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Abstract

We show that if G is a compact connected Abelian group such that, for some
n ∈ N and some closed subgroup H of G(n) = {a ∈ G | na = 0}, the
set G \H is disconnected, then G is topologically isomorphic with the circle
group T.

1. Introduction

Let G be a locally compact Abelian group with dual Ĝ. Given n ∈ N, denote by G(n)

and G(n) the image and kernel of the homomorphism G � a �→ na ∈ G, respectively.
Given a subset X ⊂ G, let

−X =
{
a ∈ G | −a ∈ X

}
.

In agreement with the terminology introduced in [1], G is said to be decomposable if
there exists an open subset U ⊂ G such that U ∪(−U) = G\G(2) and U ∩(−U) = ∅.

Let T be the circle group, this being the multiplicative group of complex num-
bers with unit modulus, endowed with the usual topology.

In [1] (see also [2]) the following theorem is established:
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Theorem 1

Any decomposable compact connected Abelian group different from a singleton

is topologically isomorphic with T.

This result can be viewed as a characterisation of the circle group. The aim of
this paper is to prove the following generalisation of Theorem 1:

Theorem 2

If G is a compact connected Abelian group such that, for some n ∈ N and some

closed subgroup H of G(n), the set G \ H is disconnected, then G is topologically

isomorphic with T.

Of course, the latter theorem can be regarded as yet another characterisation
of the circle group.

2. An auxiliary result

This section is devoted to establishing an auxiliary result. We start by fixing notation
and recalling some concepts from algebra and topology.

For a set A, denote by #A the cardinality of A, and by idA the identity mapping
of A onto itself.

For each n ∈ N, let Z(n) be the cyclic group with n elements. Let Q be the
additive group of rational numbers, equipped with the discrete topology.

If {Gi}i∈I is an indexed collection of Abelian groups, we write
∏

i∈I Gi for the
direct product of the Gi. If I = {1, . . . , n}, we also write G1 × · · · ×Gn in place of∏

i∈I Gi. If m is a cardinal number and if, for some fixed G, Gi = G for each i ∈ I,
where I is a set of cardinality equal to m, we write Gm for

∏
i∈I Gi.

Let (·, ·) represent the pairing between elements of a locally compact Abelian
group and elements of its dual.

For a subgroup H of a locally compact Abelian group G, denote by H⊥ the
annihilator of H in Ĝ, that is, the closed subgroup of Ĝ defined as

H⊥ =
{
χ ∈ Ĝ | (a, χ) = 1 for all a ∈ H

}
.

For a homomorphism f , designate by ker f the kernel of f .
Given locally compact Abelian groups G and H, and a continuous homomor-

phism f :G→ H, denote by f∗: Ĥ → Ĝ the dual homomorphism defined by
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(
a, f∗(χ)

)
=

(
f(a), χ

) (
a ∈ G, χ ∈ Ĥ

)
.

An N-indexed projective (or inverse) system of groups is a family {Σp, π
q
p}, where,

for each p ∈ N, Σp is a group, and, for all p, q ∈ N with p ≤ q, πqp: Σq → Σp is a
homomorphism such that the following conditions hold:
(i) πpp = idΣp

for each p ∈ N;
(ii) πqpπ

r
q = πrp for all p, q, r ∈ N with p ≤ q ≤ r.

If in addition each Σp is a topological group and each πqp is a continuous homo-
morphism, then {Σp, π

q
p} is called a topological projective system of groups. The

projective limit of such a system {Σp, π
q
p} is the group lim←−{Σp, π

q
p} defined as

lim←−{Σp, π
q
p} =

{
{ap}p∈N ∈

∏
p∈N

Σp | πqp(aq) = ap for all p, q ∈ N with p ≤ q
}
.

