
Collect. Math. 50, 3 (1999), 277–288

c© 1999 Universitat de Barcelona

Some geometric properties related to fixed
point theory in Cesàro spaces
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Abstract

It is proved that for any p∈(1,∞) the Cesàro sequence space cesp is (kNUC) for
any natural number k and it has the uniform Opial property. Moreover, weakly
convergent sequence coefficient of those spaces is also calculated. It is also
proved that for 1<p<∞ the spaces cesp have property (L) and weak uniform
normal structure. The packing rate of those spaces is also calculated.

1. Introduction

Our main aim is to calculate the weakly convergent sequence coefficient for Cesàro
sequence space cesp and to prove that for any p ∈ (1,∞), cesp is (kNUC) for
any integer k ≥ 2 and has the uniform Opial property and property (L). The
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weakly convergent sequence coefficient which is connected with normal structure is
an important geometric constant. It was introduced by Bynum (see [4]).

In the following, X denotes a Banach space and S(X) denotes the unit sphere
of X.

For a sequence {xn} ⊂ X, we consider

and
A({xn}) = lim

n→∞
{sup{‖xi − xj‖: i, j ≥ n, i 
= j}}

A1({xn}) = lim
n→∞

{inf{‖xi − xj‖: i, j ≥ n, i 
= j}}.

The weakly convergent sequence coefficient of X, denoted by WCS(X), is de-
fined as follows:

WCS(X) = sup{k > 0: for each weakly convergent sequence {xn}, there is
y ∈ conv ({xn}) such that k · lim sup

n→∞
‖xn − y‖ ≤ A({xn})}, where conv ({xn})

denotes the convex hull of the elements of {xn} (see [4]).
The number M(X) = 1/WCS(X) for a reflexive Banach space is called the

Maluta coefficient and it is known that M(X) = 1 for every non-reflexive Banach
space X (see [16]). It is also well known that a Banach space X with WCS(X) > 1
has weak normal structure (see [4]).

A sequence {xn} is said to be an asymptotic equidistant sequence if A({xn}) =
A1({xn}) (see [20]).

The formula WCS(X) = inf{A({xn}): {xn} ⊂ S(X) and xn
w−→ 0} =

inf{A({xn}): {xn} an asymptotic equidistant sequence in S(X) and xn
w−→ 0} was

obtained in [20].
A Banach space X is said to have weak uniform normal structure if

WCS(X) > 1.
Recall that for a number ε > 0 a sequence {xn} is said to be an ε-separated

sequence if
sep({xn}): = inf{‖xn − xm‖: n 
= m} > ε.

A Banach space X is said to have the uniform Kadec-Klee property ((UKK)
for short) if for every ε > 0 there exists δ > 0 such that if x is the weak limit of a
normalized ε-separated sequence, then ‖x‖ < 1 − δ (see [10]).

The notion of nearly uniform convexity for Banach spaces was introduced in [10].
It is an infinite dimensional counterpart of the classical uniform convexity.

A Banach space X is said to be the nearly uniformly convex ((NUC) for short)
if for every ε > 0 there exists δ > 0 such that for every sequence {xn} ⊂ B(X) :=
{x ∈ X: ‖x‖ ≤ 1} with sep({xn}) > ε, we have

conv ({xn}) ∩ (1 − δ)B(X) 
= ∅.
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It is easy to see that every (NUC) space has the (UKK) property. Huff (see [10])
proved that X is (NUC) if and only if X is reflexive and X has the (UKK) property.

Let k ≥ 2 be an integer. A Banach space X is said to be (kNUC) if for any ε > 0
there exists δ > 0 such that for every sequence {xn} ⊂ B(X) with sep(xn) > ε there
are n1, n2, . . . , nk ∈ N for which

∥∥∥xn1+xn2+···+xnk

k

∥∥∥ < 1 − δ (see [13]). Of course a
Banach space X is (NUC) whenever it is (kNUC) for some integer k ≥ 2.

A Banach space X is said to have the Opial property if every sequence {xn}
weakly convergent to x0 satisfies

lim inf
n→∞

‖xn − x0‖ ≤ lim inf
n→∞

‖xn − x‖

for every x ∈ X (see [17]).
Opial proved in [17] that lp (1 < p < ∞) satisfies this property but the spaces

Lp[0, 2π] (p 
= 2, 1 < p < ∞) do not. Franchetti has shown in [8] that any infinite
dimensional Banach space has an equivalent norm satisfying the Opial property.

