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Abstract

We study bilinear operators between couples of Banach function spaces with
the second coordinate L∞-space. We show an estimate in terms of the K-
functional. This is used to prove a result on interpolation of bilinear operators
between considered couples.

0. Introduction

It is well known that integral operators play an important role in the theory of oper-
ators between Banach function spaces (see [4], [5]). In the study of these operators a
special bilinear operator plays a particular role. To see this recall that if X = X(µ1)
and Y = Y (µ2) are Banach function spaces on (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2), respec-
tively, and Z = Z(µ1×µ2) is a Banach function space on the product measure space
(Ω1 × Ω2,Σ1 × Σ2, µ1 × µ2) then the following holds (see [9]):
For every k ∈ Z ′ an integral operator

Tkx(t) :=
∫

Ω1

k(s, t)x(s)dµ1 for t ∈ Ω2

is bounded from X into Y ′ if and only if the bilinear tensor product operator (x, y) �→
x⊗ y maps X × Y into Z, where x⊗ y(s, t) = x(s)y(t) for (s, t) ∈ Ω1 × Ω2.
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Here E′ denotes the Köthe dual space of a Banach function space E on (Ω, µ),
which can be identified with the space of all functionals possessing an integral rep-
resentation, that is,

E′ :=
{
y ∈ L0(µ); ‖y‖E′ = sup

‖x‖E≤1

∫
Ω

|xy|dµ < ∞
}
.

The proof of the above result is similar to the one given in [6] in the context of
Orlicz spaces. For the study of the bilinear tensor product operator B(x, y) := x⊗y

in various Banach function spaces we refer the reader to [9] and [1].
In the paper we study general bilinear bounded operators. The obtained results

may be applied to the tensor product operators.

1. Bilinear operators between Banach function spaces

Throughout the paper if X0 and X1 are two Banach spaces both linearly and con-
tinuously embedded in a Hausdorff topological vector space X , then (X0, X1) is said
to be a Banach couple and is denoted by X. For x ∈ X0 + X1, t > 0 the K and E

functionals are defined as

K(t, x;X) := inf
{
‖x0‖X0 + t‖x1‖X1 ; x0 ∈ X0, x1 ∈ X1, x = x0 + x1

}
,

and respectively

E(t, x;X) := inf
{
‖x− x1‖X0 ; x− x1 ∈ X0, x1 ∈ X1, ‖x1‖X1 ≤ t

}
.

By the definition of the K and E functionals we obviously have

K(t, x;X) = inf
{
st + E(s, x;X) ; s > 0

}
.

Let A = (A0, A1), B = (B0, B1) and C = (C0, C1) be Banach couples. In what
follows we will write T ∈ B(A,B;C) or equivalently T : A × B → C, whenever
T : (A0 + A1) × (B0 + B1) → C0 + C1 is a bounded bilinear operator such that
T : Aj ×Bj → Cj is bounded for j = 0, 1.

Clearly that if (Ω1, µ1) and (Ω2, µ2) are measure spaces and (Ω, µ) is a product
of these spaces, then for the tensor product operator B defined by B(x, y) := x⊗ y

for (x, y) ∈ L0(µ1) × L0(µ2), we have

B :
(
Lp(µ1), L∞(µ1)

)
×

(
Lp(µ2), L∞(µ2)

)
→

(
Lp(µ), L∞(µ)

)

for any 1 ≤ p ≤ ∞.
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In this section we are interested in more general case, where instead of Lp-spaces
we have Banach function spaces and B is any bounded bilinear operator between
considered couples. At first we give some more fundamental definitions and notation.

Let (Ω, µ) be a measure space with µ complete and σ-finite and let L0(µ) denote
the space of all equivalence classes of measurable functions on Ω with the topology
convergence in measure relative to each set of finite measure.

The non-increasing rearrangement of x ∈ L0(µ) is the function x∗ = x∗
µ :

(0,∞) → [0,∞] defined by

x∗(t) := inf
{
λ > 0 ; µx(λ) ≤ t

}
for t > 0,

where µx(λ) := µ{ω ∈ Ω ; |x(t)| > λ} for λ > 0 and inf Ø= ∞.
A Banach space X ⊂ L0(µ) is called a Banach function space on (Ω,Σ, µ) if

there exists u ∈ X such that u > 0 a.e. and X satisfies the ideal property:(
x ∈ L0(µ), y ∈ X, |x| ≤ |y| a.e.

