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Abstract

Then-dimensional sphere, Σn, can be seen as the quotient between the group of
rotations of R

n+1 and the subgroup of all the rotations that fix one point. Using
representation theory, one can see that any operator on Lp(Σn) that commutes
with the action of the group of rotations (called multiplier) may be associated
with a sequence of complex numbers. We prove that, if a certain “discrete deriva-
tive” of a given sequence represents a bounded multiplier on Lp(Σ1), then the
given sequence represents a bounded multiplier on Lp(Σn). As a corollary
of this, we obtain the multidimensional version of the Marcinkiewicz theorem
on multipliers. An associated problem related to expansions in ultraspherical
polynomials is also studied
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1. Introduction

The results in this paper arise from an effort to apply the “transference method” of
Coifman and Weiss [5] to operators acting on the spaces Lp(Σn), 1 ≤ p < ∞, Σn

being the n-dimensional sphere in R
n+1. Let us begin with a formal, brief description

of this method. Suppose G is a locally compact group and T is a representation of G
acting on an Lp-space of functions defined on some measure space (M, µ). Suppose
we have a bounded convolution operator ϕ → k ∗ϕ on Lp(G,λ) (say, we are dealing
with left Haar measure λ and the convolution is left-invariant). The representation
T can be used to transfer this convolution to an operator Hk on Lp(M) by letting

(Hkf)(x) def=
∫
G

k(u)(Tu−1f)(x) dλ(u).

Minkowski’s integral inequality, then, gives us

‖Hkf‖Lp(M) ≤ ‖k‖L1(G)c‖f‖Lp(M) (1.1)

where c is supu∈G ‖Tu‖, ‖Tu‖ being the norm of the operator Tu acting on Lp(M).
Inequality (1.1) is far from best possible in practically all examples of this situation,
even if c < ∞. Ideally, we would like the norm ‖Hk‖ of the operator Hk to be,
essentially, the norm Np(k) of the convolution operator ϕ → k ∗ ϕ. When G is
amenable this is indeed the case (see [5]):

‖Hk‖ ≤ c2Np(k). (1.2)

Since it is often true that the ratio ‖k‖L1(G)/Np(k) is arbitrarily large, we see that
(1.2) is a much stronger result than (1.1).

As we stated at the beginning, we show that such results are true when sub-
groups of G = SO(n + 1) act (in the obvious way) on Lp(Σn). This enables us to
obtain the boundedness of a class of “zonal operators” from known 1-dimensional
(Fourier series) convolution estimates. In fact, this program was initiated by the
first named author in his Ph.D. thesis and some parts of it appeared in a research
announcement [7]. In this thesis, as well as in the announcement, extensions of these
results were begun (the “transferred” results were associated with series involving
certain special functions; in particular, the development of functions in terms of
ultraspherical polynomials that include the spaces Lp(Σn) as special cases). Each
of us has gone further in analogous directions. In order to present these advances,
however, we need a complete presentation of the original work. Since this has been
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formulated by both of us, we decided to present this in this paper. We will also de-
scribe other directions, but only in the last section, when all the necessary definitions
and notation will be available to us, and plan to write them up in different articles
in the near future. Thus, to be more explicit, this work concerns itself mainly with
the developments in terms of spherical harmonics (the Lp(Σn) case) and the natural
extensions involving ultraspherical polynomials.

2. Preliminaries and notation

The following facts can be found in [11] and [5].
Let n be an integer greater than 1, Σn the unit sphere in R

n+1,

Σn =
{
x ∈ R

n+1 : |x| = 1
}

and e = (1, 0, . . . , 0) the “east pole” of Σn. Let G = SO(n + 1) be the group
of orthogonal transformations of R

n+1 with determinant 1; that is, the group of
rotations of R

n+1. The subgroup K of G composed by all the rotations that fix the
east pole e,

K =
{
u ∈ G : ue = e

}
is isomorphic to SO(n).

One can easily see that the sphere Σn is diffeomorphic to the homogeneous
space G/K (simply identify a point x ∈ Σn with the coset of all the rotations that
take e to x).

Definition 2.1. A function F on G is said to be right (left) invariant (with respect
to K) if F(uk) = F(u) (F(ku) = F(u)) for all u ∈ G, k ∈ K. If F is both left and
right invariant, it is called biinvariant. A zonal function on the sphere is a function
which is constant on the parallels Lθ = {x ∈ Σn : x · e = cosθ }.

Thanks to the diffeomorphism between G/K and Σn we can identify right
invariant functions on G with functions on Σn. More precisely, if F is a right invariant
function on G, we can associate with it a function F1 on Σn by the relation F1(x) =
F(u) whenever ue = x ∈ Σn. Conversely, any function f on Σn determines a right
invariant function on G, f �, given by f �(u) = f(ue). It is clear that f is zonal if and
only if f � is biinvariant. Also if f is zonal, we can associate to it a function f0 defined
on [−1, 1] by the relation f0(cos θ) = f(x) whenever x · e = cos θ. Conversely, each
function f0 on [−1, 1] defines a zonal function by the last equality.
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Proposition 2.2
If f ∈ L1(Σn) then f � ∈ L1(G) and∫

Σn

f(x) dx = ωn

∫
G

f �(u) du (2.1)

where dx is the element of Lebesgue surface area on Σn, ωn = 2π
n+1

2

Γ(n+1
2 ) is the surface

area of Σn and du is the normalized Haar measure of G.

Consider the subgroup A of G consisting of all the matrices α(θ) ∈ G having
the form

α(θ) =



cos θ − sin θ 0 . . . 0 0
sin θ cos θ 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


(2.2)

It is well known that each element of G can be written in the form kαk′ with
k, k′ ∈ K and α ∈ A. Thus G admits a Cartan decomposition

G = KAK.

Proposition 2.3
If F ∈ L1(G) then∫

G

F(u) du = cn

∫
K

∫
K

∫ π

−π
F(kα(θ)k′)| sin θ|n−1 dθ dk dk′ (2.3)

where dk is the normalized Haar measure of K and c−1
n =

∫ π
−π | sin θ|n−1 dθ = 2ωn

ωn−1
.

Suppose F is a biinvariant function, then for all u ∈ G there are k, k′ ∈ K such
that kuk′ = α(θ) for some θ and

F(u) = F(kuk′) = F(α(θ)) = F1(α(θ)e)

= (F1)0((α(θ)e · e) = (F1)0(cos θ).

Definition 2.4. The restriction to Σn of a homogeneous harmonic polynomial of
degree l in n + 1 variables is called a spherical harmonic of degree l. The space of
these functions will be denoted by Hl(Σn). A finite sum of elements of

⋃∞
l=0 Hl(Σn)

is called a generalized trigonometric polynomial and the space of these functions will
be denoted by P(Σn).
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The typical generalized trigonometric polynomial has the form
∑k

l=0 fl, where
fl ∈ Hl(Σn), l = 0, . . . , k.

Proposition 2.5

The space Hl(Σn) has finite dimension

al =
(
n + l

l

)
−

(
n + l − 2
l − 2

)
.

Furthermore L2(Σn) =
⊕∞

l=0 Hl(Σn) (direct sum) and P(Σn) is dense in Lp(Σn),
whenever 1 ≤ p < ∞.

Definition 2.6. A zonal multiplier on Σn is a linear operator from P(Σn) to C(Σn)
that commutes with rotations.

The following theorem gives us a characterization of zonal multipliers, and
explains why the term “multiplier” is used in this last definition.

Theorem 2.7

Let T be a zonal multiplier on Σn. For each l ≥ 0, the elements fl of Hl(Σn)
are proper vectors of T corresponding to the same proper value, ml, of T .

In other words, T is a zonal multiplier if and only if there is a sequence of
complex numbers {ml}∞l=0 (called the Fourier transform of T ) such that, for every
generalized trigonometric polynomial

∑k
l=0 fl , T has the form

T

(
k∑
l=0

fl

)
=

k∑
l=0

mlfl .

Let 1 ≤ p < ∞ and suppose that for every f ∈ P(Σn), we have

‖Tf‖p ≤ Ap‖f‖p

where Ap is a constant independent of f , then we say that T is a bounded zonal
multiplier on Lp(Σn), since then T admits a unique extension to a bounded operator
on Lp(Σn).

Basic examples of such operators are provided by “convolutions”:

Definition 2.8. Suppose G, F ∈ L1(G), the convolution in G between G and F is
a function G ∗ F defined by

G ∗ F(u) def=
∫
G

G(v−1u)F(v) dv.
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If g, f ∈ L1(Σn), the convolution in Σn between g and f is a function g ∗ f defined
by

g ∗ f(x) def= ωn(g� ∗ f �)1(x)

= ωn

∫
G

g(v−1x)f(ve) dv
(2.4)

where g� ∗ f � denotes the convolution in the group G previously defined.
Note that the definition is consistent since g� ∗ f � is right invariant. Also, if g

is zonal,

g ∗ f(x) =
∫

Σn

g0(x · y)f(y) dy. (2.5)

It is easy to see that convolution itself provides us with a basic example of zonal
multipliers bounded on Lp(Σn). Indeed, let g ∈ L1(Σn). Since, for 1 ≤ p < ∞, we
have ‖g ∗ f‖p ≤ ‖g‖1‖f‖p, the operator

Tg : P(Σn) −→ C(Σn)

f �−→ g ∗ f

is linear, commutes with rotations and is bounded on Lp(Σn). A convolution kernel
that will be used often is the Poisson kernel

Pr(x) =
1 − r2

ωn|rx− e|n+1
, r ∈ [0, 1). (2.6)

This defines a bounded zonal multiplier on Lp(Σn) given by Tr(f) = Pr ∗ f which
has Lp-norm bounded by ‖Pr‖1 = 1. Its Fourier transform is {rl}∞l=0.

Hl(Σn) is a finite dimensional Hilbert space (with inner product induced by
L2(Σn)), composed of continuous functions. Therefore, if y ∈ Σn, Fyp = p(y) defines
a bounded linear functional on Hl(Σn). Thus, there is a function Zl,n

y ∈ Hl(Σn),
called the zonal spherical harmonic of degree l with pole y, that represents this
functional:

Fyp = p(y) =
∫

Σn

p(x)Zl,n
y (x) dx, ∀ p ∈ Hl(Σn).

Proposition 2.9

(i) Zl,n
e is real valued and zonal.

(ii) Zl,n
y (x) = Zl,n

uy (ux) for all x, y ∈ Σn, u ∈ G.

(iii) For all f ∈ L2(Σn), Zl,n
e ∗ f = Plf (projection onto Hl(Σn)).

(iv) For all x ∈ Σn, |Zl,n
e (x)| ≤ |Zl,n

e (e)| = dim(Hl(Σn))/ωn
def= An(l) and An(l) has

polynomial growth of degree n− 1.
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Proof. (i), (ii) and the first part of (iv) can be found in [11]. As for (iii), assume
{Yj}alj=1 is an orthonormal basis for Hl(Σn). Then

Zl,n
e ∗ f(x) = ωn

∫
G

Zl,n
e (v−1x)f(ve) dv = ωn

∫
G

Zl,n
ve (x)f(ve) dv

= ωn

∫
G

 al∑
j=1

(Zl,n
ve , Yj)Yj(x)

 f(ve) dv

= ωn

al∑
j=1

[∫
G

f(ve)Yj(ve) dv
]
Yj(x)

=
al∑
j=1

[∫
Σn

f(y)Yj(y) dy
]
Yj(x) =

al∑
j=1

(f, Yj)Yj(x) = (Plf)(x),

where (·, ·) denotes the inner product in L2(Σn). Observe that

An(l) =
dim(Hl(Σn))

ωn
=

1
ωn

[(
n + l

l

)
−

(
n + l − 2
l − 2

)]
=

n + 2l − 1
ωnl

(
n + l − 2
l − 1

)
=

n + 2l − 1
ωnl

(n + l − 2)(n + l − 3) . . . (l + 1)l
(n− 1)!

