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Abstract

It is well-known that the existence of transversally intersecting separatrices of
hyperbolic periodic solutions leads, in a typical situation, to complicated and
irregular dynamics. Therefore, in the case of a two-dimensional mapping or a
three-dimensional flow, with this transversality property, there is no non-trivial
analytic or meromorphic first integral, i.e., a function constant along each tra-
jectory of the system under consideration. Additional robust conditions are ob-
tained and discussed that guarantee the absence of such an integral in the many-
dimensional case, regardless of the finite dimension in question (the strongest
analytic non-integrability). These conditions guarantee also the absence of any
non-trivial analytic one-parameter symmetry group, and, more generally, an-
alytic or meromorphic vector fields generating a local symmetry, i.e., a local
phase flow commuting with the system under consideration. Furthermore, the
analytic centralizer of the system is discrete in the compact-open topology. A
differential-topological structure of the invariant set of “quasi-random motions”
is studied for this purpose. The approach used is essentially geometrical. Some
related topics are also discussed.
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It is well-known, due to G. D. Birkhoff, S. Smale, L. P. Shil′nikov, V. M. Alekseev,
and Yu. I. Nĕımark, that the existence of transversally intersecting separatrices
of hyperbolic periodic solutions leads, in a typical situation, to complicated and
irregular dynamics. Therefore, in the case of a two-dimensional mapping or a three-
dimensional flow with this transversality property there is no non-trivial analytic
first integral, i.e., a function constant along each trajectory of the system under
consideration. (In essence, the non-integrability in this situation was pointed out
by H. Poincaré. His statement [42, Paragraph 397] concerning the complication
of a network pictured by intersecting separatrices is well-known.) We will obtain
and discuss conditions that guarantee the absence of such an integral in the many-
dimensional case, regardless of the finite dimension in question. This is the strongest
analytic non-integrability and the Hamiltonian character of the equations (which is
of no importance) is not supposed here. The conditions obtained guarantee also
the absence of any non-trivial analytic one-parameter symmetry group, persist un-
der small perturbations, and can be constructively verified for concrete dynamical
systems in mechanics and physics. A differential-topological structure of the set
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of “quasi-random motions” is studied for this purpose. An interesting construc-
tion of “nonautonomous linearization” by Y. Yomdin is used in our proof and the
accompanying and related geometrical objects will be also discussed in detail.

The author avoids many clear but cumbersome formalities by replacing them by
simple descriptive geometrical considerations. Rigorous mathematical arrangements
of the presented proofs (if they are not completed) are easy and left to the reader. On
the other hand, an emphasis on the underlying geometric constructions is pursued.
Some basic concepts and geometric objects related to building symbolic dynamics
in a wide class of dynamical systems will be briefly premised to the statement of the
problem and discussed while proving the main result and the auxiliary propositions.
These ideas will be systematically used in the sequel on two levels: to construct real
symbolic dynamics as well as some invariant (with respect to the diffeomorphism
under consideration) objects in the phase space, M , and in its tangent bundle, TM ,
and to build and analyze “nonautonomous linearizations” on stable and unstable
manifolds.

Some results presented here were earlier reported by the author at a few meet-
ings and published in Russian in 1991 (in some sources difficult to access). An En-
glish version containing the main result without a detailed proof appeared in [17]1.
A simplified result concerning the case of a single hyperbolic point was announced
in [18] and will be reproduced at the end of Section 1.

The forthcoming parts of the present paper will be devoted to further deve-
lopments of the basic result and to some applications in mechanical and physical
problems (such as a three-component homogeneous Yang–Mills field, a spherical
pendulum with the horizontally oscillating point of suspension, the planar problem
of more than three point vortices in an ideal incompressible liquid, and the planar
problem of more than two bodies attracting by the Newton law).

1. Preliminaries, formulation of the problem, and the statement of results

Firstly, we recall the definition of a topological Markov chain (TMC) and how
it is determined by a directed graph. The term “topological Markov chain” was
introduced by V. M. Alekseev [2, Part 1] although the corresponding mathematical
object can be found in earlier papers. In the English mathematical literature it is
usually referred to as “subshift of finite type” going back to S. Smale [47] (because
there is a natural one-to-one topological equivalence between topological Markov

1 Note that [17] contains inaccuracies in Remark 5 and Lemma 4 that are corrected in the present paper.
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chains and Smale’s subshifts of finite type). Consider a finite set (“alphabet”) L
containing m <∞ elements and equipped with the discrete topology. One can put
L = {1, . . . ,m}. Denote by Ω =

∏+∞
n=−∞ L the Tychonoff product of a countable

collection of copies of the space L, i.e., the space of doubly-infinite sequences ω =[
ωn ∈ L : −∞ < n < +∞

]
equipped with the topology such that

ω(k) =
[
ω(k)
n : n ∈ Z

]
→ ω =

[
ωn : n ∈ Z

]
as k → +∞ ⇐⇒

ω(k)
n → ωn as k → +∞ for each n ∈ Z ,

and by T : Ω → Ω, the shift homeomorphism by one symbol to the left. Each zero-
unit matrix Π =

(
πi,j

)m
i,j=1

of sizem×m defines a closed T -invariant compact subset
ΩΠ ⊂ Ω by the following condition:

ω = [ωn] ∈ ΩΠ ⇐⇒ πωn,ωn+1 = 1 for all n.

Definition 1. The restriction T | ΩΠ is called a TMC with m states

{1, . . . ,m} = L

and transition matrix Π. Each sequence ω ∈ Ω is called a “word”, and a sequence
ω ∈ ΩΠ (containing only admissible transitions determined by the matrix), an “ad-
missible word”. If πi,j = 1 for all the pairs (i, j) (i.e., the transition from every state
into every another one is possible) then Ω = ΩΠ and the TMC T | Ω is called a
Bernoulli shift on the set of m elements (states).

It is convenient to represent a TMC by the directed graph with vertex set L
and edges

−→
(i, j) whose initial vertices (origins), i, and terminal vertices (ends), j,

form pairs (i, j) such that πi,j = 1. Without loss of generality one can suppose
that a TMC is “conservative”, i.e., each vertex i ∈ L happens to be a “transition”.
This means that there are vertices j+, j− ∈ L such that πj−,i = πi,j+ = 1. Indeed,
removing the remaining vertices, if any, does not lead to a change of the set ΩΠ of
admissible words.

For a wide class of diffeomorphisms one can establish the topological equivalence
of a TMC and the restriction S | A of the diffeomorphism S to some locally maximal
invariant set A. This means the presence of a topological conjugacy ψ: ΩΠ → A,
i.e., a homeomorphic mapping, ψ, such that the diagram

ΩΠ T |ΩΠ

−−−−−→ ΩΠ

ψ
� �ψ

A −−−−−→
S|A

A
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commutes. The key idea in constructing the topological equivalence ψ: ΩΠ → A is as
follows. In the phase space, M , of the diffeomorphism S:M → M , one can choose

non-intersecting closed sets Di, i ∈ L, such that to each edge
−→

(i, j) of the graph
Γ there corresponds a nonempty intersection, li,j = S(Di) ∩ Dj , and the “Markov
property” is satisfied: the intersection

+∞⋂
n=−∞

S−nDωn = ψ(ω)

is nonempty and consists of a single point if ω ∈ ΩΠ. The so-called “itinerary
scheme”, which will be discussed in the sequel, is constructed for this purpose. Now
we consider the following situation studied by V. M. Alekseev.

Let qi (1 ≤ i ≤ l) be hyperbolic periodic points of a diffeomorphism S of an
n-dimensional manifold M and W−

i ,W
+
i be their outgoing and incoming invariant

manifolds (separatrices)2. Suppose that for any i the dimensions of W±
i are equal to

n± (so, n+ + n− = n), rj (1 ≤ j ≤ s) are transversal homo- and heteroclinic points,
so that asm→ ±∞, Sm(rj) tends to the orbit of the point qi±(j), andW−

i−(j),W
+
i+(j)

intersect transversally at the point rj . One can assume that distinct points qi, rj
do not belong to the same orbit under S. The orbits of the points qi, rj are said
to form a homoclinic structure. Let us build the directed graph Γ which contains
non-intersecting closed circuits, γi (1 ≤ i ≤ l), and paths, πj (1 ≤ j ≤ s), consisting
of Nj edges and joining origins and ends placed arbitrarily on the circuits γi−(j) and
γi+(j). Moreover, the number of edges in the circuit γi equals to the period of qi. By
V. M. Alekseev’s theorem [3], for any open set U containing the orbits of the points
qi and rj , there exist Nj and an open set V ⊂ U such that the restriction S | A of
S to the maximal S-invariant set A located in V is topologically conjugated to the
topological Markov chain (subshift of finite type) T | ΩΠ determined by the graph
Γ, and qi, rj ∈ A.