For each p ∈ N, let πp: lim←−{Σp, π
q
p} → Σp be the homomorphism defined as the

restriction to lim←−{Σp, π
q
p} of the canonical projection of

∏
p∈N

Σp onto Σp. The πp
are compatible with the πqp in the sense that πqpπq = πp for all p, q ∈ N with p ≤ q. If
{Σp, π

q
p} is a topological projective system of groups, then lim←−{Σp, π

q
p} can be given

the weakest topology making all the projection maps πp continuous. This topology
is just the relativised topology from the direct product. Any family of sets of the
form π−1

p (Up), where p ranges over an arbitrarily fixed infinite subset of N and Up

is an open subset of Σp, is a base for the topology of lim←−{Σp, π
q
p}.

It is easy to check that projective limits satisfy the universal property that
if Γ is another (topological) group with a family of (continuous) homomorphisms
σp: Γ → Σp satisfying πqpσq = σp for all p, q ∈ N with p ≤ q, then there is a unique
(continuous) homomorphism σ: Γ → lim←−{Σp, π

q
p} satisfying πpσ = σp for all p ∈ N.

Proposition 1
Let {Σp, π

q
p} be an N-indexed topological projective system of groups such that:

(i) there exists l ∈ N such that, for each p ∈ N, Σp is topologically isomorphic with
Tl by means of a homomorphism τp: Σp → Tl;

(ii) for each p, q ∈ N with p ≤ q, πqp has the form

πqp = τ−1
p τ qp τq,

where τ qp : Tl → Tl is the homomorphism

τ qp : (t1, . . . , tl) �→
(
t
nq
p(1)

1 , . . . , t
nq
p(l)

l

)
(1)

for some nqp(1), . . . , nqp(l) ∈ Z \ {0};
(iii) if l = 1, then limq→∞ |nqp(1)| = +∞ for each p ∈ N.

Then Σ = lim←−{Σp, π
m
p } has the property that, for each n ∈ N and each closed

subgroup Γ of Σ(n), Σ \ Γ is connected.
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Proof. Without loss of generality, we may assume that Σp = Tl and τp = idΣp for
all p ∈ N, and πqp = τ qp for all p, q ∈ N with p ≤ q. That {Σp, π

q
p} is an inverse

system of groups now means that, for each j = 1, . . . , l, npp(j) = 1 for each p ∈ N,
and nqp(j)n

r
q(j) = nrp(j) for all p, q, r ∈ N with p ≤ q ≤ r. Suppose, on the contrary,

that, for some n ∈ N and some closed subgroup Γ of Σ(n), Σ \Γ can be decomposed
into two non-empty disjoint open (in Σ \ Γ) sets U1 and U2. Since Γ is a closed
subgroup of Σ(n) and since Σ(n) is a closed subgroup of Σ, U1 and U2 are open
subsets of Σ. For each i = 1, 2, choose xi ∈ Ui arbitrarily, and next select an open
neighbourhood of xi of the form π−1

pi
(Vi), contained in Ui, with pi ∈ N and Vi an

open subset of Σpi . We claim that there exists q ∈ N with q ≥ pi for each i = 1, 2
such that, for some a1, a2 ∈ Σq,

π−1
q

(
{ai}

)
⊂ Ui for each i = 1, 2 (2)

and such that a1 and a2 can be joined by a closed arc I wholly contained in Σq\πq(Γ).
First consider the case l > 1. Since, for each p ∈ N, πp(Γ) ⊂ πp(Σ(n)) ⊂ (Σp)(n)

and since, clearly, (Σp)(n) is isomorphic with Z(n)l, we have

#πp(Γ) ≤ nl. (3)

Select q ∈ N so that q ≥ pi for each i = 1, 2. In view of (3), πq(Γ) is finite. Hence,
since Σq is an l-dimensional torus with l > 1, Σq \ πq(Γ) is arc-wise connected. For
each i = 1, 2, set ai = πq(xi). Clearly, a1 and a2 can be linked by a closed arc I
wholly contained in Σq \ πq(Γ). Furthermore