=
1

ωn(n− 1)!
n + 2l − 1

l
(ln−1 + . . .)

which proves (iv). �

We make a final observation. All we have said so far holds for n = 1 as well,
with some important exceptions. First of all note that, if G = SO(2), then K =
{Identity} and therefore SO(2) and Σ1 are canonically identified by cos θ − sin θ

sin θ cos θ

 ←→ (cos θ, sin θ).

With this notation, the Haar measure of G is dθ
2π . Keeping this in mind, it is

easy to check that all definitions and propositions 2.1 through 2.5, 2.8 and 2.9
hold for n = 1. In this case Hl(Σ1) = Span{eilθ, e−ilθ} for l ≥ 1, H0(Σ1) =
{constant functions}, P(Σ1) is the space of classical trigonometric polynomials and
Zl,1

(cosφ,sinφ)((cos θ, sin θ)) = cos l(φ+θ)
π . As for the differences with the n-dimensional

case, first of all note that all functions on SO(2) are biinvariant (with respect to
K), whereas the zonal functions on Σ1 are only those for which f((cos θ, sin θ)) =
f((cos θ,− sin θ)) (in other words, even functions, when considered as functions of
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θ, −π ≤ θ < π). If n = 1, Theorem 2.7 is no longer true, essentially because the
spaces Hl(Σn) are invariant but not minimal invariant under the representation of
SO(2) given by

S cos θ − sin θ
sin θ cos θ

f(cosϕ, sinϕ) def= f
(
cos(ϕ + θ), sin(ϕ + θ)

)
.

Indeed, SO(2) being abelian, the minimal invariant spaces of the representation S

are 1-dimensional, namely Span{eilθ}, for all l ∈ Z. This implies that any operator
of the form

T

(
a0 +

k∑
l=1

ale
ilθ + ble

−ilθ
)

= m0a0 +
k∑
l=1

mlale
ilθ + µlble

−ilθ

commutes with rotations. We will then call zonal multiplier on Σ1 any operator
from P(Σ1) to C(Σ1) of the above form, with the additional condition ml = µl for
all l ≥ 1.

3. The main theorem

Let n ≥ 1 and N =
[
n
2

]
, the biggest integer less than or equal to n

2 . Let J be the
operator on the space of sequences defined by

(Jm)l =
{
lml − (l − 1)ml−1 if l ≥ 1

0 if l = 0 .

Define JN = J ◦ J ◦ . . . ◦ J (Ntimes).

The following is the main result of this paper.

Theorem 3.1

Let n ≥ 1, N =
[
n
2

]
, 1 < p < ∞, m = {ml}∞l=0 a bounded sequence of complex

numbers. If JNm defines a bounded zonal multiplier on Lp(Σ1), then m defines a

bounded zonal multiplier on Lp(Σn).
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The proof of Theorem 3.1 will follow from a series of results contained in this and
the next two sections. More precisely, in this section we will show how to deduce
the boundedness of a zonal multiplier on Lp(Σn) from the boundedness of three
associated zonal multipliers on Lp(Σn−2) (Theorem 3.9). If n is an odd integer,
by applying this step N times, we arrive at the Σ1 case, which is essentially our
goal. But if n is even, after N − 1 steps we arrive at the Σ2 case. In Section 4,
we study how to deduce the boundedness of a zonal multiplier on Lp(Σ2) from the
boundedness of a zonal multiplier on Lp(Σ1) (Theorem 4.9). Finally, in Section 5,
we put together all these results and use some facts about multipliers on Lp(Σ1)
to polish our theorem and get it in the final, simple version that we just stated
(Theorem 3.1).

Theorem 3.2
Let n ≥ 2, 1 ≤ p < ∞, k ∈ L1(Σn) be zonal. Assume that h0(cos θ) =

k0(cos θ)| sin θ| defines a zonal function h on Σn−1 which defines a bounded convo-
lution operator on Lp(Σn−1) with norm Ap. Then k defines a bounded convolution
operator on Lp(Σn), with norm less than or equal to ωn−1

ωn−2
Ap (assume ω0 = 2).

Proof. Let f ∈ Lp(Σn). Then

‖k ∗ f‖p =
[
ωn

∫
G

∣∣∣∣ωn ∫
G

k�(u)f �(vu−1) du
∣∣∣∣p dv

]1/p

= ω1+1/p
n cn

[∫
G

∣∣∣∣∫
K

∫
K

∫ π

−π
k�(α(θ))f �(vγα(−θ)γ′)| sin θ|n−1dθ dγ′ dγ

∣∣∣∣p dv]1/p

=
ω

1/p
n ωn−1

2

[∫
G

∣∣∣∣∫
K

∫ π

−π
h0(cos θ)f �(vγα(−θ))| sin θ|n−2dθ dγ

∣∣∣∣p dv]1/p

.

Let H = {u ∈ G | ue = e, uẽ = ẽ} ⊂ K, where ẽ = (0, . . . , 0, 1) is the “north
pole” of Σn. Obviously, H ∼= SO(n − 2). Since dγ is the Haar measure of K, we
can replace γ with γβ, for any β ∈ H, and integrate in dβ over H. Thus the last
expression equals

ω
1/p
n ωn−1

2

[∫
G

∣∣∣∣∫
H

∫
K

∫ π

−π
h0(cos θ)f �(vγβα(−θ))| sin θ|n−2dθ dγ dβ

∣∣∣∣p dv]1/p

.

Applying Fubini’s theorem to the integrals in H and K, and then Minkowski’s
integral inequality we see that the last expression is majorized by

ω
1/p
n ωn−1

2

∫
K

[∫
G

∣∣∣∣∫
H

∫ π

−π
h0(cos θ)f �(vγβα(−θ))| sin θ|n−2dθ dβ

∣∣∣∣p dv]1/p

dγ

=
ω

1/p
n ωn−1

2

[∫
G

∣∣∣∣∫
H

∫
H

∫ π

−π
h0(cos θ)f �(vβα(−θ)β′)| sin θ|n−2dθ dβ dβ′

∣∣∣∣p dv]1/p

.
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Now observe that Q def= {u ∈ G | uẽ = ẽ} is isomorphic to SO(n) and, therefore, has
the following Cartan decomposition

Q = HAH.

Thus, by Proposition 2.3 applied to Q, the last expression equals

ω
1/p
n ωn−1

2

[∫
G

∣∣∣∣ 1
cn−1

∫
Q

h�(η)f �(vη−1) dη
∣∣∣∣p dv

]1/p

(3.1)

=
ω

1/p
n ωn−1

2cn−1

[∫
G

∫
Q

∣∣∣∣∫
Q

h�(η)f �(vη′η−1) dη
∣∣∣∣p dη′ dv

]1/p

.

The innermost integral is the convolution (in Q) of h� with (f �)v, where (f �)v is
defined on Q by (f �)v(η)

def= f �(vη). If we define fv on Σn−1 = {x ∈ Σn | xn+1 =
0} = Q/H by fv(x) def= f(vx), the corresponding right invariant (with respect to H)
function on Q will be precisely (f �)v, since

(f �)v(η) = f �(vη) = f(vηe) = fv(ηe).

Thus, denoting by 1 the convolution in Σn−1,∫
Q

∣∣∣∣∫
Q

h�(η)(f �)v(η′η−1) dη
∣∣∣∣p dη′ =

∫
Q

∣∣∣∣h 1 fv(η′e)
ωn−1

∣∣∣∣p dη′
=

1
ω1+p
n−1

∫
Σn−1

|h 1 fv(x)|pdx

≤ 1
ω1+p
n−1

Ap
p

∫
Σn−1

|fv(x)|pdx

=
1

ωpn−1

Ap
p

∫
Q

|f �(vη)|pdη.

We can therefore conclude that

‖k ∗ f‖p ≤ ω
1/p
n

2cn−1
Ap

[∫
G

∫
Q

|f �(vη)|pdη dv
]1/p

=
ω

1/p
n ωn−1

ωn−2
Ap

[∫
G

|f �(v)|pdv
]1/p

=
ωn−1

ωn−2
Ap

[∫
Σn

|f(x)|pdx
]1/p

=
ωn−1

ωn−2
Ap‖f‖p. �

Observation. The last part of the proof of Theorem 3.2 is really a transference result.
Indeed the proof could have finish as follows:
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Consider the representation of Q acting on Lp(G) given by

TηF(v) = F(vη).

Notice that ‖Tη‖ = 1, for all η ∈ Q. Suppose F = f � for some f ∈ Lp(Σn);
then for all v ∈ G, the function on Q

η → f �(vη)

is H-right invariant. We can thus apply the transference theorem we discussed
in the introduction, obtaining∫

G

∣∣∣∣∫
Q

h�(η)f �(vη−1) dη
∣∣∣∣p dv ≤ Np

p (h�)‖f �‖pLp(G) =
Ap
p

ωpn−1ωn
‖f‖pLp(Σn).

Applying this inequality to (3.1) we have the desired result.
In this particular context, we decided to present a proof that could be more easily
followed by the reader non familiar with transference.

Theorem 3.3

Let n ≥ 3, 1 ≤ p < ∞, {ml}∞l=0 be a bounded sequence of complex numbers

and define T on P(Σn) by

Tf(x) = lim
r→1−

(kr ∗ f)(x)

where kr(x) def=
∑∞

l=0 r
lmlZ

l,n
e (x), for 0 ≤ r < 1. Let Sr be the convolution operator

on Lp(Σn−2) given by the zonal kernel k0
r(cos θ)| sin θ|2. If the operators Sr have

uniformly bounded (by a constant Ap) norms as r → 1−, then T is bounded on

Lp(Σn), with norm less than or equal to ωn−1
ωn−3

Ap.

Observation. The series defining kr converges uniformly, by Proposition 2.9 (iv). If
f is a generalized trigonometric polynomial, f =

∑j
l=0 fl, fl ∈ Hl(Σn), then

Tf(x) = lim
r→1−

(kr ∗ f)(x) = lim
r→1−

∞∑
l=0

rlmlZ
l,n
e ∗ f(x)

= lim
r→1−

j∑
l=0

rlmlfl(x) =
j∑
l=0

mlfl(x);

thus, T is the zonal multiplier associated with the sequence {ml}∞l=0.
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Proof. Applying Theorem 3.2 twice, first to the kernel k0
r(cos θ)| sin θ| and then

to k0
r(cos θ), we see that k0

r(cos θ) defines a convolution kernel on Σn, bounded on
Lp(Σn) by the constant ωn−1

ωn−2

ωn−2
ωn−3

Ap = ωn−1
ωn−3

Ap, for all 0 ≤ r < 1. Now observe
that, for f ∈ P(Σn),

‖Tf‖p =
[∫

Σn

lim
r→1−

|(kr ∗ f)(x)|pdx
]1/p

≤ lim inf
r→1−

[∫
Σn

|(kr ∗ f)(x)|pdx
]1/p

≤ ωn−1

ωn−3
Ap‖f‖p. �

Theorem 3.3 allows us to conclude that a certain sequence m defines a zonal
multiplier bounded on Lp(Σn) if some family of convolution operators is uniformly
bounded in Lp(Σn−2) (n ≥ 3). The next step expresses these operators in terms of
their Fourier transform.

Definition 3.4. Let λ > 0. If we write

(
1 − 2rt + r2

)−λ =
∞∑
l=0

Cλ
l (t)rl

where |r| < 1, |t| ≤ 1, then the coefficient Cλ
l (t) is called the Gegenbauer (or

ultraspherical) polynomial of degree l associated with λ.

Proposition 3.5

Let l ≥ 0 be an integer. Cλ
l is a polynomial of degree l and the following

identities hold.

(i) For λ = n−1
2 , n ≥ 2 integer,

Zl,n
e (x) =

l + λ

ωnλ
Cλ
l (x · e) .

(ii) For any λ > 1,

sin2 θCλ
l (cos θ) =

(l + 2λ− 2)(l + 2λ− 1)Cλ−1
l (cos θ) − (l + 1)(l + 2)Cλ−1

l+2 (cos θ)
4(λ− 1)(λ + l)

.