The motions on this set are said to be quasi-random if the topological entropy
(see, for instance, [4]) of the topological Markov chain T | ΩΠ is positive.

Proposition 1
This condition is satisfied if and only if the graph Γ contains a connected

branched subgraph Γ′ (maybe identical with Γ), i.e.,

1) for any two vertices a, b of the graph Γ′, there is a path on Γ′ with origin a and
end b, and
2) there exists a vertex being the origin of at least two distinct edges or, equivalently,
there exists a vertex being the end of at least two distinct edges.

Otherwise the graph Γ consists of a finite number of circular subgraphs.

2 It is common do denote W− as Wu (unstable manifold) and W+ as W s (stable manifold) .
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Proof. The sufficiency of these conditions was proven in [2, Part 1]. The necessity
is easily established using the representation of the transition matrix in the normal
block-triangle form (see, for example, [21]). Very simple details are omitted here.
To a connected graph, there corresponds the so-called indecomposable TMC [4]. �

Let a set A′ ⊂ A correspond to the graph Γ′. In the sequel, it is the motions on
the set A′ that will be called to be quasi-random. Restricting Alekseev’s theorem
to some part of the homoclinic structure, if necessary, we can assume that the full
graph, Γ, coincides with the subgraph Γ′. It is this homoclinic structure that will be
considered in the sequel. In particular, one can consider the case of one homoclinic
point.

It is well-known that in the two-dimensional case (n = 2, n± = 1) the presence
of non-coincident and intersecting (possibly, non-transversally) separatrices leads to
the absence of a non-constant analytic (first) integral of the diffeomorphism S, i.e., a
function F on M such that F ◦S = F [8, 30]3. In fact, this result has been originally
established via the method of symbolic dynamics for the particular case where there
exists a set A′ of quasi-random motions [2, Part 3]. An outline of the proof [2, 8,
34] is as follows:

1) Every continuous first integral F is constant on A′ because A′ contains every-
where dense trajectories (the topological transitivity).

2) If F | A′ ≡ const and the function F is differentiable at a point x ∈ A′ then
the differential dF at x is equal to zero. Indeed, any point x ∈ A′ has one-
dimensional stable and unstable manifolds which intersect transversally at x
and there exist two sequences of points in A′ which tend to x and belong to
these manifolds. Thus, for any analytic function, F , constant on A′, all the
partial derivatives vanish at the points of the set A′, i.e., F ≡ const. So, the set
A′ is the key set in the sense of [8, 30] (for the class of functions, F , analytic in
a neighbourhood of A′ ⊂M , whose every connected component intersects with
A′).

In the many-dimensional case (n ≥ 3) point 1) remains valid but point 2) does
not4.

3 Here and in the sequel, we restrict our consideration to a finite number of connected components, to which
the homoclinic structure belongs .

4 D. V. Anosov attached kindly the author’s attention to the fact that dF |A≡ 0 for any first integral F∈C1.
Indeed, F |W±r ≡ const for any r∈A, where W+

r and W−r denote, respectively, the stable and unstable
manifolds of the point r of the hyperbolic set A, and this implies the desired result. However, one cannot
prove in this way that the second derivatives of F vanish at r∈A.
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However, it is stated sometimes in the physical literature that the presence
of transversally intersecting separatrices in many-dimensional systems causes non-
integrability in some sense including the strongest non-integrability—the non-exis-
tence of any non-trivial integral. In the following simple example, the mapping S is
shown to be able to possess integrals even in the case when transversal biasymptotic
points are present. However, in this example the separatrices have also the whole
manifolds of intersection points or are extendible up to the boundary of the domain
of definition of the integrals, which is somewhat unnatural.

Example 1: Let S1:M1 → M1 be a mapping possessing an integral f and a hy-
perbolic fixed point O, and S2:M2 → M2 be a mapping possessing a homoclinic
structure, H, formed by the trajectories of periodic and doubly-asymptotic points.
Then the mapping S = S1 × S2 (the direct product of S1 and S2) of the manifold
M = M1 ×M2 into itself has the homoclinic structure {O} × H and the integral
f ◦ π, where π:M → M1 is the natural projection. If the separatrices W± of the
hyperbolic fixed point of the mapping S1 coincide5, then the separatrices of the
mapping S possess the whole manifolds W± × {r}, r ∈ H, of intersection points.

In the sequel, considering a power of the mapping S, if necessary, one can
assume that all the points qi are fixed.

Let O be a hyperbolic fixed point of the analytic mapping S, and assume that
its eigenvalues, λj , with moduli greater (less) than unit, i.e., which correspond to
the separatrix W− (W+), satisfy the non-resonance multiplicative conditions∏

j

λ
mj

j �= 1

for all integers mj , at least one of which is not equal to zero. (So, the spectrum
{λj} lies in the Siegel domain.) Then the mapping S |W± takes the linear diagonal
form xj �→ λjxj in some analytic (complex) coordinates on W− or W+. Actually,
these coordinates are constructed in a neighbourhood of the point O and are then
extendible over the whole separatrix. Let us call a point r on W− (W+) to be in
general position if all its coordinates xj are distinct from zero.

Theorem 1

Let a mapping S be analytic, and let the outgoing separatrix W− and the in-

coming separatrix W+ of fixed hyperbolic points, O− and O+, possess transversal

5 In a typical case this condition is satisfied for integrable two-dimensional mappings, S1, preserving a measure
with a positive continuous density. In order that this invariant measure of S1 on a compact manifold M1

exists, it is sufficient to require the presence of such a measure for the mapping S; the proof of this result is
elementary and uses the presence of a periodic point of the mapping S2.
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intersection at a point r. Moreover, suppose that the eigenvalues of the mapping S

at the point O− (respectively, O+) with moduli greater (less) than unit, i.e.,which

correspond to the separatrix W− (W+), satisfy the above non-resonance multiplica-

tive conditions. Then the mapping S possesses no non-trivial analytic integral if the

point r at both manifolds W± is in general position.

Proof. Let B be the closure of the trajectory of the point r. Every continuous first
integral is constant on B. Any analytic function F that is constant on B is easily
seen to be also constant on the separatrices W±. Therefore, the differential satisfies
dF ≡ 0 on B, which leads to the required result via the key property of the set B,
due to the fact that all the partial derivatives of F vanish at the points of B. �

Theorem 1 has the following deficiency: its conditions are broken by arbitrarily
small perturbations6. On the other hand, in the typical case among the eigenvalues
can exist multiple ones if the system possesses a symmetry. Then Theorem 1 is not
applicable.

Our goal is to formulate sufficient conditions which are free of the above short-
comings, are satisfied in an open set in the space of mappings, and guarantee the
following property

F ∈ CN (M), F | A′ ≡ 0 ⇒ dF | A′ ≡ 0. (1)

This implication is completely analogous to point 2) and leads to the absence of a
non-trivial first analytic integral via the key property of the set A′. For this purpose
we shall consider the structure of the set A′.

Thus, in both the cases, under the conditions of Theorem 1 or under assump-
tion (1), the absence of an integral is implied by the presence of an S-invariant
topologically transitive key set C (where C = B or C = A′). However, the key
properties of these two sets are different. Let us call a neighbourhood of C, U , a
domain of the key property (DKP) of C if C is the key set for the class of functions,
F , analytic in U , i.e., F | A′ ≡ const implies F ≡ const. On the one hand, any
neighbourhood of A′ is a DKP of A′ provided that all the connected components
of that neighbourhood intersect A′. The same is valid if one replaces A′ by the
intersection of A′ and a neighbourhood of any of its points. On the other hand, it
is easily seen that any disconnected neighbourhood of B is not a DKP of B and any
small enough neighbourhood of B is disconnected. There exists an arc, γ±, that lies

6 In practice, Theorem 1 can be used to establish the non-integrability of the mappingS depending on parameters.
For example, the values of a priori first integrals can be considered as parameters to prove the non-existence
of an additional integral (on almost all the levels of the a priori ones).
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on W± and contains the semitrajectory of r,
{
S±tr : t ≥ 0

}
, and its limit point O±.

Then any neighbourhood of γ = γ− ∪ γ+ is a DKP for B. Here, γ can be chosen to
be an arc without selfintersections.

Note that topologically the set A′ is organized in a very simple way. Indeed,
it is a discontinuum (i.e. a perfect, totally disconnected compact set) and thus
homeomorphic to the standard Cantor set K ⊂ [0; 1] (the “middle-thirds set”) [1, 7].
Moreover, the following result is valid.