A Banach space X is said to have the uniform Opial property if for every ε > 0
there exists τ > 0 such that for each weakly null sequence {xn} ⊂ S(X) and x ∈ X

with ‖x‖ ≥ ε, we have
1 + τ ≤ lim inf

n→∞
‖xn + x‖

(see [18]).
For a bounded subset A ⊂ X, the set-measure of noncompactness was defined

in [12] by
α(A) = inf{ε > 0: A can be covered by finitely

many sets of diameter ≤ ε}.
The ball-measure of noncompactness is defined by (see [9] and [11])

β(A) = inf{ε > 0: A can be covered by finitely

many balls of diameter ≤ ε}.

The functions α and β are called the Kuratowski measure of noncompactness
and the Hausdorff measure of noncompactness in X, respectively. We can asso-
ciate these functions with the notions of the set-contraction and the ball-contraction
(see [6]). These notions are very useful tools to study nonlinear operator problems
(see [6] and [18]).

The packing rate of a Banach space X is denoted by γ(X) and it is defined by
the formula

γ(X) = δ(X)/σ(X),
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where δ(X) and σ(X) are defined as the supremum and the infimum, respectively,
of the set {β(A)

α(A)
: A ⊂ X, A is α-minimal, α(A) > 0

}
.

Recall that A ⊂ X is said to be α-minimal if α(B) = α(A) for any infinite subset
B of A. For those definitions and for results concerning the existence of α-minimal
and β-minimal sets we refer to [2, Chapter X].

For each ε > 0 define ∆(ε) = inf{1−inf[‖x‖: x ∈ A]: A is a closed convex subset
of B(X) with β(A) ≥ ε}. The function ∆ is called the modulus of noncompact
convexity (see [9]).

A Banach space X is said to have property (L) if lim
ε→1−

∆(ε) = 1. It has been

proved in [18] that property (L) is a useful tool in the fixed point theory and that
a Banach space X has property (L) if and only if it is reflexive and has the uniform
Opial property.

For the definition of normal structure and weak uniform normal structure we
refer to [2], [3] and [9].

The Cesàro sequence space was defined by J.S. Shue in 1970. It is useful in
the theory of matrix operators and others. In this paper, we deal with the above
geometric properties of Cesàro sequence spaces.

Let l0 be the space of all real sequences. For 1 < p < ∞, the Cesàro sequence
space cesp is defined by

cesp =
{
x ∈ l0: ‖x‖ =

( ∞∑
n=1

[ 1
n

n∑
i=1

|x(i)|
]p)1/p

< ∞
}
.

2. Results

Theorem 1

If 1 < p < ∞, then the space cesp is (kNUC) for any integer k ≥ 2.

Proof. Let ε > 0 be given. For every sequence {xn} ⊂ B(X) with sep({xn}) > ε,
we put xm

n = (0, 0, . . . , 0, xn(m), xn(m + 1), . . .). For each i ∈ N , the sequence
{xn(i)}∞i=1 is bounded. Therefore, using the diagonal method one can find a sub-
sequence {xnk

} of {xn} such that the sequence {xnk
(i)} converges for each i ∈ N .
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Therefore, for any m ∈ N there exists km such that sep({xm
nk
}k≥km) ≥ ε. Hence

for each m ∈ N there exists nm ∈ N such that

(0) ‖xm
nm

‖ ≥ ε

2
.

Write Ip(x) =
∞∑

n=1

(
1
n

n∑
i=1

|x(i)|
)p

and put ε1 = kp−1−1
2kp(k−1)

(
ε
2

)p

. Then there exists

δ > 0 such that

(1) |Ip(x + y) − Ip(x)| < ε1

whenever Ip(x) ≤ 1 and Ip(y) ≤ δ (see [5]).
There exists m1 ∈ N such that Ip(xm1

1 ) ≤ δ. Next, there exists m2 > m1 such
that Ip(xm2

2 ) ≤ δ. In such a way, there exists m2 < m3 < · · · < mk−1 such that
Ip(x

mj

j ) ≤ δ for all j = 1, 2, . . . , k − 1. Define mk = mk−1 + 1. By condition (0),
there exists nk ∈ N such that Ip(xmk