(iii) sin2 θC1
l (cos θ) = sin θ sin(l + 1)θ = 1

2 [cos lθ − cos(l + 2)θ].
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Proof. The proof of (i) can be found on [11], as for (ii) and (iii) see [13], page 83. �
In what follows we will put λ = n−1

2 .

Lemma 3.6

Let n ≥ 3 and let {ml}∞l=0 be a sequence of complex numbers with exponential

decay. Then

∞∑
l=0

ml sin2 θ
(
Zl,n
e

)0
(cos θ) =

ωn−2

4λωn

∞∑
l=0

[
(Dm)l + (Tλm)l

] (
Zl,n−2
e

)0
(cos θ)

where Dm and Tλm are sequences defined by

(Dm)l = lml − (l − 2)ml−2

(Tλm)l =
λ(λ− 1)
l + λ− 1

(ml −ml−2) + (3λ− 2)ml + (λ− 2)ml−2

for all l ≥ 0 (define m−1 = m−2 = 0).

Proof. First of all observe that both series converge uniformly. Then, assuming
n > 3, by Proposition 3.5,

∞∑
l=0

ml sin2 θ
(
Zl,n
e

)0
(cos θ) =

1
ωn

∞∑
l=0

ml
l + λ

λ
sin2 θCλ

l (cos θ)

=
1
ωn

∞∑
l=0

1
4(λ− 1)λ

×
[
(l + 2λ− 2)(l + 2λ− 1)mlC

λ−1
l (cos θ) − (l + 1)(l + 2)mlC

λ−1
l+2 (cos θ)

]
=

ωn−2

4λωn

∞∑
l=0

(l + 2λ− 2)(l + 2λ− 1)
l + λ− 1

ml

(
Zl,n−2
e

)0
(cos θ)+

− (l + 1)(l + 2)
l + λ + 1

ml

(
Zl+2,n−2
e

)0
(cos θ)

=
ωn−2

4λωn

∞∑
l=0

[
(l + 2λ− 2)(l + 2λ− 1)

l + λ− 1
ml −

l(l − 1)
l + λ− 1

ml−2

] (
Zl,n−2
e

)0
(cos θ)

and the lemma is proved, once we observe that

(l + 2λ− 2)(l + 2λ− 1)
l + λ− 1

= l +
λ(λ− 1)
l + λ− 1

+ 3λ− 2

l(l − 1)
l + λ− 1

= l − 2 +
λ(λ− 1)
l + λ− 1

+ 2 − λ .
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The case n = 3 follows in a similar way; we only need to remember that

Zl,1
e (cos θ) =

cos lθ
π

.�

Lemma 3.7

Let n ≥ 3, 1 ≤ p < ∞.

(i) The sequence
{

λ−1
l+λ−1

}∞

l=0
defines a bounded multiplier Qλ on Lp(Σn−2).

(ii)
∥∥ ∂
∂r

[(
r − 1

r

)
Pr

]∥∥
L1(Σn−2)

are uniformly bounded as r → 1−.

Proof. (i) If n = 3, that is if λ = 1, there is nothing to prove. Assume λ > 1. Recall
that

h0
r(cos θ) def=

1
(1 − 2r cos θ + r2)λ−1

=
∞∑
l=0

Cλ−1
l (cos θ)rl

=
∞∑
l=0

rl
ωn−2(λ− 1)
l + λ− 1

(
Zl,n−2
e

)0
(cos θ).

Thus hr is a zonal convolution kernel with Fourier transform{
ωn−2r

l λ− 1
l + λ− 1

}∞

l=0

.

It is easy to see that, for all r ∈ [0, 1),

‖hr‖L1(Σn−2) =
ωn−3

2

∫ π

−π
h0
r(cos θ)| sin θ|n−3dθ ≤ πωn−3.

If f ∈ P(Σn−2) has the form f =
∑k

l=0 fl, with fl ∈ Hl(Σn−2), then

‖Qλf‖Lp(Σn−2) =

∥∥∥∥∥
k∑
l=0

λ− 1
l + λ− 1

fl

∥∥∥∥∥
Lp(Σn−2)

=
1

ωn−2

∥∥∥∥∥ lim
r→1−

k∑
l=0

ωn−2r
l λ− 1
l + λ− 1

fl

∥∥∥∥∥
Lp(Σn−2)

≤ 1
ωn−2

lim inf
r→1−

‖hr ∗ f‖Lp(Σn−2)

≤ πωn−3

ωn−2
‖f‖Lp(Σn−2).
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(ii) ∂
∂r

[(
r − 1

r

)
Pr

]
is zonal and[

∂

∂r

[(
r − 1

r

)
Pr

]]0

(cos θ) =
∂

∂r

[(
r − 1

r

)
P 0
r (cos θ)

]
=

∂

∂r

[(
r − 1

r

)
1 − r2

ωn−2(r2 − 2r cos θ + 1)(n−1)/2

]
= −P 0

r (cos θ)
r cos θ[(7 − n)r2 + 1 + n] + [(n− 4)r4 − (n + 3)r2 − 1]

r2(r2 − 2r cos θ + 1)
.

It is enough to check that the second factor in the above product is uniformly
bounded in absolute value. Put t = cos θ, t ∈ [−1, 1], and define

fr(t)
def=

rt[(7 − n)r2 + 1 + n] + [(n− 4)r4 − (n + 3)r2 − 1]
r2(r2 − 2rt + 1)

;

fr is differentiable in [−1, 1] for all r ∈ (0, 1) and, for those values of r and t,

f ′
r(t) =

n− 1
r

(r2 − 1)2

(r2 − 2rt + 1)2
> 0 .

Thus fr achieves its minimum at −1 and its maximum at 1. But

fr(−1) =
(n− 4)r2 + (1 − n)r − 1

r2

fr(1) =
(n− 4)r2 + (n− 1)r − 1

r2
.

This proves that the absolute maximum of fr is bounded as r → 1−. �

Definition 3.8. For any integer k > 0, we will denote by τk the operator on the
space of sequences given by

(τkm)l =

{
ml−k if l ≥ k

0 if 0 ≤ l < k .

Theorem 3.9

Let n ≥ 3, 1 ≤ p < ∞. Let m = {ml}∞l=0 be a bounded sequence of complex

numbers and let M be the zonal multiplier on Σn defined by m. If Dm, m, τ2m

define bounded zonal multipliers on Lp(Σn−2), respectively M1, M2, M3, then M is

bounded on Lp(Σn).
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Proof. According to Theorem 3.3, it suffices to show that the convolution operators
Sr with zonal kernels

sin2 θk0
r(cos θ) =

∞∑
l=0

rlml sin2 θ
(
Zl,n
e

)0
(cos θ)

are uniformly bounded on Lp(Σn−2) as r → 1−. Observe that the sequence Rrm
def=

{rlml}∞l=0 has exponential decay (if 0 < r < 1). We can therefore apply Lemma 3.6
to the sequence Rrm and obtain

∞∑
l=0

rlml sin2 θ
(
Zl,n
e

)0
(cos θ) =

ωn−2

4λωn

∞∑
l=0

[(DRrm)l + (TλRrm)l]
(
Zl,n−2
e

)0
(cos θ) .

We must, therefore, prove that the sequences DRrm + TλRrm define uniformly
bounded multipliers on Lp(Σn−2). Observe that

(DRrm)l = rl(Dm)l +
[
(l + 1)rl − (l − 1)rl−2

]
ml−2 −

[
3rl − rl−2

]
ml−2

(TλRrm)l =
λ(λ− 1)
l + λ− 1

(
rlml − rl−2ml−2

)
+ (3λ− 2)rlml + (λ− 2)rl−2ml−2 .

Thus, assuming f ∈ P(Σn−2), we have∥∥∥∥∥
∞∑
l=0

(DRrm)l Z
l,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

≤
∥∥∥∥∥

∞∑
l=0

rl(Dm)lZl,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

+

∥∥∥∥∥
∞∑
l=0

[
(l + 1)rl − (l − 1)r(l−2)

]
(τ2m)lZl,n−2

e ∗ f
∥∥∥∥∥
Lp(Σn−2)

+

∥∥∥∥∥
∞∑
l=0

(
3rl − rl−2

)
(τ2m)lZl,n−2

e ∗ f
∥∥∥∥∥
Lp(Σn−2)

≤ ‖Pr ∗M1f‖Lp(Σn−2)
+

∥∥∥∥ ∂

∂r

[(
r − 1

r

)
Pr

]
∗M3f

∥∥∥∥
Lp(Σn−2)

+
∥∥∥∥(

3 − 1
r2

)
Pr ∗M3f

∥∥∥∥
Lp(Σn−2)

≤ ‖M1f‖Lp(Σn−2) + Cn‖M3f‖Lp(Σn−2) + 3‖M3f‖Lp(Σn−2) .
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Similarly∥∥∥∥∥
∞∑
l=0

(TλRrm)lZl,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

≤
∥∥∥∥∥

∞∑
l=0

λ(λ− 1)
l + λ− 1

rlmlZ
l,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

+

∥∥∥∥∥
∞∑
l=0

λ(λ− 1)
l + λ− 1

rl−2ml−2Z
l,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

+

∥∥∥∥∥
∞∑
l=0

(3λ− 2)rlmlZ
l,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

+

∥∥∥∥∥
∞∑
l=0

(λ− 2)rl−2ml−2Z
l,n−2
e ∗ f

∥∥∥∥∥
Lp(Σn−2)

= ‖λPr ∗QλM2f‖Lp(Σn−2)
+

∥∥∥∥λ 1
r2
Pr ∗QλM3f

∥∥∥∥
Lp(Σn−2)

+ ‖(3λ− 2)Pr ∗M2f‖Lp(Σn−2)
+

∥∥∥∥(λ− 2)
1
r2
Pr ∗M3f

∥∥∥∥
Lp(Σn−2)

≤ λ‖QλM2f‖Lp(Σn−2) + λ
1
r2

‖QλM3f‖Lp(Σn−2)

+ (3λ− 2)‖M2f‖Lp(Σn−2) + |λ− 2| 1
r2

‖M3f‖Lp(Σn−2).�

Suppose n is an odd integer. We can apply Theorem 3.9 to a sequence m on
Σn, then to the sequences Dm, m, τ2m on Σn−2, and so on, so that, eventually,
we obtain that the boundedness on Lp(Σ1) of a certain (finite) family of multipliers
will imply the boundedness of m on Lp(Σn). This is the basic idea in the proof of
Theorem 3.1. If n is even, though, by reducing the dimension of the sphere two units
at each step, we arrive at the Σ2 case. The next section, as we anticipated at the
beginning, will be devoted precisely to the answer to the question: the boundedness
of which multipliers (if any) on Lp(Σ1) imply the boundedness of a given multiplier
on Lp(Σ2) ?
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4. The 2-dimensional case

We begin this section with some facts about SU(2) and its relation to the sphere
Σ2. For the details, see [16], [12] Chapters 1 and 2, [3], page 105 and [5].

The group SU(2) (special unitary group of degree 2) consists of all 2×2 matrices
u satisfying

u∗u = I and detu = 1.
The space M af all matrices of the form

X =

 x1 x2 + ix3

x2 − ix3 −x1


with x1, x2, x3 ∈ R, is clearly isomorphic to R

3.

Definition 4.1. For any u ∈ SU(2), define Φ(u) as the linear map on M given by
Φ(u)X = uXu∗.