Proposition 2

Let the closure of a domain Ṽ ⊂ R
n be diffeomorphic to the closure of V and

let K ⊂ Ṽ ∩ R
1 be the (standard) Cantor set. Then there exists a homeomorphism

f : Ṽ → V such that it and its inverse are Hölder and f(K) = A′.7 In particular, the

set A′ has positive Hausdorff dimension.

Proof. It follows easily from the analysis of the procedure of building the set A′,
that is, an iterative process of Suslin’s A-operation type [2, Part 3] (see [1]). �

The conditions we will obtain can be constructively verified for concrete dy-
namical systems and persist under small perturbations.

In particular, in the space of the C∞-diffeomorphisms possessing a homoclinic
trajectory, there is an open everywhere dense subset of “non-integrable” ones. The
same result is valid in the analytic (Cω-) category if each connected component of
M has a countable base, i.e., M is paracompact (the verification of the Cω-density
requires some effort, while the Cω-openness is a direct consequence of the C∞-one).
The condition (1) means that the set A′ is “rough enough” and does not lie on
any regular CN -submanifold and even on a union of countable collection of such
submanifolds.

Note that the manifold M under consideration should be analytic in view of
the fact that analytic first integrals are discussed. Because of the possible non-
compactness of M , the Ck-topologies, 1 ≤ k ≤ ∞, are considered in the weak sense,
i.e., the Ck-convergence is understood as the Ck-convergence over compact sets.
For the validity of the above-mentioned Cω-result, the Cω-topology in the space
Diffω(M) of real analytic diffeomorphisms on M can be chosen in different ways.
Actually, it has to be not coarser than the C∞-topology but not finer than some very
fine topology τ such that the space Diffω(M) endowed with τ is not separable [10].

The relevant geometrical objects in bundles over M will be discussed in detail.
It is interesting that many of them admit the following treatment. Let S:M → M

7 Antoine’s example (“necklace of Antoine”) [1, 7, 16] shows that a homeomorphism of two discontinua can
be inextensible to a homeomorphism of the ambient spaces. See also [13] and further investigation in [14].
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be a diffeomorphism with a homoclinic structure, H, which generates an invariant
set A by Alekseev’s theorem. Then there exist some natural bundle π:M →M and
an extension S:M → M of the diffeomorphism S:M → M (i.e., the fiber map S
covers the map S of the base). Furthermore, over each hyperbolic fixed point O of
the mapping S with separatrices W+ andW−, if some conditions on the eigenvalues
of S at O are valid, there lies a fixed point Õ of the mapping S with incoming W̃+

and outgoing W̃− manifolds such that the subbundles W̃± →W± of the restrictions
of the bundle π are well-defined. If S has a high enough class of smoothness then
S is a diffeomorphism and W̃± are separatrices of the hyperbolic point Õ. Under
some conditions, the diffeomorphism S possesses a homoclinic structure, H, which
is homeomorphically projected onto H. By Alekseev’s theorem, to the structure H
there corresponds an S-invariant set, A, which is also, obviously, homeomorphically
projected onto A.

There is the concept of symmetry groups which is closely related to the first
integrals. Recall some definitions restricting ourselves in the sequel to the case of
analytic symmetries.

Definition 2. The Ck-centralizer Z(S) = Zk(S) of a diffeomorphism S is the group
of Ck-diffeomorphisms f :M → M commuting with S, Z(S) = {f : f ◦ S = S ◦ f}.
These diffeomorphisms f are called Ck-symmetries of S. The centralizer Z(S) is
said to be trivial if Z(S) = (S) where (S) = {Sk : k ∈ Z} is the group generated
by S.

We will prove that assumption (1) or the conditions of Theorem 1 imply the
non-existence of a non-trivial analytic one-parameter symmetry group (see [31] in
the two-dimensional case). Moreover, the following stronger result holds: the an-
alytic (Cω-) centralizer Z(S) is discrete in the compact-open (weak C0-) topology.
(Obviously, the discreteness of the centralizer implies the absence of a non-trivial
analytic one-parameter symmetry group.)

Finally, we present the simplified version of the main result related to the case
of a single hyperbolic fixed point. The Theorem A below was announced in [18].

Let q be a hyperbolic fixed point of a CN -diffeomorphism S of an n-dimensional
manifold M and let W−,W+ be its outgoing and incoming invariant manifolds
(separatrices). Assume, as above, that the dimensions of W± are equal to n± and
rj (1 ≤ j ≤ s) are some transversal homoclinic points. Let λj (1 ≤ j ≤ n+) and
µj (1 ≤ j ≤ n−) be all the eigenvalues of the mapping S at the point q and 0 < |λj | <
1 < |µj |. Assume that the numbers λj satisfy the non-resonance multiplicative
conditions

|λs| �=

∣∣∣∣∣∣
∏
j

λ
mj

j

∣∣∣∣∣∣ (2)
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for all indices s and all non-negative integers mj such that
∑

jmj ≥ 2. (So, the
spectrum {λj} lies in the Poincaré domain.) Introduce the following equivalence
relation: λj′ ∼ λj′′ if and only if in all the inequalities (2) the signs persist under
replacement of all factors λj′ by λj′′ or all factors λj′′ by λj′ in the left-hand side
and right-hand side simultaneously. Let

{
Λ+

1 , . . . ,Λ
+
p+

}
be the corresponding parti-

tion of {λj} into equivalence classes placed in the order of non-decreasing moduli.
Analogously, let {µi} also satisfy the non-resonance multiplicative conditions and
let

{
Λ−

1 , . . . ,Λ
−
p−

}
be the corresponding partition of {µi} into equivalence classes

placed in the order of non-increasing moduli. The integer

N > max
{

ln min
j
|λj |/ ln max

j
|λj |, ln max

j
|µj |/ ln min

j
|µj |

}
will bound from below the smoothness class of the diffeomorphism S. Consider
subspaces L±

1 ⊂ · · · ⊂ L±
p± = TqW

± such that L+
i (respectively, L−

i ) corresponds
to the Jordan blocks for the eigenvalues λs ∈ Λ+

j (respectively, µs ∈ Λ−
j ) where

j ≤ i. By a theorem of S. Sternberg [48], there are linearizing CN coordinates
y± ∈ R

n± on W±, in which the mapping S | W± takes a linear form y± �→ J±y±.
Denote by N± ⊂ R

n± the collection of y±-coordinates of the points rj ∈W±, and by
L̃±
i,j ⊂ TrjW±, the subspaces obtained from the subspace L±

i by parallel translations
in the linearizing coordinates. Let each subspace L̃±

i,j tend to L±
i under the positive

iterations of the tangent mapping TS∓1:TM → TM . For each eigenvalue ν of
the mapping J± = S | W± linear in coordinates y±, the projection πν : Cn± →
C

n±/im(J± − ν · id) = coker(J± − ν · id) is well-defined and let the C-linear hull of
the set πν(N±) coincide with πν(Cn±).

Theorem A. Under the conditions above, implication (1) is valid.

Note that in the two-dimensional case (n = 2, n± = 1) the conditions of Theo-

rem A are automatically satisfied. Denote N̂± =
n±−1⋃
m=0

(
J±)m(

N±)
. Then the

condition of Theorem A which is related to the displacement of the homoclinic
points rj on the separatrix W± is equivalent to that the R-linear hull of the set N̂±

coincides with R
n± (see Lemma 3 below).

Note, as a possible application, that Theorem A allows one to build multi-
dimensional non-integrable diffeomorphisms as the direct products of lower-dimen-
sional ones. This provides a variety of multi-dimensional examples (constructed, for
instance, from two-dimensional diffeomorphisms with transversal homoclinic points).
We consider here the case of the direct product of the identical copies of a non-
integrable diffeomorphism, postponing the general discussion until Section 8.
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Theorem B. Let a mapping S1 : M1 → M1 have a hyperbolic fixed point q and

a set P = {rj} of homoclinic points such that the conditions of Theorem A are

satisfied with some N . Denote P̂ =
max{n+,n−}−1⋃

m=0
Sm

1 (P). Then the direct product

of k copies of S1, S = S1 × · · · × S1︸ ︷︷ ︸
k

: M →M , where M = M1 × · · · ×M1︸ ︷︷ ︸
k

, has the

hyperbolic fixed point {q} × · · · × {q} and the set of homoclinic points P̂× · · · × P̂

satisfying the conditions of Theorem A with the same N .

2. Preliminary definitions for number sets

Let complex numbers λ1, . . . , λn satisfy the condition 0 < |λj | < 1. Consider parti-
tions of the set {λj} into classes Λr.

Definition 3. A partition is said to be strongly ordered if the classes Λr are sets
of numbers, λj , whose moduli lie, respectively, in some non-intersecting intervals.

The classes Λr will be placed in the order of non-decreasing moduli of the
numbers λ ∈ Λr.