)
⇒ (x ∈ X and ‖x‖ ≤ ‖y‖).

If X is a Banach function space and w ∈ L0(µ) with w > 0 a.e., we define the
weighted space X(w) by ‖x‖X(w) = ‖xw‖X .

Let X be a Banach function space. An element x ∈ X is said to have an
order continuous norm if ‖xn‖ → 0 whenever xn ≤ |x| and xn ↓ 0. The largest
ideal consisting of all elements with order continuous norms will be denoted by Xa.
Clearly that Xa = {x ∈ X ; |x| ≥ xn ↓ 0 implies ‖xn‖X → 0}. The closure in X of
the set of simple functions supported in sets of finite measure is denoted by Xb.

A Banach function space X on (Ω, µ) is said to be symmetric if whenever x ∈ X,
y ∈ L0, and µx(λ) = µy(λ) for λ > 0, then y ∈ X and ‖x‖ = ‖y‖.

The fundamental function ϕX of a symmetric space X on (Ω,Σ, µ) is defined
for each t belonging to the range of µ as ϕX(t) = ‖χA‖X , for A ∈ Σ with µ(A) = t,
where χA is the characteristic function of the set A.

We note that if X is a symmetric space on nonatomic measure space, then
Xa = Xb if and only if ϕX(0+) = 0 (see [2], Theorem 5.5). We refer the reader to
[2] and [7] for a study of symmetric spaces.

In the sequel we will need the following result (see, e.g. [8]). For the sake of
completeness we include a proof.

Lemma 1.1

Let X be a Banach function space on (Ω,Σ, µ). Then

E
(
t, x; (X,L∞)

)
= ‖(|x| − t)+‖X

for any x ∈ X + L∞.
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Proof. We begin to prove ‖(|x| − t)+‖X ≤ E(t, x) := E(t, x; (X,L∞)). We may
assume that E(t, x) < ∞ since it holds trivially otherwise. Take any x1 ∈ L∞ with
‖x1‖L∞ ≤ t such that x− x1 ∈ X. This implies that

(|x| − t)+ ≤ |x− x1| .

By using the ideal property we obtain that

‖(|x| − t)+‖X ≤ ‖x− x1‖X .

Since x1 is arbitrary, we obtain the desired inequality.
In order to prove the converse inequality, we may assume that (|x| − t)+ ∈ X

for x ∈ X + L∞ and t > 0. We define a function x(t) by the formula:

x(t)(s) = min{|x(s)|, t} signx(s)

for s ∈ Ω. Clearly that x(t) ∈ L∞ with ‖x(t)‖L∞ ≤ t and

x− x(t) = (|x| − t)+ signx ∈ X.

Combining the above we conclude that

E(t, x) ≤ ‖x− x(t)‖X = ‖(|x| − t)+‖X .

This completes the proof. �

Proposition 1.2

Let Xj = Xj(µj) be Banach function spaces on (Ωj ,Σj , µj), j = 1, 2, 3 and let

T : (X1 + L∞(µ1)) × (X2 + L∞(µ2)) → X3 + L∞(µ3) be a bilinear operator such

that for j = 1, 2

‖T (x1, x2)‖X3 ≤ ‖x1‖X1‖x2‖X2 for xj ∈ Xj ,

‖T (x1, x2)‖L∞(µ3) ≤ ‖x1‖L∞(µ1)‖x2‖L∞(µ2) for xj ∈ L∞(µj).

If X2 is a symmetric space, then the following inequality holds:

K
(
t, T (x, χA); (X3, L∞(µ3)

)
≤ ϕX2(u)K

(
t/ϕX2(u), x; (X1, L∞(µ1))

)

for any x ∈ X1 + L∞(µ1), t > 0 and A ∈ Σ2 such that u = µ2(A) < ∞.



Interpolation of bilinear operators between Banach function spaces 315

Proof. Let x ∈ X1(µ1) +L∞(µ1). For any s > 0 let x(s) denotes the s-truncation of
x, that is, the function

x(s)(ω) = min{|x(ω)|, s}signx(ω) for ω ∈ Ω1.

By the bilinearity of T , we have

T (x, χA) = T (x− x(s), χA) + T (x(s), χA)

= f + g.

Since x− x(s) = (|x| − s)+ signx, we obtain by Lemma 1.1

‖f‖X3 = ‖T (x− x(s), χA)‖X3 ≤ ‖x− x(s)‖X1‖χA‖X2

≤ ϕX2

(
µ2(A)

)
‖(|x| − s)+‖X1 = ϕX2(u)E

(
s, x; (X1, L∞)

)
.