One can check that uXu∗ ∈ M , so that Φ(u) maps into M , and that Φ(uv) =
Φ(u)Φ(v), so that Φ is a homomorphism. Note that, defining

a(θ) =

 cos θ2 i sin θ
2

i sin θ
2 cos θ2

 b(ϕ) =

 eiϕ/2 0

0 e−iϕ/2


we have a(θ), b(ϕ) ∈ SU(2). Φ(a(θ)) and Φ(b(ϕ)) are then linear maps on M and
their matrix representation with respect to the basis of M{ 1 0

0 −1

 ,

 0 1
1 0

 ,

 0 i

−i 0

}
is given by

Φ(a(θ)) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Φ(b(ϕ)) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


It is well known that each u ∈ SU(2) can be written as u = b(ϕ1)a(θ)b(ϕ2), and
that each η ∈ SO(3) can be written as η = Φ(b(ϕ1))Φ(a(θ))Φ(b(ϕ2)) (ϕ1, θ, ϕ2

are the so-called Euler angles). Thus Φ(SU(2)) = SO(3) and, as one can check,
ker Φ = {I, −I}. We can define an action

SU(2) × Σ2 −→ Σ2

(u, x) �−→ Φ(u)x.

Proposition 4.2
Let e = (1, 0, 0) be the “east pole” of Σ2, B = {b(ϕ) | ϕ ∈ [0, 4π]}, a subgroup

of SU(2). Then Σ2 is diffeomorphic to the homogeneous space SU(2)/B.
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Proof. It is enough to show that

B = {u ∈ SU(2) | Φ(u)e = e},

and this follows easily from the fact that

Φ(b(ϕ)) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 �

Notation. For any f ∈ L1(Σ2), we will define f̃ on SU(2) by

f̃(u) def= f
(
Φ(u)e

)
.

Note that f̃ is right invariant with respect to B.

Proposition 4.3

If f ∈ L1(Σ2), then f̃ ∈ L1(SU(2)) and∫
Σ2

f(x) dx = 4π
∫
SU(2)

f̃(u) du .

As usual, dx denotes the element of Lebesgue surface area and du is the normalized

Haar measure of SU(2).

Proof. ∫
Σ2

f(x) dx =
∫
SU(2)

∫
Σ2

f(Φ(u)x) dx du =
∫

Σ2

∫
SU(2)

f(Φ(u)x) du dx

=
∫

Σ2

∫
SU(2)

f(Φ(u)e) du dx = 4π
∫
SU(2)

f̃(u) du . �

Let L be a non-negative integer and PL the vector space of homogeneous
polynomials of degree L in the complex variables z1, z2. The L + 1 polynomials
ej(z) = ej(z1, z2)

def=
√(

L
j

)
zj1z

L−j
2 , j = 0, . . . , L, form a basis for this space and PL

can be considered to be a Hilbert space if we impose the condition that {ej}Lj=0 be
an orthonormal basis. Consider the following mapping

SL : SU(2) −→ U(PL) (unitary operators on PL)

u �−→ SLu

where SLu p(z)
def= p(u′z) (u′ =transpose of u).
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Lemma 4.4

SL is an irreducible unitary representation of SU(2) and any irreducible repre-

sentation of SU(2) is equivalent to one of the SL.

See [12], pages 48 and 58 for the proof.

Let [SLu ]{ej} be the matrix representation of the unitary operator SLu with res-
pect to the basis {ej}, and let its entries be tLk,j(u), 0 ≤ k, j ≤ L. We know (see
[16]) that if u ∈ SU(2), then

u = −i

−X2 X1

X1 X2


with X1, X2 ∈ C and |X1|2 + |X2|2 = 1.

Proposition 4.5

With the above notation, we have

tLk,j(u) =
1
2π

√
k!(L− k)!√
j!(L− j)!

(−i)L

×
∫ π

−π

(
−X2e

iθ + X1e
−iθ)j(X1e

iθ + X2e
−iθ)L−je−i(2k−L)θdθ.

Proof. Observe that

SLu ej(z) =
L∑
k=0

tLk,j(u)ek(z).

The left hand side of the above equality is

ej(u′z) = ej

(
−i

−X2 X1

X1 X2

 z1
z2

)
= ej

 iX2z1 − iX1z2
−iX1z1 − iX2z2


=

√
L!√

j!(L− j)!
(−i)L(−X2z1 + X1z2)j(X1z1 + X2z2)L−j .

On the other hand,

L∑
k=0

tLk,j(u)ek(z) =
L∑
k=0

tLk,j(u)

√
L!√

k!(L− k)!
zk1z

L−k
2 .
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If we restrict ourselves to the values z = (z1, z2) = (eiθ, e−iθ), we have

(−i)L
(−X2e

iθ + X1e
−iθ)j(X1e

iθ + X2e
−iθ)L−j√

j!(L− j)!
=

L∑
k=0

tLk,j(u)
ei(2k−L)θ√
k!(L− k)!

.

The desired result now follows once we integrate both sides against e−i(2k0−L)θdθ

over the interval [−π, π]. �

Proposition 4.6

Suppose L is even, L = 2l. Using the notation after Proposition 4.2, we have

tLk,l(u) = Ỹ l
k(u), where

Y l
k(y1, y2, y3)

def=
(−1)l

2π

√
k!(2l − k)!

l!

∫ π

−π

(
− y1 + iy2 sin 2θ + iy3 cos 2θ

)l
e−2i(k−l)θdθ

is defined on Σ2. Furthermore, {Y l
k}2l

k=0 is an orthogonal basis of Hl(Σ2), the space

of spherical harmonics of degree l, and ‖Y l
k‖2

2 = 4π
2l+1 .

Proof. We have to show that tLk,l(u) = Y l
k(Φ(u)e). Note that e = (1, 0, 0) are the

coordinates, with respect to the above mentioned basis of M , of the element 1 0
0 −1

 .

Thus,

Φ(u)e = u

 1 0
0 −1

u∗

=

 |X2|2 − |X1|2 −2X1X2

−2X1X2 |X1|2 − |X2|2

 def=

 y1 y2 + iy3

y2 − iy3 −y1

 .

By Proposition 4.5 we have that tLk,l(u) equals√
k!(L− k)!

2πl!
(−i)L

∫ π

−π

(
−X1X2e

i2θ + X1X2e
−i2θ + |X1|2 − |X2|2

)l
e−i(2k−L)θdθ

=

√
k!(L− k)!

2πl!
(−1)l

∫ π

−π

(y2 + iy3

2
ei2θ − y2 − iy3

2
e−i2θ − y1

)l
e−i(2k−L)θdθ

=
(−1)l

2π

√
k!(2l − k)!

l!

∫ π

−π

(
− y1 + iy2 sin 2θ + iy3 cos 2θ

)l
e−2i(k−l)θdθ.
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By the Peter-Weyl Theorem, {tLk,l}2l
k=0 are mutually orthogonal in L2(SU(2)) each

having norm 1√
2l+1

. Thus, by Proposition 4.3, {Y l
k}2l

k=0 are mutually orthogonal in
L2(Σ2), and

‖Y l
k‖2

2 =
4π

2l + 1
.

Finally, we have to check that Y l
k ∈ Hl(Σ2). Since dimHl(Σ2) = 2l + 1, this will

prove the proposition. The definition of Y l
k(y) makes sense if we assume y ∈ R

3

instead of just Σ2. Clearly, this extension is a homogeneous polynomial of degree
l. So, we only have to check that Y l

k is harmonic. By the mean value theorem for

harmonic functions, it is enough to show that Gl
θ(y)

def= (−y1+iy2 sin 2θ+iy3 cos 2θ)l

is harmonic for all θ. Consider the following rotation of R
3

Rθ =

 1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ


and define F l by F l(x1, x2, x3)

def= (−x1 + ix3)l. Then

Gl
θ(y) = F l(Rθy).

Since F l is trivially harmonic (by inspection), Gl
θ is also harmonic. �

We now recall some facts about harmonic analysis on SU(2) (see [16]). If
we define HL

def= span{tLk,j}0≤k,j≤L, by the Peter-Weyl Theorem, L2(SU(2)) =⊕∞
L=0 HL. Also, the characters of SU(2)

χL(u) def= trSLu =
L∑
j=0

tLj,j(u)

are, as all characters of compact groups, central functions (i.e. χL(vuv−1) = χL(u)
for all u, v ∈ SU(2)). It is well known that, for all u ∈ SU(2), there is a v ∈ SU(2)
and a ϕ ∈ [0, 2π] such that u = vb(2ϕ)v−1. Thus

χL(u) = χL(b(2ϕ)) def= χ0
L(ϕ), ϕ ∈ [0, 2π]

(eiϕ, e−iϕ are the eigenvalues of u). We have

χ0
L(ϕ) =

sin(L + 1)ϕ
sinϕ

, L = 0, 1, . . .
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and for all f ∈ L2(SU(2))

f =
∞∑
L=0

(L + 1)χL ∗ f

where (L + 1)χL ∗ f equals the projection of f onto HL.

Theorem 4.7

Let 1 ≤ p < ∞, m = {mL}∞L=0 a bounded sequence of complex numbers and

Mr the convolution operators on SU(2) given by the central kernels kr, where

k0
r(θ) =

∞∑
L=0

(L + 1)mLr
Lχ0

L(θ).

If h0
r(θ)

def= sin2 θk0
r(θ) define uniformly bounded (by some constant Ap) convolution

operators on Lp(Σ1) as r → 1−, then Mr are uniformly bounded on Lp(SU(2)),
with norms bounded above by

Ap

π .

Proof. (cfr. [16], page 216). Recall the following formula for the Haar measure on
SU(2) ∫

SU(2)

f(u) du =
1
π

∫
SU(2)

∫ π

−π
f(vb(θ)v−1) sin2 θ dθ dv.

Thus:

‖kr ∗ f‖Lp(SU(2)) =

∥∥∥∥∥
∫
SU(2)

kr(v)f(· v−1) dv

∥∥∥∥∥
Lp(SU(2))

=
1
π

[∫
SU(2)

∣∣∣∣∣
∫
SU(2)

∫ π

−π
h0
r(θ)f(uvb(−θ)v−1) dθdv

∣∣∣∣∣
p

du

]1/p

.

By Minkowski’s integral inequality, we see that the last expression is dominated by

1
π

∫
SU(2)

[∫
SU(2)

∣∣∣∣∫ π

−π
h0
r(θ)f(uvb(−θ)v−1) dθ

∣∣∣∣p du
]1/p

dv.

Because of the right invariance of Haar measure, the integral within the parentheses
is unchanged if we multiply u on the right by vb(ϕ)v−1. Doing so and averaging
over all ϕ ∈ [−π, π] we obtain that the last expression equals

1
π

∫
SU(2)

[∫
SU(2)

1
2π

{∫ π

−π

∣∣∣∣∫ π

−π
h0
r(θ)f

(
uvb(ϕ− θ)v−1

)
dθ

∣∣∣∣p dϕ}
du

]1/p

dv.
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The expression in curly brackets is the pth power of the Lp norm of the convolution of
h0
r with the function g having values g(ϕ) = f(uvb(ϕ)v−1). Thus, the last expression

is no larger than

1
π

∫
SU(2)

[∫
SU(2)

Ap
p

2π

∫ π

−π

∣∣f(uvb(ϕ)v−1)
∣∣p dϕ du

]1/p

dv

=
Ap

π

∫
SU(2)

[
1
2π

∫ π

−π

∫
SU(2)

∣∣f(uvb(ϕ)v−1)
∣∣p du dϕ]1/p

dv

=
Ap

π

[∫
SU(2)

|f(u)|pdu
]1/p

. �

Definition 4.8. For any sequence m = {ml}∞l=0 define the associated sequences
Zm and Wm by

(Zm)l
def=

{
ml/2 if l is even

0 if l is odd
and

(Wm)l
def=

{ (l + 1)ml/2 − (l − 1)ml/2−1 if l is even

0 if l is odd.
The following theorem answers the question we posed at the end of the last

section.

Theorem 4.9

Let 1 ≤ p < ∞ and m = {ml}∞l=0 a bounded sequence of complex numbers.

Suppose τ2Zm and Wm define bounded zonal multipliers on Lp(Σ1). Then m is a

bounded zonal multiplier on Lp(Σ2).

Proof. The proof can be divided into four steps.