πqpi
(ai) = πqpi

(
πq(xi)

)
= πpi(xi),

whence π−1
q ({ai}) ⊂ π−1

pi
({πpi

(xi)}). As πpi
(xi) ∈ Vi and π−1

pi
(Vi) ⊂ Ui, (2) is

implied.
We now pass to the case l = 1. Using condition (iii) of the statement, choose

q ∈ N so that |nqpi
(1)| > n for each i = 1, 2. Being a subgroup of the cyclic group

(Σp)(n), πq(Γ) is cyclic. Thus Σq \ πq(Γ) consists of open arcs, each of which has
length equal to 2π/#πq(Γ). Let J be one of these arcs. In view of (3), the length of J
is no smaller than 2π/n. Now, for each i = 1, 2, kerπqpi

is the cyclic group of all roots
of unity of order |nqpi

(1)|. Therefore, for each i = 1, 2, every coset of kerπqpi
consists

of points evenly distributed around the circle, with the angular distance between
any pair of two closest points being equal to 2π/|nqpi

(1)|. As 2π/|nqpi
(1)| < 2π/n, we

see that, for each i = 1, 2, every coset of kerπqpi
has a point in common with J . For

each i = 1, 2, pick ai ∈ (kerπqpi
)πq(xi) ∩ J , where (kerπqpi

)πq(xi) denotes the coset
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of kerπqpi
containing πq(xi). It is readily seen that πqpi

(ai) = πpi(xi), and hence, as
before, we obtain (2). Taking for I a subarc of J having the ai for endpoints finally
establishes the claim.

The inclusion I ⊂ Σq \ πq(Γ) now implies that π−1
q (I) ⊂ Σ \ Γ. In view of the

form of the bases for the topology of a projective limit, π−1
q (I) can be covered by

open sets π−1
r (Wr), where r ∈ N satisfies r ≥ q and Wr is an open subset of Σr

such that either π−1
r (Wr) ⊂ U1 or π−1

r (Wr) ⊂ U2 holds. Since π−1
q (I) is compact,

we can choose a finite subcover π−1
r1 (Wr1), . . . , π

−1
rd

(Wrd). Fix s ∈ N so that s ≥ rj
for all j = 1, . . . , d. For each j = 1, . . . , d, set W ′j = (πsrj )

−1(Wrj ). Noting that
π−1
rj (Wrj ) = π−1

s (W ′j), let, for each i = 1, 2, Zi be the union of all those W ′j for
which π−1

s (W ′j) ⊂ Ui. Clearly, Z1 and Z2 are open disjoint subsets of Σs such that
(πsq)

−1(I) ⊂ Z1∪Z2. Since πsq is a covering map, there is a continuous map f : I → Σs

such that πsq ◦f = idΣq
. Now, clearly, f(I) ⊂ (πsq)

−1(I), and, since f(I) is connected,
we have either f(I) ⊂ Z1 or f(I) ⊂ Z2, and consequently either π−1

s (f(I)) ⊂ U1 or
π−1
s (f(I)) ⊂ U2. But π−1

s (f({ai})) ⊂ π−1
q ({ai}) and therefore either

πq
−1

(
{ai}

)
∩ U1 �= ∅ for each i = 1, 2

or
πq
−1

(
{ai}

)
∩ U2 �= ∅ for each i = 1, 2.

This, however, is incompatible with (2), as U1 and U2 are disjoint. The contradiction
obtained establishes the result. �

3. Proof of the main result

This section is devoted to establishing Theorem 2.