Moreover for g we get the following estimate

‖g‖L∞(µ3) = ‖T (x(s), χA)‖L∞(µ3)

≤ ‖x(s)‖L∞(µ2)‖χA‖L∞(µ1) ≤ s.

Combining the above estimates, we obtain

K(t, T (x, χA); (X3, L∞)) ≤ ‖f‖X3 + t‖g‖L∞

≤ ϕX2(u)E
(
s, x; (X1, L∞)

)
+ st

≤ ϕX2(u)
(
st/ϕX2(u) + E

(
s, x; (X1, L∞)

))
.

Taking the infimum over all s > 0, we obtain the desired inequality. �

Theorem 1.3

Assume that the assumptions of Proposition 1.2 are satisfied and additionally

(i) (Ω3,Σ3, µ3) is nonatomic measure space and ϕX2(0+) = 0.

(ii) For every x ∈ X1(µ1) + L∞(µ1) the operator Tx = T (x, ·) is bounded from

(X2(µ2) + L∞(µ2))b into X3(µ3) + L∞(µ3).

Then for any x ∈ X1(µ1) + L∞(µ1), y ∈ (X2(µ2) + L∞(µ2))b and t > 0 the

following inequality holds:

K
(
t, T (x, y); (X3(µ3), L∞(µ3))

)
≤ 2

∫ ∞

0

K
(
t/ϕX2(s), x; (X1, L∞)

)
y∗(s)ϕ′

X2
(s) ds.
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Proof. Let X = (X1(µ1), L∞(µ1)), Y = (X2(µ2), L∞(µ2)) and Z = (X3(µ3),
L∞(µ3)). Suppose that x ∈ X0 + X1 and y = cχA, where A ∈ Σ2 with µ2(A) < ∞
and c ∈ R. From Proposition 1.2 it follows that

K
(
t, T (x, y);Z

)
≤ |c|ϕ(u)K

(
t/ϕ(u), x;X

)
,

where ϕ = ϕX2 . Since s �→ K(t/ϕ(s), x;X) is nonincreasing and ϕ(0+) = 0, we
obtain ∫ u

0

K
(
t/ϕ(s), x;X

)
ϕ′(s)ds ≥

∫ u

0

K
(
t/ϕ(u), x;X

)
ϕ′(s) ds

= ϕ(u)K
(
t/ϕ(u), x;X

)
.

Since y∗ = y∗µ2
= |c|χ(0,u), we get

K
(
t, T (x, y);Z

)
≤ |c|

∫ u

0

K
(
t/ϕ(s), x;X

)
ϕ′(s) ds

=
∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗(s)ϕ′(s) ds.

Let 0 ≤ y = Σnk=1yk be a simple function, where 0 ≤ yk = ckχAk
, Ak ∈ Σ2

A1 ⊂ ... ⊂ An with µ2(Ak) < ∞ for k = 1, ..., n. Then

y∗ = y∗µ2
=

n∑
k=1

ckχ(0,µ2(Ak)) =
n∑
k=1

y∗k.

By the bilinearity of T ,

T (x, y) =
n∑
k=1

T (x, yk).

Combining with the last inequality, we obtain

K
(
t, T (x, y);Z

)
≤

n∑
k=1

K
(
t, T (x, yk);Z

)

≤
n∑
k=1

∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗k(s)ϕ

′(s) ds

=
∫ ∞

0

K
(
t/ϕ(s), x;X

)( n∑
k=1

y∗k(s)
)
ϕ′(s) ds

=
∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗(s)ϕ′(s) ds.
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We show that the last inequality is true for any y ∈ (Y0 + Y1)b. Let 0 ≤
y ∈ (Y0 + Y1)b. Take a sequence {yn} of simple functions that 0 ≤ yn ↑ y. Since
Y0 +Y1 is a symmetric space and ϕY0+Y1 = min{ϕY0 , ϕY1}, we have ϕY0+Y1(0+) = 0.
It follows from Theorem 5.5 in [2] that (Y0 + Y1)b = (Y0 + Y1)a. In consequence
‖yn − y‖Y0+Y1 → 0 by 0 ≤ y − yn ↓ 0. Hence by the continuity of Tx, we obtain

‖Tx(yn) − Tx(y)‖Z0+Z1 → 0.