Step 1. Once again, for any r ∈ (0, 1) and for any sequence a = {aL}∞L=0, define the

sequence Rra
def= {rLaL}∞L=0. We will prove that DRrZm+T1RrZm are uniformly

bounded multipliers on Lp(Σ1) as r → 1− (D and T1 are defined in Lemma 3.6).
First of all note that

(DRrZm)L + (T1RrZm)L
= (RrWm)L + [(L + 1)rL + (L− 1)rL−2](τ2Zm)L − 2(Rrτ2Zm)L.
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Suppose f ∈ P(Σ1); that is, f =
∑k

L=0 fL with fL ∈ HL(Σ1). Then∥∥∥∥∥
k∑

L=0

(RrWm)LfL

∥∥∥∥∥
Lp(Σ1)

=

∥∥∥∥∥Pr ∗
k∑

L=0

(Wm)LfL

∥∥∥∥∥
Lp(Σ1)

≤
∥∥∥∥∥

k∑
L=0

(Wm)LfL

∥∥∥∥∥
Lp(Σ1)

;

∥∥∥∥∥
k∑

L=0

[(L + 1]rL + (L− 1)rL−2](τ2Zm)LfL

∥∥∥∥∥
Lp(Σ1)

=

∥∥∥∥∥ ∂

∂r

(
rPr −

1
r
Pr

)
∗

k∑
L=0

(τ2Zm)LfL

∥∥∥∥∥
Lp(Σ1)

≤ C

∥∥∥∥∥
k∑

L=0

(τ2Zm)LfL

∥∥∥∥∥
Lp(Σ1)

;

∥∥∥∥∥
k∑

L=0

(RrWm)LfL

∥∥∥∥∥
Lp(Σ1)

= 2

∥∥∥∥∥Pr ∗
k∑

L=0

(τ2Zm)LfL

∥∥∥∥∥
Lp(Σ1)

≤ 2

∥∥∥∥∥
k∑

L=0

(τ2Zm)LfL

∥∥∥∥∥
Lp(Σ1)

(the second to last inequality follows from Lemma 3.7 (ii)). This proves Step 1.

Step 2. We will prove that the central kernels in SU(2) given by

k0
r(θ)

def=
∞∑
L=0

rL(L + 1)(Zm)Lχ0
L(θ)

define uniformly bounded convolution operators on Lp(SU(2)) as r → 1−. Consider
the following equalities (where we define (Zm)−1 = (Zm)−2 = 0):
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∞∑
L=0

rL(L + 1)(Zm)L sin2 θχ0
L(θ) =

∞∑
L=0

rL(L + 1)(Zm)L sin θ sin((L + 1)θ)

=
π

2

∞∑
L=0

rL(L + 1)(Zm)L
cosLθ − cos((L + 2)θ)

π
=

π

2

∞∑
L=0

×
[
LrL(Zm)L + rL(Zm)L − (L− 2)rL−2(Zm)L−2 − rL−2(Zm)L−2

] cosLθ
π

=
π

2

∞∑
L=0

[(DRrZm)L + (T1RrZm)L]
(
ZL
e,1

)0
(cos θ).

By Step 1, these are uniformly bounded convolution kernels on Lp(Σ1); thus, by
Theorem 4.7, kr are uniformly bounded convolution kernels on Lp(SU(2)).

Step 3. The multipliers Mr associated with the sequences Rrm are uniformly
bounded on Lp(Σ2) as r → 1−. Indeed, let f be a trigonometric polynomial on Σ2;
that is, in the notation of Proposition 4.6,

f =
j∑
l=0

2l∑
k=0

(
f,

√
2l + 1
2
√
π

Y l
k

) √
2l + 1
2
√
π

Y l
k .

Then

f̃(u) =
j∑
l=0

2l∑
k=0

(
f,

√
2l + 1
2
√
π

Y l
k

) √
2l + 1
2
√
π

t2lk,l(u).

In particular, denoting by PL the projection of L2(SU(2)) onto HL,

k√r ∗ f̃(u) =
∞∑
L=0

rL/2(L + 1)(Zm)LχL ∗ f̃(u) =
∞∑
L=0

rL/2(Zm)LPLf̃(u)

=
∞∑
l=0

rl(Zm)2lP2lf̃(u) +
∞∑
l=0

rl+1/2(Zm)2l+1P2l+1f̃(u)

=
j∑
l=0

rl(Zm)2l
2l∑
k=0

2l + 1
4π

(
f, Y l

k

)
t2lk,l(u)

=

[
j∑
l=0

rlml

2l∑
k=0

2l + 1
4π

(
f, Y l

k

)
Y l
k

]∼

(u) = [Mrf ]∼ (u).
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Thus,
‖Mrf‖pLp(Σ2)

= 4π‖(Mrf)∼‖pLp(SU(2)) = 4π‖k√r ∗ f̃‖pLp(SU(2))

≤ 4πC‖f̃‖pLp(SU(2)) = C‖f‖pLp(Σ2)
.

Step 4. M , the multiplier given by the sequence m, is bounded on Lp(Σ2). Indeed,
let f =

∑k
l=0 fl be a trigonometric polynomial (fl ∈ Hl(Σ2)); then

‖Mf‖pLp(Σ2)
=

∫
Σ2

∣∣∣∣∣
k∑
l=0

mlfl(x)

∣∣∣∣∣
p

dx =
∫

Σ2

lim
r→1−

∣∣∣∣∣
k∑
l=0

rlmlfl(x)

∣∣∣∣∣
p

dx

≤ lim inf
r→1−

∫
Σ2

∣∣∣∣∣
k∑
l=0

rlmlfl(x)

∣∣∣∣∣
p

dx ≤ C

∫
Σ2

|f(x)|pdx = C‖f‖pLp(Σ2)
. �

5. Conclusion of the proof

In order to conclude the proof of Theorem 3.1, we need to establish some facts about
zonal multipliers on Lp(Σ1). First of all, recall that we can identify functions on Σ1

with 2π-periodic functions on the real line,

f0(θ)
def= f(cos θ, sin θ)

and, with this notation, ∫
Σ1

f(x) dx =
∫ π

−π
f0(θ) dθ.

¿From now on, we shall identify f and f0.

Lemma 5.1

Let 1 ≤ p < ∞, m = {ml}∞l=0 be a bounded sequence of complex numbers. If

m defines a bounded zonal multiplier on Lp(Σ1), then Zm defines a bounded zonal

multiplier on Lp(Σ1).
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Proof. (The Authors owe the following simple proof to Dr. Gustavo Garrigós.) Call
Π(Σ1) the space of π-periodic functions in Lp(Σ1). Π(Σ1) is a Banach space with the
norm induced by Lp(Σ1). Consider the following operators from Lp(Σ1) to Π(Σ1):

Tf(θ) def=
1
2

(f(θ) + f(θ + π))

δf(θ) def= f(2θ).

T , δ and δ−1 are bounded linear operators (where defined). Denoting by Mm and
MZm the zonal multipliers associated with m and Zm respectively, we have

δMmδ
−1T = MZm.

Indeed, let f ∈ P(Σ1), f(θ) = a0 +
∑k

l=1

(
ale

ilθ + ble
−ilθ), then

δMmδ
−1Tf(θ) = δMmδ

−1

(
a0 +

[ k
2 ]∑

j=1

a2je
i2jθ + b2je

−i2jθ
)

= δMm

(
a0 +

[ k
2 ]∑

j=1

a2je
ijθ + b2je

−ijθ
)

= δ

(
m0a0 +

[ k
2 ]∑

j=1

mj

(
a2je

ijθ + b2je
−ijθ) )

= m0a0 +
[ k
2 ]∑

j=1

mj

(
a2je

i2jθ + b2je
−i2jθ) = MZmf(θ). �

Lemma 5.2

Let 1 < p < ∞ and m = {ml}∞l=0 a bounded sequence of complex num-

bers. If m is a bounded zonal multiplier on Lp(Σ1), then (i) τhm and (ii)

Am
def=

{
1
l+1

∑l
j=0 mj

}∞

l=0
are bounded on Lp(Σ1). Also, if (iii) Dm or (iv) Jm

are bounded on Lp(Σ1), then m is bounded on Lp(Σ1).

Proof. (i) Consider the following operators, bounded on Lp(Σ1) (here f(θ) = a0 +∑k
l=1

(
ale

ilθ + ble
−ilθ) ∈ P(Σ1)):
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B±1f(θ) def= e±iθf(θ)

Mmf(θ) def= m0a0 +
k∑
l=1

ml

(
ale

ilθ + ble
−ilθ)

Hf(θ) def= f̃(θ) (the conjugate function, see [9])

b̃f(θ) def= −1
2
a0 +

1
2
(
f(θ) + iHf(θ)

)
=

k∑
l=1

ale
ilθ

˜̃
bf(θ) def= −1

2
a0 +

1
2
(
f(θ) − iHf(θ)

)
=

k∑
l=1

ble
−ilθ.

We will show that the operator

b̃B1MmB−1 + ˜̃
bB−1MmB1

has τ1m as its Fourier transform. This will prove that τ1m defines a bounded
multiplier on Lp(Σ1). Part (i) will then follow immediately.

b̃B1MmB−1f(θ) = b̃B1Mm

(
a0e

−iθ +
k∑
l=1

ale
i(l−1)θ + ble

−i(l+1)θ

)

= b̃B1

(
m1a0e

−iθ +
k∑
l=1

ml−1ale
i(l−1)θ + ml+1ble

−i(l+1)θ

)

= b̃

(
m1a0 +

k∑
l=1

ml−1ale
ilθ + ml+1ble

−ilθ
)

=
k∑
l=1

ml−1ale
ilθ.

Similarly

˜̃
bB−1MmB1f(θ) =

k∑
l=1

ml−1ble
−ilθ.

(ii) This is a trivial application of the Marcinkiewicz Theorem on multipliers
(see [10]).

(iii) Without loss of generality, we can assume m0 = 0 (if not, recall that the
sequence m̃ = {m0, 0, . . . , 0, . . .} defines a bounded multiplier on Lp(Σ1), namely
convolution with the constant function g = m0, that Dm = D(m − m̃) and that
m = m̃ + (m − m̃)). Applying Lemma 5.1 to the identity map, we see that the
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sequence µ = {µl}∞l=0 = {1, 0, 1, 0, . . .} defines a bounded multiplier on Lp(Σ1) and,
by part (ii), the same is true for

γ = {γl}∞l=0
def=

 1
l + 1

l∑
j=0

µj(Dm)j


∞

l=0

and
µγ

def= {µlγl}∞l=0.

Note that

µlγl =

{
l

l+1ml l even

0 l odd.

The sequence ξ =
{
ξl

}∞
l=0

with

ξl
def=

{
1 if l = 0
l+1
l if l > 0

is a bounded multiplier on Lp(Σ1). Thus the sequence

ξlµlγl =
{
ml l even

0 l odd

is a bounded multiplier on Lp(Σ1). A similar argument shows that the sequence
given by {

0 l even

ml l odd

defines a bounded multiplier on Lp(Σ1).
The proof of (iv) is similar to (but simpler than) that of part (iii). �

Lemma 5.3

Let m = {ml}∞l=0 be a sequence of complex numbers and j a positive integer.

Then:

(i) Dτ2jm = τ2jDm + 2jτ2jm− 2jτ2j+2m.

(ii) Jτjm = τjJm + jτjm− jτj+1m.

(iii) Zτ2jm = τ4jZm.

(iv) ZDm = 1
2DZm + 1

2τ2DZm.

(v) Dm = Jm + τ1Jm.

(vi) DZm = 2ZJm.

All these equalities are easily verified.
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Lemma 5.4

Let 1 < p < ∞, m = {ml}∞l=0 a bounded sequence of complex numbers and

N a positive integer. Suppose DNZm is a bounded multiplier on Lp(Σ1). Then

DkZDjm is a bounded multiplier on Lp(Σ1), for k ≥ 0, j ≥ 0, k + j ≤ N .