Now let the numbers λj satisfy the non-resonance multiplicative conditions

|λs| �= |λm|, where λm =
n∏

j=1

λ
mj

j , m = (m1, . . . ,mn) (2)

for all indices s (1 ≤ s ≤ n) and all non-negative integers mj (1 ≤ j ≤ n) such that
|m| =

∑
jmj ≥ 2. The conditions (2) are obviously satisfied if |m| ≥ N where

N > ln min
j
|λj |/ ln max

j
|λj | (3)

(the collection {λj} lies in the Poincaré domain).

Definition 4. A partition is said to be right if the following condition is satisfied:
two numbers λj′ , λj′′ belong to the same class if and only if in all inequalities (2)
the signs persist under replacement of all factors λj′ by λj′′ or all factors λj′′ by λj′
in the left-hand side and right-hand side simultaneously.

Remark 1. This property indeed determines an equivalence relation. Thus, a right
partition exists, and is unique, and is also strongly ordered. Definition 4 admits
an equivalent formulation dealing with the replacement of an arbitrary part of the
factors.



Transversal intersection of separatrices and branching 131

Analogously, one can consider complex numbers µj such that |µj | > 1 and intro-
duce strongly ordered partitions and, if the non-resonance multiplicative conditions
are met, the right partitions. Obviously, this case is conjugate with the previous
one by the inversion operation µj �→ λj = µ−1

j . Therefore, elements of partitions for
this case will be placed in the order of non-increasing moduli.

Let λi,j (1 ≤ j ≤ n+), µi,j (1 ≤ j ≤ n−) be the eigenvalues of the mapping S
at the point qi and 0 < |λi,j | < 1 < |µi,j |. Suppose that there are strongly ordered
partitions

ξ+i =
{
Λ+
i,1, . . . ,Λ

+
i,p+

}
, ξ−i =

{
Λ−
i,1, . . . ,Λ

−
i,p−

}
of the sets {λi,j : 1 ≤ j ≤ n+} and

{
µi,j : 1 ≤ j ≤ n−

}
. Moreover, assume that

the quantities of classes, p±, and the numbers of elements in each class cardΛ±
i,s =

c±s (1 ≤ s ≤ p±) do not depend on i. Here card denotes the cardinality (the quantity
of elements) of a set.

Definition 5. Strongly ordered partitions ξ±i which satisfy these conditions will
be said to be concordant .

Definition 6. Concordant and right partitions ξ±i will be said to be right con-
cordant if in addition the following condition holds: in all inequalities (2), where
λs ∈ Λ±

i,t0
, λj ∈ Λ±

i,tj
, the signs do not depend on i.

The last definition will be used only in a discussion of some accompanying
results.

The inequalities (3) define the same number N for right concordant partitions.

3. Linearization of the mapping on separatrices. Induced map of the

Grassmannian space bundle

Let S±
i = S | W±

i be the restriction of a CN -diffeomorphism S to the separatrix
W±

i of the point qi. This separatrix is a CN -manifold. Suppose that ξ±i is a right
partition (or, more generally, that the conditions

λs �= λm (2′)

analogous to (2) are valid for the elements of sets {λi,j},
{
µ−1
i,j

}
) and N ≥ N±

i ,
where

N+
i > ln min

j
|λi,j |/ ln max

j
|λi,j |,

N−
i > ln max

j
|µi,j |/ ln min

j
|µi,j |, (4)
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i.e., the numbers N+
i and N−

i are defined by (3) for the sets {λi,j} and
{
µ−1
i,j

}
. Then,

by S. Sternberg’s theorem [26, 48], there exists a CN -linearization l±i :W±
i → R

n±

of the map S±
i , i.e., in R

n± -coordinates determined on W±
i by the diffeomorphism

l±i , the mapping S±
i has the linear form

(
l±i

)
◦ S±

i ◦
(
l±i

)−1 = J±
i : Rn± → R

n± ,
where J±

i is the matrix of the linear part of S±
i at the point qi. Note that although

the linearizing diffeomorphism l±i is constructed in a neighbourhood of the point
qi ∈ W±

i it is extendible over the whole separatrix [48]. Denote by L±
i,s (1 ≤ s ≤

p±) the linear a±s -dimensional invariant subspace in R
n± corresponding to all the

Jordan blocks for the eigenvalues λi,j , µi,j which are included in the classes Λ±
i,t for

t ≤ s. Obviously, a±s = c±1 + · · · + c±s . The diffeomorphism l±i allows one to define
in a natural way, for any point r ∈ W±

i , an a±s -dimensional direction (subspace)
L̃±
i,s(r) in the tangent space TrW±

i ⊂ TrM to the separatrix W±
i at the point r:

L̃±
i,s(r) =

(
l̇±i

)−1 ∣∣
y

(
L±
i,s

)
, where l̇ |y is the differential of a map l at the point y,

y = l±i (r). (For each r, the subspace L̃±
i,s(r) is obtained from the subspace L±

i,s by
parallel translation in the linearizing coordinates on W±

i .) Obviously, L±
i,p± = R

n± ,

L̃±
i,p±(r) = TrW

±
i , a±p± = n±. Denote by Gm(r) the Grassmannian manifold of the

m-dimensional tangent linear subspaces at the point r ∈ M . So, L̃±
i,s(r) ∈ Ga±s

(r).
For any point r ∈ M the differential Ṡ

∣∣
r

of the diffeomorphism S at r induces a
diffeomorphism Gm(r) → Gm

(
S(r)

)
of the Grassmannian manifolds which will be

denoted again by Ṡ
∣∣
r
. The set Mm =

⋃
r∈M

Gm(r) has the natural structure of a

manifold whose class of smoothness is one unit less than that of M and it is the
total space of the bundle with baseM and fiber Gm, where Gm is the Grassmannian
manifold of them-dimensional linear subspaces in R

n. Points of Mm will be denoted
as z = (r, σr), where σr ∈ Gm(r). Consider the skew product S of the maps S and
Ṡ

∣∣
r

which acts on Mm: S(r, σr) =
(
S(r), Ṡ

∣∣
r

(σr)
)
, i.e., the mapping of the bundle

generated by the mapping of the base. Then S ∈ CN−1 if S ∈ CN .

Lemma 1

Let O be a fixed hyperbolic point of a CN -diffeomorphism S of an n-dimensional

manifold M , γj (1 ≤ j ≤ n) be all the eigenvalues placed in the order of non-

increasing moduli, n+ and n− be, respectively, the quantities of numbers γj whose

moduli are less and greater than unit. Suppose in addition that m is a number such

that 1 ≤ m < n and |γj | > ε for j ≤ m, |γj | < ε for j > m (in particular, one

can put m = n−, ε = 1, if both numbers n± > 0); M±
s =

⋃
r∈W±

Gs(r) ⊂ Ms is

a CN−1-manifold defined, respectively, if n± > 0 and which is the trivial bundle

whose base is the separatrix W± and whose fiber is the Grassmannian manifold Gs.
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To the eigenvalues γj (j ≤ m), there corresponds a linear m-dimensional subspace
in TOM , i.e., an element α+

m ∈ Gm(O). Analogously, to the eigenvalues γj (j > m),
there corresponds an element α−

m ∈ Gn−m(O). Let x± = (O,α±
m). Then

1) for almost all z+ = (r, σr) ∈ M+
m, z− = (r, σr) ∈ M

−
n−m forming open everywhere

dense sets, the following holds true:

lim
p→±∞

Sp(z±) = (O,α±
m) = x±. (5)

(By some misuse of language, one can rewrite this condition in the form lim
p→±∞

(
Ṡp

) ∣∣
r

(σr) = α±
m, where

(
Ṡp

)∣∣
r
= Ṡ

∣∣
Sp−1(r)

◦ · · ·◦Ṡ
∣∣
r

for p ≥ 0 and
(
Ṡp

)∣∣
r
=

(
Ṡ−p

∣∣
Sp(r)

)−1

for p ≤ 0 because the manifoldsGs(r), G(O) can be identified and lim
p→±∞

Sp(r) = O.)

In particular, the point x± is asymptotically stable with respect to the restriction
of the mapping S to M+

m or S−1 to M
−
n−m.