nk
) ≥ ( ε2 )p. Put ni = i for 1 ≤ i ≤ k − 1. Then

in virtue of (0), (1) and convexity of the function f(u) = |u|p, we get

Ip

(xn1 + xn2 + · · · + xnk−1 + xnk

k

)
=

m1∑
n=1

( 1
n

n∑
i=1

∣∣∣xn1(i) + · · · + xnk
(i)

k

∣∣∣
)p

+
∞∑

n=m1+1

( 1
n

n∑
i=1

∣∣∣xn1(i) + xn2(i) + · · · + xnk−1(i) + xnk
(i)

k

∣∣∣
)p

≤
m1∑
n=1

1
k

k∑
j=1

( 1
n

n∑
i=1

|xnj (i)|
)p

+
∞∑

n=m1+1

( 1
n

n∑
i=1

∣∣∣xn2(i) + · · · + xnk
(i)

k

∣∣∣
)p

+ ε1

=
m1∑
n=1

1
k

k∑
j=1

( 1
n

n∑
i=1

|xnj
(i)|

)p

+
m2∑

n=m1+1

( 1
n

n∑
i=1

∣∣∣xn2(i) + · · · + xnk
(i)

k

∣∣∣
)p

+
∞∑

n=m2+1

( 1
n

n∑
i=1

∣∣∣xn2(i) + xn3(i) + · · · + xnk−1(i) + xnk
(i)

k

∣∣∣
)p

+ ε1

≤
m1∑
n=1

1
k

k∑
j=1

( 1
n

n∑
i=1

|xnj
(i)|

)p

+
m2∑

n=m1+1

1
k

k∑
j=2

( 1
n

n∑
i=1

|xnj
(i)|

)p

+
∞∑

n=m3+1

( 1
n

n∑
i=1

∣∣∣xn3(i) + xn4(i) + · · · + xnk−1(i) + xnk
(i)

k

∣∣∣
)p

+ 2ε1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ Ip(xn1) + · · · + Ip(xnk−1)
k

+
1
k

mk−1∑
n=1

( 1
n

( n∑
i=1

|xnk
(i)|

))p

+
∞∑

n=mk−1+1

( 1
n

( n∑
i=1

|xnk
(i)|
k

))p

+ (k − 1)ε1
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≤ k − 1
k

+
1
k

mk−1∑
n=1

( 1
n

( n∑
i=1

|xnk
(i)|

))p

+
1
kp

∞∑
n=mk−1+1

( 1
n

( n∑
i=1

|xnk
(i)|

))p

+ (k − 1)ε1

= 1 − 1
k

+
1
k

(
1 −

∞∑
n=mk−1+1

( 1
n

n∑
i=1

|xnk
(i)|

))p

+
1
kp

∞∑
n=mk−1+1

( 1
n

( n∑
i=1

|xnk
(i)|

))p

+ (k − 1)ε1

≤ 1 + (k − 1)ε1 −
(kp−1 − 1

kp

) ∞∑
n=mk−1+1

( 1
n

( n∑
i=1

|xnk
(i)|

))p

≤ 1 + (k − 1)ε1 −
(kp−1 − 1

kp

)
(
ε

2
)p = 1 − 1

2

(kp−1 − 1
kp

)
(
ε

2
)p.

Therefore, cesp is (kNUC) for any integer k ≥ 2. �

Theorem 2
For any 1 < p < ∞, the space cesp has the uniform Opial property.

Proof. For any ε > 0 we can find a positive number ε0 ∈ (0, ε) such that

1 +
εp

2
> (1 + ε0)p.

Let x ∈ X and ‖x‖ ≥ ε. There exists n1 ∈ N such that
∞∑

i=n1+1

( 1
n

n∑
i=1

|x(i)|
)p

< (
ε0
4

)p.

Hence we have ∥∥∥
∞∑

i=n1+1

x(i)ei
∥∥∥ <

ε0
4

<
ε

4
,

where ei = (0, . . . ,
ith
1 , 0, 0, . . .). Furthermore, we have

εp ≤
n1∑
n=1

( 1
n

n∑
i=1

|x(i)|
)p

+
∞∑

n=n1+1

( 1
n

n∑
i=1

|x(i)|
)p

<

n1∑
n=1

( 1
n

n∑
i=1

|x(i)|
)p

+ (
ε0
4

)p <

n1∑
n=1

( 1
n

n∑
i=1

|x(i)|
)p

+
εp

4
,
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whence
3εp

4
≤

n1∑
n=1

( 1
n

n∑
i=1

|x(i)|
)p

.