Proof of Theorem 2. Let G be a compact connected Abelian group for which there
exist n ∈ N and a closed subgroup H ⊂ G(n) such that G\H is disconnected. Then,
necessarily, both G and Ĝ are different from a singleton. By the connectedness
of G, Ĝ is torsion free (cf. [3, §24.25]). Let {χα}α∈A be a maximal collection of
independent elements of Ĝ. As is known, #A does not depend on the particular
choice of a maximal family of independent members of Ĝ, and defines the (torsion-
free) rank of Ĝ. By the maximality of {χα}α∈A, for each χ ∈ Ĝ there exist n(χ) ∈ Z

and an A-indexed family of integers {nα(χ)}α∈A such that: (i) nα(χ) �= 0 for only
finitely many α ∈ A; (ii) the equality n(χ)χ =

∑
α∈A nα(χ)χα holds. By the

independency of the χα, n(χ) can be taken to be non-zero so that – in particular –
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for each α ∈ A the rational number nα(χ)/n(χ) makes sense; moreover, this number
depends only on χ. One verifies at once that, for each α ∈ A, the function ρα:χ �→
nα(χ)/n(χ) is a homomorphism from Ĝ into Q. Since Ĝ is torsion free, we have

⋂
α∈A

ker ρα = ∅ . (4)

Let Pfin(A) be the set of all finite subsets of A. For each A = {α1, . . . , αk} in
Pfin(A), define a homomorphism ρA: Ĝ→ Qk by setting

ρA = (ρα1 , . . . , ραk
).

Observe that, for each A ∈ Pfin(A), the dual of ρA(Ĝ) is topologically isomorphic
with (ker ρA)⊥, where the annihilator is taken in the dual of Ĝ identified with G.
In view of (4),

G =
⋃

A∈Pfin(A)

(ker ρA)⊥,

and hence
G \H =

⋃
A∈Pfin(A)

(
ker ρA

)⊥ \
(
H ∩ (ker ρA)⊥

)
.

Taking into account that G \ H is disconnected, we immediately deduce from the
last equality that for each A ∈ Pfin(A) there exists B ∈ Pfin(A) with A ⊂ B such
that (ker ρB)⊥ \ (H ∩ (ker ρB)⊥) is disconnected.

Fix A ∈ Pfin(A) arbitrarily and choose B = {α1, . . . , αl} in Pfin(A) so that
A ⊂ B and (ker ρB)⊥ \ (H ∩ (ker ρB)⊥) is disconnected. For each p ∈ N, let Kp be
the cyclic subgroup of Q given by

Kp = {m/p! | m ∈ Z}

and let Lp = ρB(Ĝ) ∩ (Kp)l. It is clear that Lp ⊂ Lp+1 for each p ∈ N and that

ρB(Ĝ) =
∞⋃
p=1

Lp. (5)

Since, for each p ∈ N, Lp is a subgroup of the direct product of l copies of the cyclic
group Kp, it follows that Lp is a direct product of cyclic groups, and hence is up to
isomorphism determined by its rank. It is apparent that

Lp ⊂
(
ρα1(Ĝ) ∩Kp

)
× . . .×

(
ραl

(Ĝ) ∩Kp

)
. (6)
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From
ρB(χα1) = (1, 0, . . . , 0),

ρB(χα2) = (0, 1, . . . , 0),

. . .

ρB(χαl
) = (0, 0, . . . , 1),

we infer that the rank of Lp is no smaller than l. On the other hand, for each
i = 1, . . . , l, the group ραi(Ĝ) ∩ Kp is cyclic, and so the rank of (ρα1(Ĝ) ∩ Kp) ×
. . .× (ραl

(Ĝ) ∩Kp) is equal to l. Coupling this with (6), we see that

Lp = (ρα1(Ĝ) ∩Kp) × . . .× (ραl
(Ĝ) ∩Kp).