2) There exist sections of the bundles M
+
n−m and M−

m, i.e., maps
g+m = (id, f+

m):W+ → M
+
n−m, where f+

m(r) ∈ Gn−m(r) and
g−m = (id, f−m):W− → M−

m, where f−m(r) ∈ Gm(r),
which possess the following properties:

a) limp→±∞ Sp(z±) = x∓ for z+ ∈ M
+
n−m or z− ∈ M−

m if and only if z± ∈
g±m(W±),

b) g±m ∈ CN−1. Moreover, the following statement holds: the local functional
map from the space of hyperbolic CN -diffeomorphisms S into the space of
regular CN−1-submanifolds in Mn−m or Mm, which determines g±m(W±),
is continuous 8,

c) f±n−(r) = TrW
± for r ∈W±; if m1 > m2 then f+

m1
(r) ⊂ f+

m2
(r) for r ∈W+

and f−m1
(r) ⊃ f−m2

(r) for r ∈W−,
d) f±m(O) = α∓

m,
e) for z+ = (r, σr) ∈ M+

m or z− = (r, σr) ∈ M
−
n−m the condition (5) is not

valid if and only if the linear m- and (n−m)-dimensional subspaces σr and
f±m(r) in TrM have a non-trivial intersection,

f) if there exists a C1-linearization l+:W+ → R
n+

= TOW
+ of the mapping

S | W+ and m ≥ n−, or there exists a C1-linearization l−:W− → R
n− =

TOW
− of the mapping S | W− and m ≤ n−, then, in accordance with

these two cases, f±m(r) = L±
m(r), where the (n−m)-dimensional subspace

L+
m(r) in the tangent space TrW

+ and the m-dimensional subspace L−
m(r)

in the tangent space TrW
− are defined as L±

m(r) = (l̇±)−1
∣∣
y
◦(l̇±)

∣∣
O

(α∓
m)

for y = l±(r).

8 Because of the non-compactness of the immersed submanifolds W±, the CN−1-topology under discussion
is understood in the weak sense, even if M is compact.
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Lemma 1 and its proof have a clear geometrical sense. In fact, this Lemma gene-
ralizes the Hadamard–Perron theorem on the existence of separatrices of a hyperbolic
fixed point. So, we can use the below-described geometrical construction of the
manifolds g±m(W±) in the spirit of J. Hadamard’s approach [24] to the proof of
this theorem (see also an exposition in [36]; J. Hadamard considered only the two-
dimensional case, but this is of no importance; the problem of the smoothness of
the separatrices obtained is discussed in [27, 37]). Let (id, h):W± → M−

m be a
CN−1-section such that h(O) ∩ α−

m = {0}. Then, under the iterations, Sp, of the
mapping S, the manifold (id, h)(W−) is transformed into a manifold which tends to
g−m(W±) in the CN−1-norm as p→ +∞ (this is a kind of λ-lemma, see Remark 16
below). Constructing g+m(W±) is quite analogous. To prove this it is convenient to
use a Riemannian metric such that the inequalities

‖T−1 | α+
m‖−1 > ‖T | α−

m‖, ‖T−1 | TOW−‖−1 > 1 > ‖T | TOW+‖

are satisfied for the norms of the restriction of the operator T = Ṡ |O to the cor-
responding invariant orthogonal subspaces in TOM . Then, near the point O, the
mapping S |W− is an expansion and, moreover, an expansion (a contraction) along
the subspace α+

m more rapid (slow) than that along α−
m occurs under the action of

the mapping S. Fix ρ > 0 and identify the operators α−
m → α+

m whose norm is
≤ ρ with their graphs. So, we equip a closed subset K− ⊂ G−

m(O) with the cor-
responding structure of the ρ-ball in the linear normed space. A neighbourhood of
O in M can be identified with a vicinity of zero in the tangent space TOM using
a chart. Let V ⊂ W− be a small enough ball centered at the point O. If B is the
set of the CN−1-bundles over V whose fibers are elements of K− ⊂ Gm(x), x ∈ V
(i.e., the set of CN−1-sections of the bundle

⋃
x∈V

K− → V ) then S transfers each

element of B into some section over S(V ) ⊃ V whose restriction to V belongs also
to B. So, we define a mapping of B into itself that occurs to be contractive in the
CN−1-norm. The corresponding attracting point is g−m | V ; g−m is extendible onto
the whole separatrix W− by iterations of S. The original Hadamard’s approach
needs the hyperbolicity , i.e., the presence of expanding and contractive invariant
subspaces. In the case under consideration, the roles of expanding and contractive
subspaces are played by α+

m and α−
m, respectively. However, the extension along

TOW
− is needed for the induced map of B into itself to be well-defined and con-

tractive (see also a relevant discussion in [27]). Note that the above construction
can be performed more directly, without the preliminary knowledge of the manifold
W−. Indeed, let a Riemannian norm be as above, and a neighbourhood of O in M
be identified with a vicinity of zero in TOM . Given ρ > 0, consider the “rectangle”
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D+ × D− whose sides D± are small closed balls in TOW±. Consider the space
Σ− of continuous mappings f−:D− → D+ whose Lipschitz constants are ≤ ρ, and
identify functions f− and their graphs. Then the correspondence α �→ S(α) ∩ D
for α ∈ Σ− will determine a well-defined mapping, S−, which is contractive in the
C0-norm. Its unique fixed point is just the piece of the separatrix W− inside D. If
one considers only CN−1-functions f− then this map is contractive in an appropriate
CN−1-norm. The latter norm is built of the C0-norms of the j-th derivatives with
corresponding weight coefficients κj that decrease quickly as j rises, 0 ≤ j < N (cf.
the entirely analogous construction in the proof of Proposition 5 in Subsection 6.2).
Equip each manifold α ∈ Σ− with the space B−

α of the CN−1-sections of the bun-
dle

⋃
x∈α

K− →
⋃
x∈α

{x} = α. Then the mapping S induces a mapping of
⋃

α∈Σ−
B−

α

into itself which lies over the mapping S− and has a unique attracting point—the
required section g−m | D ∩W−. In particular, one can prove in this way that the
separatrix W− is a CN -manifold [27, 37] because f−n−(r) = TrW

− for r ∈W−.
Now we explain briefly how to prove the second part of item 2b). The basic

fact that will be used many times in the sequel is that for any integer k ≥ 0 the
composition (f, g) �→ f ◦ g defines a continuous map (·, ·):Ck × Ck → Ck (under
an appropriate choice of the domains and ranges of the mappings f and g). Using
the implicit function theorem, one can obtain the following result. The contrac-
tive mapping S− in the space of CN−1-functions, f , is well-defined and depends
continuously on S ∈ CN (in fact, it is Lipschitz) under small perturbations of the
latter. Moreover, its Lipschitz constant can be chosen to be locally uniform, being
< 1. Therefore, the fixed point f ∈ CN−1 identified with W−

loc ≡ W− ∩D depends
also continuously on S ∈ CN . For simplicity, one can identify W−

loc with D− using
the projection along D+. Then the map S−1 | W−

loc is represented as a CN−1-map
r:D− → D−. The contractive mapping G:B → B defined above, B = B−

W−
loc

,

acts by the formula (Gl)(z) = Ṡ |x(z) l
(
r(z)

)
, where x(z) =

(
r(z), f

(
r(z)

))
and

l(z) ∈ K−, z ∈ D−. It follows immediately from this formula and the definition of r
that for each l ∈ B, Gl ∈ B depends continuously on S ∈ CN . Finally, a fixed point
of G, gm | W−

loc ∈ CN−1, depends continuously on S ∈ CN because the Lipschitz
constant < 1 of the contraction map G can be chosen to be uniform under small
perturbations of S. Indeed, let S′ be a sufficiently small perturbation of S, let G
and G′ be the corresponding mappings B → B, and let l and l′ be fixed points of G
and G′, respectively. Then G′l is close to Gl = l and, therefore, the fixed point of
G′, l′, is close to l.

Some comments concerning an elementary proof of items 1) and 2e) will be
given in Appendix B in a slightly more general context. Other items are obvious. �
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This geometrical Hadamard’s approach was denoted as “graph transform”
in [27].

Remark 2. Let W̃−
x+ = g−m(W−), W̃+

x− = g+m(W+),

W̃+
x+ =

{
(r, σr) ∈ M+

m : σr ∩ f+
m(r) = {0}

}
,

W̃−
x− =

{
(r, σr) ∈ M

−
n−m : σr ∩ f−m(r) = {0}

}
.

Then W̃+
x+ and W̃−

x+ (W̃+
x− and W̃−

x− , respectively) are the incoming and outgoing
manifolds of the fixed point x+ (x−) of the homeomorphic CN−1-mapping S:Mm →
Mm (S:Mn−m → Mn−m). If N ≥ 2 then x+ (x−) is a hyperbolic point of the
diffeomorphism S and, thus, the manifolds under discussion are separatrices. This
fact is easily proven using the following simple statement: the spectrum at a fixed
point (α0, β0) of a fiber mapping (i.e., one covering some mapping of the base)
F (α, β) =

(
f(α), gα(β)

)
of a bundle is the union of the corresponding spectra at the

fixed point β0 of the mapping gα0 of the invariant fiber and at fixed point α0 of the
mapping f of the base.