For any weakly null sequence {xm} ⊂ S(X), in virtue of xm(i) → 0 for i = 1, 2, . . . ,
there exists m0 ∈ N such that

∥∥∥
n1∑
n=1

xm(i)ei
∥∥∥ <

ε0
4

when m > m0. Therefore,

‖xm + x‖ =
∥∥∥

n1∑
i=1

(xm(i) + x(i))ei +
∞∑

i=n1+1

(xm(i) + x(i))ei
∥∥∥

≥
∥∥∥

n1∑
i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei
∥∥∥ −

∥∥∥
n1∑
i=1

xm(i)ei
∥∥∥ −

∥∥∥
∞∑

i=n1+1

x(i)ei
∥∥∥

≥
∥∥∥

n1∑
i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei
∥∥∥ − ε0

2

when m > m0. Moreover for a :=
n1∑
i=1

|x(i)| there holds

∥∥∥
n1∑
i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei
∥∥∥
p

=
n1∑
n=1

( 1
n

n∑
i=1

|x(i)ei|
)p

+
∞∑

n=n1+1

( 1
n

n∑
i=1

(a + |xm(i)|)
)p

≥
n1∑
n=1

( 1
n

n∑
i=1

|x(i)ei|
)p

+
∞∑

n=n1+1

( 1
n

n∑
i=1

|xm(i)|
)p

≥ 3εp

4
+

(
1 − εp

4

)
= 1 +

εp

2
> (1 + ε0)p.

Therefore, combining this with the previous inequality, we get

‖xm + x‖ ≥
∥∥∥

n1∑
i=1

x(i)ei +
∞∑

i=n1+1

xm(i)ei
∥∥∥ − ε0

2

≥ 1 + ε0 −
ε0
2

= 1 +
ε0
2
.

This means that cesp has the uniform Opial property. �
By the facts presented in the introduction and the reflexity of cesp for 1 < p <

∞, we get the following
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Corollary 1

For 1 < p < ∞ the space cesp has property (L) and the fixed point property.

We will now calculate the weakly convergence sequence coefficient of cesp.

Theorem 3

There holds the equality WCS(cesp) = 21/p whenever 1 < p < ∞.

Proof. Take any ε > 0 and an asymptotic equidistant sequence {xn} ⊂ S(X) with
xn

w−→ 0 and put v1 = x1. There exists i1 ∈ N such that

∥∥∥
∞∑

i=i1+1

v1(i)ei
∥∥∥ < ε.

Since xn → 0 coordinatewise, there exists n2 ∈ N such that

∥∥∥
i1∑
i=1

xn(i)ei
∥∥∥ < ε

whenever n ≥ n2.
Take v2 = xn2 . Then there is i2 > i1 such that

∥∥∥
∞∑

i=i2+1

v2(i)ei
∥∥∥ < ε.

Since xn(i) → 0 coordinatewise, there exists n3 ∈ N such that

∥∥∥
i2∑
i=1

xn(i)ei
∥∥∥ < ε

whenever n ≥ n3.
Continuing this process in such a way by induction, we get a subsequence {vn}

of {xn} such that ∥∥∥
∞∑

i=in+1

vn(i)ei
∥∥∥ < ε

and ∥∥∥
in∑
i=1

vn+1(i)ei
∥∥∥ < ε.
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Put

zn =
in∑

i=in−1+1

vn(i)ei

for n = 2, 3, . . . . Then

1 ≥ ‖zn‖ =
∥∥∥

∞∑
i=1

vn(i)ei −
in−1∑
i=1

vn(i)ei −
∞∑

i=in+1

vn(i)ei
∥∥∥(2)

≥
∥∥∥

∞∑
i=1

vn(i)ei
∥∥∥ −

∥∥∥
in−1∑
i=1

vn(i)ei
∥∥∥ −

∥∥∥
∞∑

i=in+1

un(i)ei
∥∥∥ > 1 − 2ε.