In consequence

K
(
t, Tx(yn);Z

)
→ K

(
t, Tx(y);Z

)
for t > 0.

We have proved that

K
(
t, Tx(yn);Z

)
= K

(
t, T (x, yn);Z

)

≤
∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗n(s)ϕ

′(s) ds.

Since 0 ≤ yn ↑ y, y∗n ↑ y∗ (see [2], p. 41). Then using the monotone convergence
theorem, we obtain

K
(
t, T (x, y);Z

)
≤

∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗(s)ϕ′(s) ds

for t > 0. Now if y ∈ (Y0 + Y1)b is an arbitrary element, then y = y+ − y−. Clearly
that y+, y− ∈ (Y0 + Y1)a. Since T is bilinear operator, we obtain the following
inequalities

K
(
t, T (x, y);Z

)
≤ K

(
t, T (x, y+);Z

)
+ K

(
t, T (x, y−);Z

)

≤
∫ ∞

0

K
(
t/ϕ(s), x;X

)
(y+)∗(s)ϕ′(s) ds

+
∫ ∞

0

K
(
t/ϕ(s), x;X

)
(y−)∗(s)ϕ′(s) ds

≤ 2
∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗(s)ϕ′(s) ds,

which completes the proof. �

Since K(t, f ; (L1(µ), L∞(µ)) = tf∗∗(t), where f∗∗(t) := 1
t

∫ t
0
f∗(s) ds for t > 0

(see [2]), we obtain the following result (cf. [9]).
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Corollary 1.4
If T : (L1(µ1), L∞(µ1)) × (L1(µ2), L∞(µ2)) → (L1(µ3), L∞(µ3)), then there

exists a constant C > 0 such that

T (x, y)∗∗(t) ≤ C

∫ ∞

0

x∗∗(t/s)y∗(s)
ds

s

for any x ∈ L1(µ1) + L∞(µ1), y ∈ (L1(µ2) + L∞(µ2))a and t > 0.

2. Applications

In this section we present an application of the obtained results to interpolation
of bilinear operators. We recall that in every symmetric space X on R+, dilation
operators Ds (0 < s < ∞) defined by Dsf(t) = f(t/s) for f ∈ X are bounded
(see [7]).

We now need a technical result. The proof is a modification of the proof of
Lemma II 4.7 in [7].

Lemma 2.1
Let ϕ : R+ → R+ be a quasi-concave function, w ∈ L0(R+,m) and let E be a

symmetric space on R+. Then for any x ∈ E the following inequality holds:∥∥∥
∫ ∞

0

(Dϕ(s)x
∗)w(s) ds

∥∥∥
E
≤

∫ ∞

0

‖Dϕ(s)x‖E w(s) ds.

Proof. Let λ > 1. Since for any x ∈ E the function s �→ Dϕ(s)x
∗ is nondecreasing,

we obtain for t > 0

0 ≤
∫ ∞

0

Dϕ(s)x
∗(t)w(s) ds =

∞∑
k=−∞

∫ λk+1

λk

Dϕ(s)x
∗(t)w(s) ds

≤
∞∑

k=−∞
Dϕ(λk+1)x

∗(t)
∫ λk+1

λk

w(s) ds.

Since for any s > 0, ‖Ds‖E→E ≤ max{1, s} (see [7], p. 98), we obtain
∥∥∥

∫ ∞

0

Dϕ(s)x
∗(t)w(s) ds

∥∥∥ ≤
∞∑

k=−∞
‖Dϕ(λk+1)x

∗‖E
∫ λk+1

λk

w(s) ds

≤
∞∑

k=−∞
‖Dϕ(λk)ϕ(λ)x

∗‖E
∫ λk+1

λk

w(s) ds

≤ ϕ(λ)
∞∑

k=−∞
‖Dϕ(λk)x

∗‖E
∫ λk+1

λk

w(s) ds,
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where ϕ(λ) := sup{ϕ(uλ)/ϕ(u) : u > 0}.
On the other hand, since the function s �→ ‖Dϕ(s)x

∗‖E is nondecreasing, we
have ∫ ∞

0

‖Dϕ(s)x
∗‖E w(s) ds =

∞∑
k=−∞

∫ λk+1

λk

‖Dϕ(s)x
∗‖E w(s) ds

≥
∞∑

k=−∞
‖Dϕ(λk)x

∗‖E
∫ λk+1

λk

w(s) ds.