Definition 7. An element σr ∈ Gm(r), where r ∈ W+ (respectively, an element
σr ∈ Gn−m(r), where r ∈ W−), is said to be in general position with respect to
W+ (W−) if (5) is satisfied.

In particular, in our case the following substitutions can be done. The point
r can be any point on W+

i (respectively, on W−
i ), the set {γ1, . . . , γn} can be the

set {µi,1, . . . µi,n− , λi,n+ , . . . , λi,1}, the number m (respectively, the number n−m)
can be the number a−s , where s ≤ p− (respectively, the number a+

s , where s ≤
p+), and the set {γj , j ≤ m} (respectively, the set {γj , j > m}) can be the set⋃

t≤s Λ−
i,t (respectively, the set

⋃
t≤s Λ+

i,t). Denote by L̃+
i,s(r), where r ∈ W+

i and
s ≤ p+ (respectively, by L̃−

i,s(r), where r ∈ W−
i and s ≤ p−), the element f+

n−a+
s
(r)

(f−
a−s

(r)) for the hyperbolic point O = qi. If the partition ξ±i is right then there is a

linearization l±i on the separatrix W±
i which will determine the element L̃±

i,s(r) by
the way discussed above.

4. A lemma on a linear contraction map

Let T : Rn → R
n be a linear nondegenerate operator with eigenvalues whose moduli

are less than the unit, and N ⊂ R
n be some set. We shall formulate conditions under



Transversal intersection of separatrices and branching 137

which the functions F , defined in a neighborhood of the origin 0 ∈ R
n, possess the

property
F ∈ CN (0), F | N∞ ≡ 0 ⇒ dF (0) = 0, (6)

where Nl =
⋃l

k=0 T
k(N).

Let λr be all distinct eigenvalues of the linear operator T : Rn → R
n, 0 < |λr| <

1. In the Jordan (maybe complex) form of T , to each number λr there correspond
the following blocks (cells) of sizes s(u)× s(u):

Tr,u = λr


1 1

0· ·
· ·

· ·
· 10

1


where the index u ranges over some set Ur (the sets Ur do not intersect for distinct
r). The index couple (u, i) = i′, where 1 ≤ i ≤ s(u), determines the number of a line
or a column in the Jordan form of T . Let N = {av}, where av = (a1,v, . . . , an,v) ∈ C

n

are the coordinates in the Jordan basis, let the number N satisfy the inequality (3),
and let the non-resonance conditions (2′) be valid.

Lemma 2

The property (6) holds if and only if for all r

rang Ar = card Mr, (7)

where Ar =
(
ai′,v : i′ ∈ Mr

)
, Mr =

{
(u, s(u)) : u ∈ Ur

}
, rang denoting the rank of

a matrix and card, the cardinality of a set.

Let Ll ⊂ R
n be the linear hull of the set Nl.

Lemma 3

The conditions (7) are equivalent to that Ln−1 = R
n.

Corollary. The property (6) persists under small perturbations of the set N and

the mapping T .
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To prove Lemmas 2 and 3, firstly one establishes, using the Taylor expansion,
that condition (6) for a function F implies this condition for the linear part dF (0)
of the mapping F at zero. Thus, the proof is reduced to a problem of linear algebra.

Indeed, for a given point av ∈ C
n, the coordinates of the image x = T kav are

linear combinations of terms λkrP (k), where P (k) are polynomials of degrees not
greater than n. Substitute the expression for x = T kav in the equation F (x) = 0
using the Taylor formula F (x) = Q(x) + O

(
‖x‖N

)
, where Q(x) is a polynomial of

degree less than N . As the result, one obtains the relation

0 =
∑
l

λkl Pl(k) +O(ρk), k → +∞, (8)

where l ranges over the set of all indices r and multiindices m = (m1, . . . ,mn) such
that |λm| ≥ min |λr| = ν, the notation λm = λm is introduced, Pl(·) are some
polynomials, and the number ρ satisfies the inequalities

max
{
|λm| : |λm| < ν

}
< ρ, max

r
|λr|N < ρ, ρ < ν.

Then λr �= λm due to condition (2′) and all the numbers λr are distinct. One can
assume that all the numbers λm in formula (8) are also distinct. Let the leading
term of the polynomial Pl(k) be Alk

dl and the index l runs over p values. Then

Pl(K + k) = AlK
dl

(
1 + o(1)

)
as K → +∞, 0 ≤ k < p.

Replacing k by K + k, 0 ≤ k < p, the equation (8) takes the form∑
l

Hlλ
k
l

(
1 + o(1)

)
= gk, K → +∞, where Hl = AlK

dlλKl , gk = O(ρK).

Therefore, Hl = O(ρK) for large K because the Vandermonde matrix
(
λkl

)
1≤l,k+1≤p

is well-known to be nondegenerate if all the numbers λl are distinct. So,

Al = O
((
ρ/λl

)K
K−dl

)
→ 0, K → +∞

and Al = 0, i.e., Pl ≡ 0. It remains only to observe that the sum
∑

r λ
k
rPr(k) ≡ 0 is

obtained by substituting the expressions for x into the linear part dF (0).
Elementary proofs of Lemma 2 in the case of linear F and Lemma 3 that will

be omitted here are based on the following Remark 3. The subsequent Remark 5
easily shows that the contraction maps T , such that condition (7) is satisfied for a
given set N �= {0}, are everywhere dense. �
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Remark 3. The criterion (7) does not depend on the choice of the Jordan basis. Let
Vr be the linear subspace in C

n of dimension cardMr that is spanned by the basis
vectors with numbers i′ ∈ Mr and let π = πr: Cn → Vr be the natural projection
along the complement subspace Ṽr that is spanned by the other basis vectors and that
is just the image of the operator T −λr · id. Obviously, condition (7) is equivalent to
the following one: the set π(N) ⊂ Vr spans the whole space Vr that can be identified
with the factor-space C

n/Ṽr = C
n/im(T −λr · id) = coker(T −λr · id). This provides

a completely coordinate-free description of criterion (7).

Remark 4. Basis vectors corresponding to complex-conjugate eigenvalues can be
also chosen to be complex-conjugate. Thus, if λr ∈ R then the linear spaces Vr, Ṽr ⊂
C

n are the complexifications of the corresponding real linear spaces V R
r , Ṽ R

r (i.e.,
Vr = C⊗V R

r , Ṽr = C⊗ Ṽ R
r ). Therefore, the projection π is also the complexification

of the natural projection πR
r : Rn → V R

r along Ṽ R
r and π(N) ⊂ π(Rn) = V R

r . The
condition (7) is equivalent to the following one: the set πR

r (N) spans the whole space
V R
r . If λr′ and λr′′ are complex-conjugate and distinct then Ṽr′ = Ṽr′,r′′ ⊕ Vr′′ ,
Ṽr′′ = Ṽr′,r′′ ⊕ Vr′ , Ṽr′,r′′ = C ⊗ Ṽ R

r′,r′′ , Vr′,r′′ = Vr′ ⊕ Vr′′ = C ⊗ V R

r′,r′′ (where
V R

r′,r′′ , Ṽ
R

r′,r′′ are real spaces) and the spaces Vr′ and Vr′′ are complex-conjugate.
Then the projection πr′,r′′ : Cn → Vr′,r′′ along Ṽr′,r′′ is the complexification of the
projection πR

r′,r′′ : R
n → V R

r′,r′′ along Ṽ R

r′,r′′ and the projection πr′ : Cn → Vr′ along
Ṽr′ decomposes into the product π̃r′ ◦πr′,r′′ , where π̃r′ :Vr′,r′′ → Vr′ is the projection
along Vr′′ .

Consider in more detail the form of criterion (7) in the latter case for the real
set N. Thus, the set G = πR

r′,r′′(N) ⊂ V R

r′,r′′ has to be such that its image under the
projection π̃r′ (respectively, π̃r′′) C-spans the whole space Vr′ (Vr′′). The complex-
conjugate subspaces Vr′ and Vr′′ have the trivial intersection only and, consequently,
they do not contain real non-zero vectors. It is easily seen that Vr′ =

{
z + iJ(z) :

z ∈ V R

r′,r′′
}

and Vr′′ =
{
z − iJ(z) : z ∈ V R

r′,r′′
}

where J is a linear operator in the
real even-dimensional space V R

r′,r′′ such that J2 = −id. Here, π̃r′(2z) = z + iJ(z)
and π̃r′′(2z) = z− iJ(z) for any z ∈ V R

r′,r′′ . Therefore, condition (7) is equivalent to
that G ∪ J(G) R-spans the whole space V R

r′,r′′ . Concerning the minimal number of
elements of G, we note the following fact. For any non-zero vector z ∈ V R

r′,r′′ , the
linear space spanned by z and J(z) is two-dimensional and J-invariant. Therefore,
G has to contain a subset G′ consisting of 1

2 dimR V
R

r′,r′′ = 1
2 dimC Vr′,r′′ elements

and such that G′ ∩ J(G′) = ∅ and G′ ∪ J(G′) spans the whole V R

r′,r′′ .