Proof. First note that, by Lemma 5.2 (iii), Zm, DZm, D2Zm, . . . ,DNZm are all
bounded multipliers on Lp(Σ1). The lemma is therefore true for j = 0. Applying an
induction argument on j, assume that the lemma is true for j− 1, k = 0, 1, . . . , N −
j + 1, and let us prove it for j, k = 0, 1, . . . , N − j, (j > 0). Applying Lemma 5.3
(iv), we obtain

DkZDjm =
1
2
Dk+1ZDj−1m +

1
2
Dkτ2DZDj−1m.

The first term is a bounded multiplier on Lp(Σ1) by the induction hypothesis. As for
the second, note the following: for all positive integers t, for all non-negative integers
h and s and for all sequences M = {Ml}∞l=0, we have (applying Lemma 5.3 (i))

Dtτ2hDsM = Dt−1τ2hDs+1M + 2hDt−1τ2hDsM − 2hDt−1τ2h+2DsM (5.1)

The last equality implies that a sufficient condition for Dkτ2DZDj−1m to be a
bounded multiplier on Lp(Σ1) is that

Dk−1τ2h1Ds1ZDj−1m (5.2)

be bounded multipliers on Lp(Σ1) for all h1 ≥ 1 and for s1 = 1, 2. Using (5.1) again,
(5.2) are bounded multipliers on Lp(Σ1) if

Dk−2τ2h2Ds2ZDj−1m

are bounded multipliers on Lp(Σ1) for all h2 ≥ 1 and for s2 = 1, 2, 3. Continuing
this reasoning, we obtain that Dkτ2DZDj−1m is a bounded multiplier on Lp(Σ1)
if τ2hk

DskZDj−1m are bounded multipliers on Lp(Σ1), for all hk ≥ 1, for sk =
1, 2, . . . , k+1. Lemma 5.2 (i) implies that it is enough to require that DskZDj−1m

be bounded multipliers for sk = 1, 2, . . . , k + 1, which is true by the induction
hypothesis. �

Lemma 5.5

Let 1 < p < ∞, m = {ml}∞l=0 a bounded sequence of complex numbers and N

a positive integer. Suppose JNm is a bounded multiplier on Lp(Σ1). Then JjDkm

is a bounded multiplier on Lp(Σ1), for k ≥ 0, j ≥ 0, j + k ≤ N .
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Proof. First note that Lemma 5.2 (iv) implies that m, Jm, J2m, . . . , JNm are
bounded multipliers on Lp(Σ1). Let h = j + k and let us make an induction on h:

h = 0 implies j = k = 0. Thus JjDkm = m, which is bounded on Lp(Σ1).
h = 1 implies either j = 1 and k = 0 (in which case we obtain Jm, which is
bounded on Lp(Σ1)) or j = 0 and k = 1. In the latter case we get Dm which, by
Lemma 5.3 (v), equals Jm+ τ1Jm and this is a bounded multiplier on Lp(Σ1) (use
Lemma 5.2 (i) again).
Suppose now the lemma is true for all j’s and k’s such that j + k < h. We claim
that the induction hypothesis and the fact that JjDkm is a bounded multiplier
on Lp(Σ1), j + k = h, j > 0, imply that Jj−1Dk+1m is a bounded multiplier on
Lp(Σ1). This claim, together with the fact that Jhm is a bounded multiplier on
Lp(Σ1), proves the lemma. Let us prove the claim. By Lemma 5.3 (v),

Jj−1Dk+1m = JjDkm + Jj−1τ1JDkm.

JjDkm is a bounded multiplier by the hypothesis of the claim. By Lemma 5.3 (ii),
the boundedness of Jj−1τ1JDkm on Lp(Σ1) is implied by the boundedness of

Jj−2τ1J
2Dkm, Jj−2τ1JDkm, Jj−2τ2JDkm.

Being generous, we seek for the boundedness of

Jj−2τr2J
s2Dkm, ∀ r2 ≥ 1, s2 = 1, 2

which, again using Lemma 5.3 (ii), is implied by the boundedness of

Jj−3τr3J
s3Dkm, ∀ r3 ≥ 1, s3 = 1, 2, 3.

Proceeding similarly, all we need is the boundedness on Lp(Σ1) of

τrjJ
sjDkm, ∀ rj ≥ 1, sj = 1, 2, 3, . . . , j.

By Lemma 5.2 (i), we only need the boundedness of

JsjDkm, for sj = 1, 2, 3, . . . , j.

which follows from the induction hypothesis and the hypothesis of the claim. �
The following is a corollary of Theorem 4.9.

Theorem 5.6

Let 1 < p < ∞ and m = {ml}∞l=0 a sequence of complex numbers. Suppose

DZm is a bounded multiplier on Lp(Σ1). Then m is a bounded multiplier on Lp(Σ2).
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Proof. This follows from Lemma 5.2 (i) and (iii) and the easily verified equality

Wm = DZm + Zm− τ2Zm. �

Definition 5.7. Let m = {ml}∞l=0 be a bounded sequence of complex numbers.
For any integer j ≥ 0 we define the family of sequences Aj by

Aj
def=

{
τ2hDj−km, 0 ≤ h ≤ k ≤ j

}
.

We can now state and prove a preliminary version of Theorem 3.1.

Theorem 5.8

Let 1 < p < ∞, n a positive integer, N =
[
n
2

]
and m = {ml}∞l=0 a bounded

sequence of complex numbers.

(i) Assume n is odd. If DNm is a bounded multiplier on Lp(Σ1), then m is a

bounded multiplier on Lp(Σn).
(ii) Assume n is even. If DNZm is a bounded multiplier on Lp(Σ1), then m is a

bounded multiplier on Lp(Σn).

Proof. The case n = 1 is trivial, and the case n = 2 coincides with Theorem 5.6.
Suppose n ≥ 3. We claim that, for any integer j, 1 ≤ j ≤ n−1

2 , if the sequences in
Aj are bounded multipliers on Lp(Σn−2j), then the sequences in Aj−1 are bounded
multipliers on Lp(Σn−2j+2). Note that

Aj−1 =
{
τ2hDj−km, 0 ≤ h < k ≤ j

}
and, for j = 1, this claim coincides with Theorem 3.9.

By Theorem 3.9, we have to show that, for any sequence µ ∈ Aj−1, the se-
quences Dµ, τ2µ, µ are bounded multipliers on Lp(Σn−2j). Note that τ2µ and µ

belong to Aj , so we only have to worry about sequences of the type Dµ, with
µ ∈ Aj−1. But, by Lemma 5.3 (i),

Dµ = Dτ2hDj−km = τ2hDj−k+1m + 2hτ2hDj−km− 2hτ2h+2Dj−km

which is a bounded multiplier on Lp(Σn−2j) since the three sequences

τ2hDj−(k−1)m, τ2hDj−km, τ2(h+1)Dj−km

belong to Aj , for 0 ≤ h < k ≤ j. This proves the claim.
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(i) Assume n is odd. Applying the above claim N times, we see that (starting
with j = 1) A0 = {m} is a bounded multiplier on Lp(Σn−2+2) = Lp(Σn)
if (finishing with j = N) the sequences in AN are bounded multipliers on
Lp(Σn−2N ) = Lp(Σ1). By Lemma 5.2 (i) and (iii), it is sufficient to assume
that DNm be a bounded multiplier on Lp(Σ1).

(ii) Assume n is even. Applying the claim N − 1 times, we obtain that m is a
bounded multiplier on Lp(Σn) if the sequences in AN−1 are bounded multipliers
on Lp(Σ2). Thus, the typical sequence that we have to prove to be bounded on
Lp(Σ2) is

τ2hDN−1−km, 0 ≤ h ≤ k ≤ N − 1.

By Theorem 5.6, this happens if

DZτ2hDN−1−km, 0 ≤ h ≤ k ≤ N − 1

are bounded multipliers on Lp(Σ1). But, by Lemma 5.3 (i) and (iii),

DZτ2hDN−1−km = Dτ4hZDN−1−km = τ4hDZDN−1−km

+ 4hτ4hZDN−1−km− 4hτ4h+2ZDN−1−km.

By Lemma 5.2 (i) and (iii),

DZτ2hDN−1−km, 0 ≤ h ≤ k ≤ N − 1

is then a bounded multiplier on Lp(Σ1) if

DZDN−1−km, 0 ≤ k ≤ N − 1

are bounded multipliers on Lp(Σ1), which, by Lemma 5.4, is true if DNZm is
bounded on Lp(Σ1). �

Proof of Theorem 3.1. Assume first n is odd. Since JNm is a bounded multi-
plier on Lp(Σ1), Lemma 5.5 implies that DNm is a bounded multiplier on Lp(Σ1).
Theorem 5.8 implies that m is a bounded multiplier on Lp(Σn).

Suppose now that n is even. Just as in the proof of Theorem 5.8, all we need
to show is that

DZDN−1−km, 0 ≤ k ≤ N − 1

be bounded multipliers on Lp(Σ1). But, by Lemma 5.3 (vi),

DZDN−1−km = 2ZJDN−1−km

and ZJDN−1−km is a bounded multiplier on Lp(Σ1) if (Lemma 5.1)

JDN−1−km

is a bounded multiplier on Lp(Σ1), for any 0 ≤ k ≤ N − 1. The conclusion now
follows from the hypothesis of the theorem and Lemma 5.5. �
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6. A theorem by Bonami and Clerc

In their paper [2], Bonami and Clerc proved an extension to the n-dimensional
sphere of the Marcinkiewicz theorem on multipliers (see [10]). Here we show how
their theorem can be obtained by “transferring” the 1-dimensional result to the
n-dimensional sphere by means of Theorem 3.1.

Definition 6.1. Let m = {ml}∞l=0 be a bounded sequence of complex numbers.
The sequence ∆m is defined by

(∆m)l
def= ml −ml−1

where, as usual, we assume m−1 = 0.

Lemma 6.2

Let N ≥ 1, m = {ml}∞l=0 a bounded sequence of complex numbers. Then JNm

is a linear combination of sequences of the type

{lh(∆sm)l}∞l=0,

with 0 ≤ h ≤ s ≤ N .

Proof. By induction. We have (Jm)l = l(∆m)l− (∆m)l+ml and the lemma is true
for N = 1. Suppose the lemma is true for N − 1. Then

(JNm)l = l(JN−1m)l − (l − 1)(JN−1m)l−1

=
∑

0≤h≤s≤N−1

ah,s
[
lh+1(∆sm)l − (l − 1)h+1(∆sm)l−1

]
=

∑
0≤h≤s≤N−1

ah,s
[
(l − 1)h+1(∆s+1m)l + (lh+1 − (l − 1)h+1)(∆sm)l

]
.

Since lh+1 − (l − 1)h+1 is a polynomial of degree h, the lemma is true for N . �

Lemma 6.3

Let N ≥ 1, m = {ml}∞l=0 a bounded sequence of complex numbers. Then

∆JNm is a linear combination of sequences of the type

{lh(∆s+1m)l}∞l=0,

with 0 ≤ h ≤ s ≤ N .
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Proof. Applying the previous lemma, we have

(∆JNm)l = (JNm)l − (JNm)l−1

=
∑

0≤h≤s≤N
ah,s

[
lh(∆sm)l − (l − 1)h(∆sm)l−1

]
=

∑
0≤h≤s≤N

ah,s
[
(l − 1)h(∆s+1m)l + (lh − (l − 1)h)(∆sm)l

]
.

Since lh − (l − 1)h has degree h− 1, the lemma is proved. �

Theorem 6.4 (Bonami and Clerc.)

Let 1 < p < ∞, n ≥ 1, N =
[
n
2

]
. Suppose

(i) m = {ml}∞l=0 is a bounded sequence of complex numbers.

(ii) supj≥0 2jN
∑2j+1

l=2j

∣∣(∆N+1m)l
∣∣ < ∞,

then m is a bounded multiplier on Lp(Σn).

Proof. Note that, for n = 1, we have exactly the Marcinkiewicz Theorem for multi-
pliers. Assume n > 1. Our goal is to show that (i) and (ii) imply that
(iii) JNm is bounded, and
(iv) supj≥0

∑2j+1

l=2j

∣∣(∆JNm)l
∣∣ < ∞.