Combining with the previous inequality, we obtain

∥∥∥
∫ ∞

0

Dϕ(s)x
∗(t)w(s) ds

∥∥∥ ≤ ϕ(λ)
∞∑

k=−∞

∫ λk+1

λk

‖Dϕ(s)x
∗‖E w(s) ds

= ϕ(λ)
∫ ∞

0

‖Dϕ(s)x‖E w(s) ds.

Since the fundamental function of any symmetric space is quasi-concave, ϕ is
also a quasi-concave. Thus ϕ is continuous. In consequence, we obtain the required
inequality, by limλ→1+ ϕ(λ) = 1. �

Let Φ ⊂ L0(R+,m) be a Banach lattice such that min{1, t} ∈ Φ and let X =
(X0, X1) be a Banach couple. The K-method space defined by

XΦ := {x ∈ X0 + X1 ; K(·, x;X) ∈ Φ}.

is a Banach space equipped with the norm ‖x‖ = ‖K(·, x;X)‖Φ, which is an exact
interpolation space with respect to X (see [3]).

In what follows, if (Ω,Σ, µ) is a measure space and ψ : R+ → R+ is a quasi-
concave function, then Λ(ψ) denotes a symmetric Lorentz space defined by

Λ(ψ) :=
{
x ∈ L0(µ) ; ‖x‖Λ(ψ) =

∫ ∞

0

x∗(s)ψ(s)
ds

s
< ∞

}
.

We are now in a position to prove the main result of this section.

Theorem 2.2

Let E be a symmetric space on R+ such that min{1, 1/t} ∈ E and let Xj =
Xj(µj), j = 1, 2, 3 be Banach lattices with X2 a symmetric space on a nonatomic

measure space such that ϕX2(0+) = 0. If T : (X1, L∞) × (X2, L∞) → (X3, L∞),
then T is a bounded bilinear operator from (X1, L∞)Φ × Λ(ψ)a into (X3, L∞)Φ,

where Φ = E(1/t), ψ(s) = ‖Dϕ(s)‖E→E and ϕ(s) = ϕX2(s) for s > 0.
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Proof. Let X = (X1(µ1), L∞(µ1)), Y = (X2(µ2), L∞(µ2)) and Z = (X3(µ3),
L∞(µ3)). Without loss of generality we may assume that

‖T (x, y)‖Zj ≤ ‖x‖Xj‖y‖Yj for (x, y) ∈ Xj × Yj , j = 0, 1.

Since T : (X1, L∞)× (X2, L∞) → (X3, L∞), all the assumptions of Theorem 1.3 are
satisfied. Observe that min{1, t} ∈ Φ, by min{1, 1/t} ∈ E.

Let x ∈ XΦ and y ∈ L1(µ2)∩L∞(µ2). Then by Theorem 1.3 and the inequality
ϕ′(s) ≤ ϕ(s)/s for a.e. s > 0, we obtain

K(t, T (x, y);Z)
t

≤ 2
t

∫ ∞

0

K
(
t/ϕ(s), x;X

)
y∗(s)ϕ′(s) ds

≤ 2
∫ ∞

0

K∗
(
t/ϕ(s), x;X

)
y∗(s)

ds

s
,

where f∗(u) := f(u)/u for u > 0. This implies that

K(t, T (x, y);Z)
t

≤ 2
∫ ∞

0

Dϕ(s)K∗(t, x;X)y∗(s)
ds

s
.

Since t �→ K∗(t, x;X) for t > 0 is nonincreasing function, we have from Lemma 2.1

∥∥∥
∫ ∞

0

Dϕ(s)K∗(·, x;X)y∗(s)
ds

s

∥∥∥
E
≤

∫ ∞

0

‖Dϕ(s)K∗(·, x;X)‖E y∗(s)
ds

s

≤
( ∫ ∞

0

y∗(s) ‖Dϕ(s)‖E→E
ds

s

)
‖K∗(·, x;X)‖E

= ‖x‖XΦ
‖y‖Λ(ψ).

Combining the above we conclude

‖T (x, y)‖ZΦ
= ‖K∗(·, T (x, y);Z)‖E ≤ 2‖x‖XΦ

‖y‖Λ(ψ).

Since T ∈ B(X,Y ;Z), Tx = T (x, ·) is continuous from Y0 + Y1 into Z0 + Z1. Thus
the proof is complete by the density of L1(µ2) ∩ L∞(µ2) in Λ(ψ)a. �
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