Remark 5. Mappings T such that the elements of maximal (i.e., the finest) strongly
ordered partitions for the set {λi} are of type {γ}, where γ ∈ R, or {α± iβ}, where
α, β ∈ R, β �= 0, form an open everywhere dense subset. In this case the condition (7)
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is equivalent to πR
r (N) �⊂ {0} or πR

r′,r′′(N) �⊂ {0}, respectively. Thus, for the set N it
is sufficient (but not necessary) to contain a point that does not belong to the union
of a finite number of linear subspaces of codimension 1 or 2.

Definition 8. A set P of points on the separatrix W±
i is said to be in general

position if there is a linearization l±i and the conditions (7) are valid for the set
N = l±i (P) and the mapping T =

(
J±
i

)±1.

This definition generalizes the one used in Theorem 1. Obviously, under non-
resonance conditions (2′) for the eigenvalues of S | W±

i , the set P ⊂ W±
i is in

general position on the separatrix W±
i if and only if from conditions F ∈ CN

(
W±

i

)
and F | P∞ ≡ 0, where P∞ =

⋃∞
k=0 S

±k(P) and the number N was described
earlier, it follows that dF (qi) = 0.

5. The main result and a discussion

Theorem 2

Let the following conditions be satisfied:

1) the eigenvalues λi,j and µi,j for all i are such that there exist concordant partitions

ξ±i =
{
Λ±
i,s; 1 ≤ s ≤ p±

}
of the sets {λi,j} and {µi,j};

2) there is i+ (and also i−) such that the partition ξ+i+ (ξ−i−) is right and the set of

homo-(hetero)clinic points rj lying on the separatrix W+
i+ (W−

i−), i.e., points such

that i+ = i+(j) (i− = i−(j)), is in general position;

3) the diffeomorphism S has class CN , where N ≥ N±
i± and the numbers N±

i are

defined in accordance with (4);
4) for any j and 1 ≤ s < p± the element L̃±

i±(j),s(rj) ∈ Ga±s
(rj) is in general position

with respect to the separatrix W∓
i∓(j).

Then property (1) holds. Moreover, in a neighbourhood of any own point the

set A′ does not lie on a regular CN -submanifold of positive codimension nor even

on the union of a countable set of such submanifolds.

Remark 6. The condition that the element L̃±
i±(j),p±(rj) ∈ Gn±(rj) is in general

position with respect to W∓
i∓(j) is equivalent to that the homo-(hetero)clinic point

rj ∈ W−
i−(j) ∩W

+
i+(j) is transversal. Therefore, the case s = p± is omitted in the

statement of the Theorem. The condition 4) of the Theorem together with the
transversality condition mentioned above are equivalent to the following one:

f−i−(j),m(rj) ∩ f+
i+(j),m(rj) = {0}, (9)
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where f±i,m are the mappings f±m for the hyperbolic point O = qi and the number m
ranges over the set

a−s (1 ≤ s < p−), n− = a−p− = n− a+
p+ , n− a+

s (p+ > s ≥ 1) . (10)

To formulate condition 4), one has to assume the validity of condition 1).

Remark 7. Let N ≥ 2 and m be a number in the set (10). Denote by x+
i ,

x−i and by W̃±
i,+ = W̃±

x+
i

, W̃±
i,− = W̃±

x−
i

the hyperbolic points x+, x− of CN−1-

diffeomorphisms S:Mm → Mm, S:Mn−m → Mn−m and their separatrices W̃±
x+ ,

W̃±
x− that correspond to the point O = qi. The condition (9) is equivalent to

the following one: the couple of separatrices W̃−
i−(j),+ and W̃+

i+(j),+ (W̃−
i−(j),− and

W̃+
i+(j),−, respectively) of the hyperbolic points x+

i−(j) and x+
i+(j) (x−i−(j) and x−i+(j))

intersect transversally at r̃+j =
(
rj , f

−
i−(j),m(rj)

) (
r̃−j = (rj , f+

i+(j),m(rj))
)
. So, the

hyperbolic points x+
i (x−i ) and the trajectories of homo-(hetero)clinic points r̃+j

(r̃−j ) form a homoclinic structure that projects homeomorphically by the natural
projection Mm → M (Mn−m → M), onto the homoclinic structure formed by the
points qi and the trajectories of the points rj .

Remark 8. The conditions of the Theorem are satisfied on an open subset in the
space of diffeomorphisms, S, of a finite-dimensional manifold M , i.e., they persist
under small perturbations of S. These conditions are also satisfied on an open ev-
erywhere dense subset in the space of all diffeomorphisms S possessing a homoclinic
point. Indeed, a transversal homoclinic point r can be produced by an arbitrarily
small perturbation of the mapping S. One can achieve, by additional small pertur-
bations, that: a) the eigenvalues λj and µj at the fixed hyperbolic point satisfy the
non-resonance conditions (2) and, moreover, the elements of the maximal strongly
ordered partitions are of the form {γ}, where γ ∈ R, or {α ± iβ}, where α, β ∈ R,
β �= 0, b) conditions 2) and 4) of the Theorem are satisfied. One uses here the fact
that the Hadamard–Perron theorem on the existence of the separatrices of a hyper-
bolic fixed point and Sternberg’s theorem admit “uniform variants”: the separatrices
as CN -manifolds and the linearizations as CN -mappings depend continuously on the
CN -mappings under consideration. As for the first theorem, the latter result is well-
known and follows, for instance, from Lemma 1. As for the second one, this will be
explained in Remark 14 below.

The above considerations are valid in the CN -variants where N ∈ N ∪ {∞}, N
being bounded from below by condition 3) of Theorem 2. Moreover, the following
two opposite extensions of these results are possible.
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i) where the CN -mapping S is treated in the Ck-topology for arbitrary 1 ≤
k ≤ N provided that it remains uniformly CN -bounded from above (over each
compact set). Indeed, firstly, the uniform CN -boundedness of the diffeomorphism
S guarantees the uniform CN -boundedness of its separatrices as immersed CN -
manifolds. Thus, an appropriate uniform variant of the Hadamard–Perron theorem
is valid. Secondly, an analogous uniform variant of the Sternberg theorem is also
valid as will be explained in Remark 14 below.

ii) where the diffeomorphism S is considered in the analytic (Cω-) category
Diffω(M). Fortunately, if each connected component of the real analytic manifold
M has a countable base then the technique developed in [10] (see also [43]) allows
us to carry over immediately the corresponding C∞-results to the analytic case (the
only problem is to establish the Cω-density, see Historical comment 1 below)9. For
this purpose, one has only to reformulate, in succession, the presence of a transversal
homoclinic point and assumptions a) and b) as specific “Kupka–Smale” or transver-
sality properties. We explain briefly the latter term and discuss the Cω-topologies.
Firstly, the desired assumptions should be expressed as abstract transversality con-
ditions, and, secondly, the following should hold. Recall that all the desired as-
sumptions are considered in succession, one by one, as mentioned above. Then for
any S satisfying the “preceding” assumptions, there is an appropriate transversal
C∞-unfolding of S, Sµ, i.e., a perturbation with a compact support not depending
on a small (multi)parameter µ such that the family Sµ satisfies the above abstract
transversality condition. Note that, usually, a suitable C∞-unfolding is actually
constructed while proving the C∞-density [10] (see Historical comment 1). The
topology τ in Diffω(M) is defined originally for the case where M is a Euclidean
space and then it is directly carried over to the general case of a real analytic man-
ifold M with a countable base (see details in [10, 43]). This transfer is done via the
following classic results by H. Grauert [23] (see also [35]): any real analytic manifold
M with a countable base can be analytically embedded into a Euclidean space as
a closed submanifold and any analytic function on M is extendible to an analytic
function on the whole ambient Euclidean space. Any topology in Diffω(M) that
is finer than the CN -one but coarser than τ is also suitable (cf. [10, 43]). Indeed,
the density is guaranteed by that in the topology τ and the openness is guaran-
teed by that in the CN -topology. Because of the results described in item i), one
may consider topologies in Diffω(M) that are not finer than τ and not coarser than
C1, provided that the mapping S remains uniformly CN -bounded from above (over
compact sets).