By the Marcinkiewicz Theorem on multipliers, this implies that JNm is a bounded
multiplier on Lp(Σ1) and, by Theorem 3.1, that m is a bounded multiplier on Lp(Σn).

Define µk = (∆Nm)k. The sequence {µk}∞k=0 is Cauchy. Indeed, if k > j and
2r ≤ j < 2r+1, then

|µk − µj | =

∣∣∣∣∣∣
k∑

l=j+1

(∆N+1m)l

∣∣∣∣∣∣ ≤
∑
t≥r

2t+1∑
l=2t

|(∆N+1m)l|

=
∑
t≥r

1
2tN

2tN
2t+1∑
l=2t

|(∆N+1m)l|


≤ C

∑
t≥r

1
2tN

= C ′ 1
2Nr

→ 0, as r → ∞.

(6.1)

Let b = limk→∞ µk. Then

b = lim
k→∞

1
k + 1

k∑
j=0

µj = lim
k→∞

1
k + 1

k∑
j=0

(∆Nm)j = lim
k→∞

1
k + 1

(∆N−1m)k = 0,
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since (i) implies ∆N−1m is a bounded sequence. Taking limits as k → ∞ in (6.1),
we have

|µj | ≤ C ′ 1
2Nr

, for 2r ≤ j < 2r+1,

and, therefore,
|jNµj | ≤ C ′2N , ∀j ≥ 0. (6.2)

We claim that for any s ≤ N there exists a constant Ds > 0 such that for any
l ≥ 0, |ls(∆sm)l| ≤ Ds. Indeed, by (6.2) we know the claim is true for s = N .
By induction, suppose it is true for s + 1 and let us prove it for s. Let j < k,
2r ≤ j < 2r+1, then

|(∆sm)k − (∆sm)j | ≤
k∑

l=j+1

|(∆s+1m)l| ≤
∑
t≥r

2t+1−1∑
l=2t

|(∆s+1m)l|

≤
∑
t≥r

2t+1−1∑
l=2t

Ds+1

ls+1
≤ D′

s

1
2sr

.

(6.3)

Thus, ∆sm is a Cauchy sequence. Let b be its limit; then

b = lim
k→∞

1
k + 1

k∑
j=0

(∆sm)j = lim
k→∞

1
k + 1

(∆s−1m)k = 0.

Taking limits as k → ∞ in (6.3), we obtain

|(∆sm)j | ≤ D′
s

1
2sr

, for 2r ≤ j < 2r+1

and, therefore,
|js(∆sm)j | ≤ D′

s2
s, ∀j ≥ 0,

which proves the claim.
We can now use the claim and Lemma 6.2 to prove that JNm is bounded:

|(JNm)l| ≤ B
∑

0≤h≤s≤N
|lh(∆sm)l| ≤ B′

∑
0≤h≤s≤N

|lh−s| ≤ B′′ < ∞.

Note that, for 0 ≤ s ≤ N − 1,

sup
j≥0

2js
2j+1∑
l=2j

|(∆s+1m)l| ≤ sup
j≥0

2js
2j+1∑
l=2j

Ds+1

ls+1
≤ sup

j≥0
Ds+1

(
1 +

1
2j

)
< ∞
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(the above inequality is also true for s = N , by hypothesis). Thus, using Lemma 6.3,

sup
j≥0

2j+1∑
l=2j

|(∆JNm)l| ≤ C sup
j≥0

2j+1∑
l=2j

∑
0≤h≤s≤N

|lh(∆s+1m)l|

≤ C sup
j≥0

∑
0≤h≤s≤N

2s(j+1)
2j+1∑
l=2j

|(∆s+1m)l|

≤ 2NC
∑

0≤h≤s≤N

sup
j≥0

2sj
2j+1∑
l=2j

|(∆s+1m)l|

 < infty. �

7. Ultraspherical series

Let λ be a non-negative real number and, for all 1 ≤ p < ∞, define

Lpλ =
{
f : [0, π] → C :

∫ π

0

|f(x)|pdηλ(x) < ∞
}

where dηλ(x) = (sinx)2λdx. Define also the Lpλ-norm of f by

‖f‖p, λ def=
{∫ π

0

|f(x)|pdηλ(x)
}1/p

.

If λ > 0, the functions {Cλ
l (cosx)}∞l=0 (recall Cλ

l are the ultraspherical polynomials.
See Definition 3.4.) form an orthogonal basis for the space L2

λ (see [13]); define

Rλ
l (x) def=

Cλ
l (cosx)
Cλ
l (1)

for λ > 0,

R0
l (x) def= cos(lx).

Note that {R0
l }∞l=0 is an orthogonal basis for L2

0. For any λ ≥ 0 define the ultras-
pherical series of any f ∈ Lpλ as the formal sum

f(x) ∼
∞∑
l=0

clf̂(l)Rλ
l (x)
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where f̂(l) is the Fourier coefficient of f given by

f̂(l) def=
∫ π

0

f(x)Rλ
l (x) dηλ(x)

and c−1
l = ‖Rλ

l ‖2
2,λ. For any λ ≥ 0 we can define a convolution

λ∗ on the regular

complex measures on [0, π] that makes the couple ([0, π],
λ∗) into a hypergroup (see

[1], [8], [14]). Here we will only be interested in convolutions between functions and,
therefore, shall present only the definitions that are pertinent to this particular case.
For any f ∈ C([0, π]), define the λ-translation of f by x evaluated at y (x, y ∈ [0, π])
by

Tλx f(y) def= γλ

∫ π

0

f(arccos(cosx cos y + sinx sin y cos θ))(sin θ)2λ−1dθ if λ > 0,

T 0
xf(y) def=

1
2
f(arccos(cosx cos y + sinx sin y))

+
1
2
f(arccos(cosx cos y − sinx sin y))

where γ−1
λ

def=
∫ π
0

(sin θ)2λ−1dθ =
√
πΓ(λ)

Γ(λ+ 1
2 )

. These translation operators satisfy the
following property (see, for example, [14], page 8): for all x ∈ [0, π] and f ∈ C([0, π]),
we have

‖Tλx f‖p,λ ≤ ‖f‖p,λ.
Notice that the density of C([0, π]) in Lpλ, 1 ≤ p < ∞, and the above mentioned
property, allow us to extend the definition of λ-translation to the spaces Lpλ, 1 ≤
p < ∞.

The convolution g
λ∗ f of two functions g and f in L1

λ is defined by

g
λ∗ f(x) def=

∫ π

0

g(y)Tλx f(y) dηλ(y).

Using Fubini’s theorem, the fact that Tλx f(y) = Tλy f(x) and the inequality

‖Tyf‖1, λ ≤ ‖f‖1, λ,

we see that g
λ∗ f is a well defined function in L1

λ.
This convolution is commutative, associative and

‖g λ∗ f‖p,λ ≤ ‖g‖1,λ‖f‖p,λ, 1 ≤ p < ∞

(g
λ∗ f) ̂ (l) = ĝ(l)f̂(l), l = 0, . . . ,∞.
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We shall now motivate the “transference type” theorem that will be proved
later. For any zonal function f ∈ L1(Σn), n ≥ 2, define f0 on [0, π] by f0(θ) =
f0(cos θ) = f(α(θ)e) (see §2). Let f and g be zonal functions in L1(Σn), n ≥ 2. It is
easy to check that f ∗ g is zonal as well. Furthermore, keeping in mind the formulas
from §2, we have

(f ∗ g)0(θ) =
∫

Σn

f0(α(θ)e · y)g(y) dy = ωn

∫
SO(n+1)

f0(α(θ)e · ue)g(ue) du

= ωncn

∫
K

∫
K

∫ π

−π
f0(α(θ)e · kα(ϕ)k′e)g(kα(ϕ)k′e)| sinϕ|n−1dϕ dk dk′

=
ωn−1

2

∫
K

∫ π

−π
f0(kα(θ)e · α(ϕ)e)g0(ϕ)| sinϕ|n−1dϕ dk.

Since K is isomorphic to SO(n), we have the following Cartan decomposition:

K = LBL,

where L = {u ∈ SO(n + 1) : ue = e and u(0, 1, 0, . . . , 0) = (0, 1, 0, . . . , 0)} and B is
the subgroup of K consisting of all the matrices β(ψ) of the form

β(ψ) def=



1 0 0 0 . . . 0
0 cosψ − sinψ 0 . . . 0
0 sinψ cosψ 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1


.

Thus, the last integral equals

=
cn−1ωn−1

2

∫
L

∫
L

∫ π

−π

∫ π

−π

× f0(hβ(ψ)h′α(θ)e · α(ϕ)e)g0(ϕ)| sinϕ|n−1| sinψ|n−2dϕ dψ dh dh′

=
ωn−2

4

∫ π

−π

∫ π

−π
f0(β(ψ)α(θ)e · α(ϕ)e)g0(ϕ)| sinψ|n−2| sinϕ|n−1dψ dϕ

=
ωn−2

4

∫ π

−π

∫ π

−π
f0(cos θ cosϕ + sin θ sinϕ cosψ)g0(ϕ)| sinψ|n−2| sinϕ|n−1dψ dϕ

= ωn−2

∫ π

0

∫ π

0

× f0(arccos(cos θ cosϕ + sin θ sinϕ cosψ))| sinψ|n−2dψg0(ϕ)| sinϕ|n−1dϕ

=
ωn−2

γ(n−1)/2

∫ π

0

g0(ϕ)T (n−1)/2
θ f0(ϕ) dη(n−1)/2(ϕ) = ωn−1

(
f0

(n−1)/2
∗ g0

)
(θ).
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Note that ‖f‖pLp(Σn) = ωn−1‖f0‖pp,(n−1)/2 and, if we define Mp,n(h) as the smallest
constant such that, for all zonal φ ∈ Lp(Σn) we have

‖h ∗ φ‖Lp(Σn) ≤ Mp,n(h)‖φ‖Lp(Σn)

and Np,(n−1)/2(h0) as the smallest constant such that, for all φ0 ∈ Lp(n−1)/2 we have

‖h0

(n−1)/2
∗ φ0‖p,(n−1)/2 ≤ Np,(n−1)/2(h0)‖φ0‖p,(n−1)/2,

we obtain the equality

ωn−1Np,(n−1)/2(h0) = Mp,n(h).

Similar equalities hold for n = 1, namely, if f and g are zonal functions in Lp(Σ1),
then (recall that ω0 = 2)

(f ∗ g)0 = 2(f0
0∗ g0),

‖f‖pLp(Σ1)
= 2‖f0‖pp,0,

Mp,1(h) = 2Np,0(h0).

We can now restate Theorem 3.2 in this new setting as follows.

Theorem 7.1

Let λ = n−1
2 , with n ≥ 2 an integer, and suppose 1 ≤ p < ∞. Let k0 ∈ L1

λ and

define h0 by h0(θ) = k0(θ) sin θ. Suppose h0, as a convolution operator on Lpλ−1/2

has norm Np,λ−1/2(h0). Then k0, as a convolution operator on Lpλ, has norm less

than or equal to Np,λ−1/2(h0).

Proof. First of all, observe that the proof of Theorem 3.2 holds if we assume f to be
zonal, and Mp,n−1(h) = Ap to be the norm of the convolution operator associated
with h acting on the subspace of Lp(Σn−1) of all p-integrable zonal functions on
Σn−1. Thus, using Theorem 3.2 and the observations preceding the statement of
Theorem 7.1,

‖k0
λ∗ f0‖p,λ =

1

ω
1+1/p
n−1

‖k ∗ f‖Lp(Σn)

≤ Mp,n−1(h)

ω
1+1/p
n−1

ωn−1

ωn−2
‖f‖Lp(Σn) = Np,λ−1/2(h0)‖f0‖p,λ. �
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Our goal is to generalize Theorem 7.1. More precisely, we shall prove that for
any real λ > 0 and for any δ > 0 such that λ− δ ≥ 0, the norm of the convolution
operator on Lpλ given by k ∈ L1

λ is bounded above by the norm of the convolution
operator on Lpλ−δ given by h(x) = k(x)(sinx)2δ. Before we do this, let us present
some definitions and lemmas.

