djins () < das (Ny(h)" / 117+ sdiir o (D)

pA—=6

The theorem now follows from the density of C([0, «1]) in L. O

Let us observe that Theorem 7.7 is particularly interesting when § = A. In
this case, we can deduce estimates for a convolution operator on L by studying a
convolution operator on Lf, which coincides with studying a convolution operator
on the space of zonal functions of LP(%;).

We can now explain briefly what generalizations of these results we intend to
prove in future articles. The first named author will show, in a subsequent paper
with J. A. Tirao, an extension of Theorem 3.1 to compact two-point homogeneous
spaces, whereas the second named author will prove an extension of Theorem 7.7
to more general hypergroups, including, as particular cases, the continuous Jacobi
polynomial hypergroups (expansions in Jacobi polynomials), the Bessel-Kingman
hypergroups, and the Jacobi hypergroups of non-compact type.
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