For any p, q ∈ N with p ≤ q, let iqp be the canonical embedding of Lp into Lq.
Clearly, ipp = idLp

and hence ipp
∗ = id

L̂p
for each p ∈ N, and also irqi

q
p = irp and

hence iqp
∗irq
∗ = irp

∗ for all p, q, r ∈ N with p ≤ q ≤ r. Thus {L̂p, i
q
p
∗} is a topological

projective system of groups.
For each p ∈ N, let ip be the canonical embedding of Lp into ρB(Ĝ). Clearly,

ip = iqi
q
p and so i∗p = iqp

∗i∗q for any p, q ∈ N with p ≤ q. By the universal property
of projective limits, there is a unique continuous homomorphism σ: (ker ρB)⊥ →
lim←−{L̂p, i

q
p
∗} satisfying πpσ = i∗p for all p ∈ N; here, of course, πp stands for the

projection map from lim←−{L̂p, i
q
p
∗} onto L̂p. From (5) we deduce that σ is injective.

Since the ip are injective, it follows that the σp are surjective, and consequently that
σ is surjective. Thus σ is a continuous bijection, and as (ker ρB)⊥ is compact, σ
is a homeomorphism and hence a topological isomorphism from lim←−{L̂p, i

q
p
∗} onto

(ker ρB)⊥.
For each p ∈ N and each j = 1, . . . , l, let χj,p ∈ Ĝ be a generator of Kp∩ραj

(Ĝ).
For any p, q ∈ N with p ≤ q ∈ N and for each j = 1, . . . , l, let nqp(j) ∈ Z \ {0} be
such that

ραj (χj,p) = nqp(j) ραj (χj,q).

For each j arbitrarily fixed, we can arrange all the np+1
p (j) to be positive by replacing,

if necessary, χj,p by −χj,p successively as p increases. Since

nqp(j) =
q−1∏
r=p

nr+1
r (j), (7)

all the nqp(j) will then be positive too.
For each p ∈ N, let jp: Zl → Lp be the homomorphism

jp: (a1, . . . , al) �→
(
a1ρα1(χ1,p), . . . , alραl

(χl,p)
)
.
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Since jp is bijective, the dual homomorphism j∗p : L̂p → Tl is a topological isomor-
phism. Thus {L̂p, i

q
p
∗} satisfies condition (i) from Proposition 1.

For any p, q ∈ N with p ≤ q ∈ N, let jqp : Z
l → Zl be the homomorphism

jqp :
(
a1, . . . , al

)
�→

(
nqp(1)a1, . . . , n

q
p(l)al

)
.

It is easily verified that iqpjp = jqj
q
p and hence j∗p i

q
p
∗ = jqp

∗j∗q . Since jqp
∗ can be

identified with τ qp given by (1), we see that {L̂p, i
q
p
∗} satisfies condition (ii) from

Proposition 1.
Assume now that #A ≥ 2. Then #B ≥ 2 and since lim←−{L̂p, i

q
p
∗} is topologically

isomorphic with (ker ρB)⊥ and

H ∩
(
ker ρB

)⊥ ⊂
(
(ker ρB)⊥

)
(n)
,

it follows from Proposition 1 that (ker ρB)⊥ \ (H ∩ (ker ρB)⊥) is connected, a con-
tradiction. Therefore #A = 1 and consequently, in view of the arbitrariness of A,
A is a singleton. In particular, A = B = A, l = 1, and, by (4), (ker ρB)⊥ = G.

Repeating the argument, we infer that {L̂p, i
q
p
∗} does not satisfy condition (iii)

of Proposition 1. Now either there exists p0 ∈ N such that np+1
p (1) = 1 for all p ∈ N

with p ≥ p0, or there is a sequence {pk}k∈N in N diverging to infinity such that
npk+1
pk

(1) = 1 for all k ∈ N. Using (7), it is easy to see that the first possibility holds
precisely when condition (iii) of Proposition 1 is met. This implies that the second
possibility holds, and now appealing to (7) again, we find that nqp(1) = 1 for all
p, q ∈ N with p, q ≥ p0. Consequently, lim←−{Σp, π

q
p} reduces to a group topologically

isomorphic with T. As lim←−{Σp, π
q
p} is topologically isomorphic with (ker ρB)⊥ and

as the latter group coincides with G, we finally conclude that G is topologically
isomorphic with T. �
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