Definition 7.2. Let λ ≥ 0. For any f ∈ C([0, π]) and for any b ∈ [0, π2 ], define the
function fb on [0, π] by

fb(x) def= f(arccos(cos b cosx)).

For any δ > 0 such that λ− δ ≥ 0, define the measures mλ,δ and µλ,δ on [0, π2 ] by

dmλ,δ(ψ) def= (sinψ)2(λ−δ)(cosψ)2δ−1dψ

dµλ,δ(b)
def= (cos b)2λ−2δ+1(sin b)2δ−1db

and define the constant dλ,δ by

dλ,δ
def=

2Γ
(
λ + 1

2

)
Γ

(
λ + 1

2 − δ
)
Γ(δ)

=
(∫ 1

0

(1 − v2)λ−δ−1/2v2δ−1dv

)−1

.

Define, finally, the function Q : [0, π] × [0, π2 ] → [0, π] × [0, π2 ] by

Q(a, b) def=
(

arccos(cos a cos b), arcsin
(

sin a cos b√
1 − cos2 a cos2 b

))
.

Q will serve us in future in a change of variables.

Lemma 7.3

Let λ > 0, δ > 0 and λ− δ ≥ 0. For any f ∈ C([0, π]), we have

‖f‖pp,λ = dλ,δ

∫ π/2

0

‖fb‖pp,λ−δdµλ,δ(b) .

Proof. The proof is a simple substitution:

dλ,δ

∫ π/2

0

‖fb‖pp,λ−δdµλ,δ(b)

=dλ,δ

∫ π/2

0

∫ π

0

|f(arccos(cos b cosx))|p(sinx)2(λ−δ)dx(cos b)2λ−2δ+1(sin b)2δ−1db.
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Making the change of variable cos b cosx = cos t in the innermost integral, we obtain
that the last expression equals

dλ,δ

∫ π/2

0

∫ π−b

b

|f(t)|p(cos2 b− cos2 t)λ−δ−1/2(sin b)2δ−1 cos b sin t dt db

=dλ,δ

∫ π

0

|f(t)|p
{∫ π/2−|π/2−t|

0

(cos2 b− cos2 t)λ−δ−1/2(sin b)2δ−1 cos b db

}
sin t dt

=dλ,δ

∫ π

0

|f(t)|p
{∫ sin t

0

(sin2 t− u2)λ−δ−1/2u2δ−1du

}
sin t dt

=dλ,δ

∫ π

0

|f(t)|p
{∫ 1

0

(1 − v2)λ−δ−1/2v2δ−1dv

}
(sin t)2λ dt = ‖f‖pp,λ. �

Definition 7.4. For λ > 0, δ > 0, λ− δ ≥ 0 and ψ ∈
[
0, π2

]
, define the (λ− δ, ψ)-

pseudo translations by x of a function f ∈ C([0, π]), evaluated at y by

Tλ−δ,ψx f(y) = γλ−δ

∫ π

0

f(arccos(cosx cos y + sinx sin y cos θ sinψ))(sin θ)2λ−2δ−1dθ

if λ− δ > 0, and

T 0,ψ
x (y) =

1
2
f(arccos(cosx cos y + sinx sin y sinψ))

+
1
2
f(arccos(cosx cos y − sinx sin y sinψ)) ,

where x, y ∈ [0, π].

Lemma 7.5

For λ, δ > 0, λ− δ ≥ 0, f ∈ C([0, π]) and for all x, y ∈ [0, π], we have

Tλx f(y) = dλ,δ

∫ π/2

0

Tλ−δ,ψx f(y) dmλ,δ(ψ) .

Proof. We will prove the case λ− δ > 0 (the case λ− δ = 0 is similar).

dλ,δ

∫ π/2

0

Tλ−δ,ψx f(y) dmλ,δ(ψ)

= dλ,δ

∫ π/2

0

γλ−δ

∫ π

0

f(arccos(cosx cos y + sinx sin y cos θ sinψ))

(sin θ)2λ−2δ−1dθ(sinψ)2λ−2δ(cosψ)2δ−1dψ.
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Making the substitution cos θ sinψ = cosϕ in the innermost integral, and defining

Φ(x, y, ϕ) def= arccos(cosx cos y + sinx sin y cosϕ)),

we get

= dλ,δγλ−δ

×
∫ π/2

0

∫ π/2+ψ

π/2−ψ
f(Φ(x, y, ϕ))(sin2 ψ − cos2 ϕ)λ−δ−1 sinϕdϕ(cosψ)2δ−1 sinψ dψ

= dλ,δγλ−δ

∫ π

0

f(Φ(x, y, ϕ))

×
{∫ π/2

|π/2−ϕ|
(sin2 ψ − cos2 ϕ)λ−δ−1(cosψ)2δ−1 sinψ dψ

}
sinϕdϕ

= dλ,δγλ−δ

∫ π

0

f(Φ(x, y, ϕ))

{∫ sinϕ

0

(sin2 ϕ− u2)λ−δ−1u2δ−1 du

}
sinϕdϕ

= dλ,δγλ−δ

∫ π

0

f(Φ(x, y, ϕ))
{∫ 1

0

(1 − v2)λ−δ−1v2δ−1 dv

}
(sinϕ)2λ−1dϕ

=
dλ,δγλ−δ
dλ−1/2,δ

∫ π

0

f(Φ(x, y, ϕ))(sinϕ)2λ−1dϕ =
dλ,δγλ−δ
dλ−1/2,δγλ

Tλx f(y) = Tλx f(y). �

Lemma 7.6

Let λ, δ > 0 and λ− δ ≥ 0. Let G ∈ L1
(
[0, π] ×

[
0, π2

]
, ηλ ⊗mλ,δ

)
. Then∫ π/2

0

∫ π

0

G(x, ψ) dηλ(x) dmλ,δ(ψ) =
∫ π/2

0

∫ π

0

G(Q(a, b)) dηλ−δ(a) dµλ,δ(b)

and, for all a, y ∈ [0, π], b ∈
[
0, π2

]
and f ∈ C([0, π]), we have

T
λ−δ,Q2(a,b)
Q1(a,b)

f(y) = Tλ−δa fb(y).

Proof. The first part is just a substitution. By the definition of Q, we have{
cosx = cos b cos a

sinψ sinx = cos b sin a.

This implies that
sin2 x cosψ dx dψ = sin b cos b da db .
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Thus

∫ π/2

0

∫ π

0

G(x, ψ)(sinx)2λdx(sinψ)2λ−2δ(cosψ)2δ−1dψ

=
∫ π/2

0

∫ π

0

G(Q(a, b))(sin a)2λ−2δda(cos b)2λ−2δ+1(sin b)2δ−1db,

and this proves the first part. For the second part, it is enough to observe that, for
any θ ∈ [0, π],

arccos(cosQ1(a, b) cos y + sinQ1(a, b) sin y cos θ sinQ2(a, b))

= arccos(cos b(cos a cos y + sin a sin y cos θ)). �

We can now state and prove a generalization of Theorem 7.1.

Theorem 7.7

Let λ, δ > 0 and λ − δ ≥ 0, 1 ≤ p < ∞. Let k ∈ L1
λ and define h by

h(x) = k(x)(sinx)2δ, x ∈ [0, π]. Suppose h, as a convolution operator on Lpλ−δ, has

norm Np(h). Then the convolution operator on Lpλ given by k has norm less than

or equal to Np(h).

Proof. Let f ∈ C([0, π]). Then, applying Lemma 7.5,

k
λ∗ f(x) =

∫ π

0

k(y)Tλx f(y) dηλ(y)

= dλ,δ

∫ π

0

∫ π/2

0

k(y)Tλ−δ,ψx f(y) dmλ,δ(ψ) dηλ(y)

= dλ,δ

∫ π/2

0

∫ π

0

h(y)Tλ−δ,ψx f(y) dηλ−δ(y) dmλ,δ(ψ).

Thus, using Jensen’s inequality and Lemmas 7.6 and 7.3,
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∥∥∥∥k λ∗ f

∥∥∥∥p
p,λ

=
∫ π

0

∣∣∣∣k λ∗ f(x)
∣∣∣∣p dηλ(x)

=
∫ π

0

∣∣∣∣∣
∫ π/2

0

∫ π

0

h(y)Tλ−δ,ψx f(y) dηλ−δ(y) dλ,δ dmλ,δ(ψ)

∣∣∣∣∣
p

dηλ(x)

≤
∫ π

0

[∫ π/2

0

∣∣∣∣∫ π

0

h(y)Tλ−δ,ψx f(y) dηλ−δ(y)
∣∣∣∣ dλ,δ dmλ,δ(ψ)

]p
dηλ(x)

≤ dλ,δ

∫ π/2

0

∫ π

0

∣∣∣∣∫ π

0

h(y)Tλ−δ,ψx f(y) dηλ−δ(y)
∣∣∣∣p dηλ(x) dmλ,δ(ψ)

= dλ,δ

∫ π/2

0

∫ π

0

∣∣∣∣∫ π

0

h(y)Tλ−δ,Q2(a,b)
Q1(a,b)

f(y) dηλ−δ(y)
∣∣∣∣p dηλ−δ(a) dµλ,δ(b)

= dλ,δ

∫ π/2

0

∫ π

0

∣∣∣∣∫ π

0

h(y)Tλ−δa fb(y) dηλ−δ(y)
∣∣∣∣p dηλ−δ(a) dµla,δ(b)

= dλ,δ

∫ π/2

0

∥∥∥∥h λ−δ∗ fb

∥∥∥∥p
p,λ−δ

dµλ,δ(b) ≤ dλ,δ (Np(h))p
∫ π/2

0

‖fb‖pp,λ−δdµλ,δ(b)

= (Np(h))p ‖f‖pp,λ.

The theorem now follows from the density of C([0, π]) in Lpλ. �

Let us observe that Theorem 7.7 is particularly interesting when δ = λ. In
this case, we can deduce estimates for a convolution operator on Lpλ by studying a
convolution operator on Lp0, which coincides with studying a convolution operator
on the space of zonal functions of Lp(Σ1).

We can now explain briefly what generalizations of these results we intend to
prove in future articles. The first named author will show, in a subsequent paper
with J. A. Tirao, an extension of Theorem 3.1 to compact two-point homogeneous
spaces, whereas the second named author will prove an extension of Theorem 7.7
to more general hypergroups, including, as particular cases, the continuous Jacobi
polynomial hypergroups (expansions in Jacobi polynomials), the Bessel-Kingman
hypergroups, and the Jacobi hypergroups of non-compact type.
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2. A. Bonami and J. L. Clerc, Sommes de Cesàro et Multiplicateurs des Developpements en Har-
moniques Sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263.

3. R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certain Espaces Ho-
mogenes, Lecture notes in Mathematics 242, Springer-Verlag, 1971.

4. R. R. Coifman and G. Weiss, Representation of compact groups and spherical harmonics, Enseign.
Math. 14 (1968), 121–173.

5. R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in
Math. 31, AMS Providence, Rhode Island, 1977, reprinted in 1986.

6. R. O. Gandulfo, Multiplier operators for expansions in spherical harmonics and ultraspherical
polynomials, Ph.D. thesis, Washington University, Saint Louis MO, 1975.

7. R. O. Gandulfo, Transference Results for Multiplier Operators, Bull. Amer. Math. Soc. 82(5)
(1976), 734–736.

8. R. I. Jewett, Spaces with an Abstract Convolution of Measures, Adv. in Math. 18(1) (1975),
1–101.

9. Y. Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc. New York, 1968,
Reprinted by Dover, New York, 1976.

10. J. Marcinkiewicz, Sur les multiplicateurs de séries de Fourier, Studia Math. 8 (1939), 78–91.
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