Moreover, for any n,m ∈ N with n 
= m, we have

‖vn − vm‖ =
∥∥∥

∞∑
i=1

un(i)ei −
∞∑
i=1

vm(i)ei
∥∥∥(3)

≥
∥∥∥

in∑
i=in−1+1

vn(i)ei −
im∑

i=im−1+1

vm(i)ei
∥∥∥ −

∥∥∥
in−1∑
i=1

vn(i)ei
∥∥∥

−
∥∥∥

∞∑
i=in+1

vn(i)ei
∥∥∥ −

∥∥∥
im−1∑
i=1

vm(i)ei
∥∥∥ −

∥∥∥
∞∑

i=im+1

um(i)ei
∥∥∥

≥ ‖zn − zm‖ − 4ε.

This means that A({xn}) = A({vn}) ≥ A({zn}) − 4ε.
Put un = zn

‖zn‖ for n = 2, 3, . . . . Then

un ∈ S(cesp);(4)

A({xn}) ≥ 1 − εA({un}) − 4ε.(5)

On the other hand

‖vn − vm‖ ≤ ‖zn − zm‖ + 4ε ≤ ‖un − um‖ + 4ε

for every m,n ∈ N , m 
= n. Therefore

(6) A({un}) ≥ A({xn}) − 4ε.

By the arbitrariness of ε > 0, we have from (4), (5) and (6) that WCS(cesp) =

inf
{
A({un}): un =

in∑
i=in−1+1

un(i)ei ∈ S(cesp), 0 = i0 < i1 < i2 < . . . , un
w−→ 0

}
.



286 Cui and Hudzik

Using Lemma 2 in [20], we have WCS(cesp) = inf
{
A({un}): un =

in∑
i=in−1+1

un(i)ei ∈

S(cesp), 0 = i0 < i1 < i2 < · · · , un
w−→ 0 and {un} is asymptotic equidistant

}
.

Take m ∈ N large enough such that
∞∑

k=im−1+1

( b

k

)p

< ε,

where b :=
in∑

i=in−1+1

|un(i)|. We have for n < m

‖un − um‖p

=
im−1∑

k=in−1+1

(1
k

k∑
i=1

|un(i)|
)p

+
∞∑

k=im−1+1

(1
k

(
b +

k∑
i=1

|um(i)|
))p

≥
im−1∑

k=in−1+1

(1
k

k∑
i=1

|un(i)|
)p

+
∞∑

k=im−1+1

(1
k

k∑
i=1

|um(i)|
)p

=
∞∑

k=in−1+1

(1
k

k∑
i=1

|un(i)|
)p

−
∞∑

k=im−1+1

( b

k

)p

+
∞∑

k=im−1+1

(1
k

k∑
i=1

|um(i)|
)p

> 1 − ε + 1 = 2 − ε, i.e. A1({u1}) ≥ (2 − ε)1/p.

Note that
[ ∞∑
k=im−1+1

(1
k

(
b +

k∑
i=1

|um(i)|
))p]1/p

=
[ ∞∑
k=im−1+1

( b

k
+

1
k

k∑
i=1

|um(i)|
)p]1/p

≤
[ ∞∑
k=im−1+1

( b

k

)p]1/p

+
[ ∞∑
k=im−1+1

(1
k

k∑
i=1

|um(i)|
)p]1/p

< ε1/p + 1.

Therefore

‖un − um‖p

=
im−1∑

k=in−1+1

(1
k

k∑
i=1

|um(i)|
)p

+
∞∑

k=im−1+1

(1
k

(
b +

k∑
i=1

|um(i)|
))p

≤
∞∑

k=in−1+1

(1
k

k∑
i=1

|um(i)|
)p

+
∞∑

k=im−1+1

(1
k

(
b +

k∑
i=1

|um(i)|
))p

≤ 1 + (1 + ε1/p)p
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for any n,m ∈ N , m 
= n. This yields A({un}) ≤ [1 + (1 + ε1/p
)p]1/p

and, by the

arbitrariness of ε > 0, we obtain WCS(cesp) = 21/p.

Corollary 2

For 1 < p < ∞, cesp has the weak uniform normal structure and normal

structure.

Corollary 3

For any 1 < p < ∞ there holds the equality γ(cesp) = 2(p−1)/p.

Proof. By [1], if X is reflexive Banach space with the uniform Opial property, then
γ(X) = 2

WCS(X) . Since, by Theorem 1, cesp is (NUC) for 1 < p < ∞ and property
(NUC) implies reflexivity, Theorem 3 yields γ(cesp) = 2(p−1)p. �
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