9 The technique of [10] requires the manifold M to have a countable base. Recall that, anyway, we have
to restrict our consideration to a finite number of connected components, to which the homoclinic structure
belongs. This guarantees the validity of the assumption.
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Returning to our assumptions, we mention that the desired reformulation is an
elementary task. As for the existence of a transversal homoclinic point (cf. [10]),
one should only utilize local coordinates on M depending smoothly on S, in which
one separatrix becomes independent of S; the standard proof of the C∞-density
provides us with a transversal C∞-unfolding. The task is also easy for assumption a)
and condition 2) of the Theorem because one has just to avoid a finite number of
equalities, each defining, locally, a submanifold, cf. [43]. Finally, as for condition 4)
of the Theorem, it is reduced, due to Remark 7, to the assumption on the existence
of a homoclinic point. So, we get the assumption discussed before.

Historical comment 1. Usually the proof of the C∞-density is done using a C∞-
perturbation with a compact support which is not applicable in the analytic case.
However, H. W. Broer and F. M. Tangerman [10] (see also references therein) were
able to overcome this difficulty using suitable real analytic perturbations and the
transversality theory. Firstly, they have shown how given a C∞-unfolding, Sµ, of
an analytic diffeomorphism, to construct a C∞-close Cω-unfolding, Sµ,t, t > 0.
The key idea is to use the solutions of the heat equation whose initial conditions
are connected with the representatives of the C∞-unfolding. Let wµ be a C∞-
unfolding of the zero vector field w0 ≡ 0 with a compact support and let wµ,t, t ≥ 0,
be the solution of the heat equation with the initial condition wµ,0 = wµ. Then
wµ,t → wµ as t→ +0 uniformly in Ck, k ≥ 1, over compact sets and, for fixed t > 0,
wµ,t → w0,t ≡ 0 in Cω as µ→ 0. The representatives of the desired Cω-unfolding of
S are defined as Sµ,t = ϕµ,t◦S where ϕµ,t is the time one flow map of wµ,t and t > 0.
Secondly, another basic idea is to represent the desired property as the transversal
“Kupka–Smale” property and to use the Thom Transversality Theorem. Therefore,
if the unfolding Sµ = Sµ,0 satisfies the transversality condition then there are µ’s
arbitrarily close to µ = 0 such that Sµ,t possesses the desired property.

J. Palis attached kindly the author’s attention to papers [5, 29, 38, 40, 41]
where the centralizers of diffeomorphisms satisfying some rather special conditions
of the Morse–Smale type were considered. It happens, in particular, that under
some conditions the centralizer is trivial, i.e., is generated by the diffeomorphism
itself. Incidentally, the constancy of any continuous integral for systems under con-
sideration is evident from the fact that almost every trajectory tends to some basic
sets Ωi being an attractor and a repeller (see below).

Let T be a linear contraction nondegenerate operator. Determine the number N
by the spectrum of T in accordance with (3). According to [29], the CN -centralizer
Z(T ), i.e., the group of the CN -diffeomorphisms commuting with T , contains only
polynomials of degrees < N (the proof of this fact is almost identical to that for
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Sternberg’s theorem). Moreover, Z(T ) contains only linear mappings if multiplica-
tive non-resonance conditions (2′) are satisfied. On the other hand, if the spectrum
of T is simple (i.e., there are no multiple eigenvalues) then a linear mapping com-
mutes with T if and only if it is diagonalizable in the same coordinates where T
is diagonal. Using this result and Sternberg’s theorem, B. Anderson, J. Palis, and
J. C. Yoccoz [5, 38, 40, 41] have obtained the following results that we will describe
in detail. Let Diff(M) be the set of the C∞-diffeomorphisms on a given compact
connected boundaryless manifold M , and let A(M) be the open subset of the dif-
feomorphisms satisfying axiom A and the (strong) transversality condition. Recall
that f ∈ Diff(M) satisfies axiom A if the set of non-wandering points, Ω(f), is
hyperbolic and the set of periodic points, P (f), is dense in Ω(f). Then f is also
said to satisfy the (strong) transversality condition if for all x, y ∈ Ω(f) the in-
coming (“stable”) manifold of x and the outgoing (“unstable”) manifold of y are
transversal (concerning the invariant manifolds of points of a hyperbolic set, see the
beginning of Section 6). Axiom A is obviously satisfied if Ω(f) is a finite hyper-
bolic set, i.e., Ω(f) = P (f) is formed by periodic hyperbolic points. Morse–Smale
diffeomorphisms are those possessing the latter property and satisfying the strong
transversality condition. Finally, let A1(M) be the open subset of A(M) formed by
diffeomorphisms that exhibit either a sink (periodic attractor) or a source (periodic
repeller). Morse–Smale diffeomorphisms form an open subset MS(M) in A1(M).
J. Palis and J. C. Yoccoz [40] have proven that the C∞-centralizer is trivial for
C∞-diffeomorphisms in: 1) an open and dense subset of A1(M), 2) an open and
dense subset of A(M) if dimM = 2 or a residual (Baire second category) subset of
A(M) if dimM ≥ 3. The “localization” argument shows that it suffices to consider
the open subset in A(M) (respectively, A1(M)) formed by the diffeomorphisms with
the following properties: i) if p is a k-periodic point with k ≤ K then both the
parts of the spectrum of fk at p, which lie inside and outside the unit circle, are
simple and satisfy (2′), ii) if p, p′ are periodic points of the same period k ≤ K

then their spectra are distinct unless p, p′ belong to the same orbit. Then, firstly,
one establishes structurally stable conditions that impose some restrictions on the
centralizer and are analogous to those used in Remark 8. Secondly, the following
holds due to the fact that these conditions are related to a disposition of some ge-
ometrical objects on the separatrices of hyperbolic periodic points as well as to the
spectra for the restrictions of the diffeomorphism to these separatrices: arbitrarily
small perturbations can lead to the validity of the required conditions (similarly to
Remark 8). However, the considerations of [40] are more complicated than ours.
In particular, while proving result 1), one has to consider some invariant sets or
foliations in the basin of attraction of a sink (repulsion of a source), instead of
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double-asymptotic points. An essential ingredient of the proofs is also the Smale
spectral decomposition theorem: if f ∈ A(M) then Ω(f) = Ω1 ∪ · · · ∪Ωl where each
Ωi, called a basic set , is close, f -invariant and topologically transitive. Using the
technique [10], J. Rocha [43] carried over the results of [40] to the C∞-centralizers of
Cω-diffeomorphisms, restricting himself in case 1) to Morse–Smale diffeomorphisms
only. This restriction seems to be caused by the absence of an appropriate analytic
perturbation theory for the above-mentioned invariant sets or foliations in the basin
of attraction (repulsion). Some further more particular results can be also found
in [40, 43].

Using some special arguments, in addition to the localization principle forK = 1
and Sternberg’s theorem, J. Palis and J. C. Yoccoz [41] have proven that for an
open and dense subset of Anosov C∞-diffeomorphisms of the torus T

n, the C∞-
centralizer is also trivial. The results and ideas of [40] generalize those of [5, 38].
B. Anderson [5] have proven that the C∞-centralizer is trivial for an open and dense
subset of MS(M). On the other hand, J. Palis [38] stated that the C∞-centralizer
is C0-discrete for an open and dense subset of A(M). The first step in arguments
outlined in [38] is as follows. If h is a homeomorphism near the identity on M
and h ◦ f = f ◦ h then h ≡ id on each basic set Ωi. This has motivated item a)
of our Proposition 4. The considerations of [5, 38] are easily carried over to the
C∞-centralizers of Cω-diffeomorphisms.

Note that the case of infinite smoothness was discussed in [5, 38, 40, 41]. Nev-
ertheless, it is easily seen that all the statements remain valid if one considers the
CN -centralizer for diffeomorphisms in a small CN -neighbourhood of a diffeomor-
phism f ∈ CN , provided that the number N exceeds numbers (4) corresponding
to the spectra of the restrictions of the mapping f to the separatrices of periodic
points that are used in the proof. Moreover, one can consider CN -diffeomorphisms
in the Ck-topology, 1 ≤ k ≤ N , provided that they remain uniformly CN -bounded
from above. Note in this connection that the statement of [5] on the C3-openness is
wrong because of the reason explained in Remark 14 below.

Problem 1. To carry over all the results of [40, 41] to the C∞-centralizers of Cω-
diffeomorphisms (as it was pointed out, the paper [43] contains particular results in
this direction).

Remark 9. It often happens in applications that the mapping S on M is the first
return map (Poincaré mapping) of some flow v. Obviously, an integral FS of the
mapping S and that Fv of the flow v are related by the formula FS = Fv | M
and exist or do not exist simultaneously (under the proper assumptions about the
smoothness).
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We proceed to the problem of the existence of an analytic symmetry group
for the mapping S and flow v. Recall that the flow v is a one-parameter group of
diffeomorphisms, {vt : t ∈ R}, generated by a vector field that we denote again
as v. ¿From now on we will consider only analytic vector fields v in contrast to
mappings S that should be only smooth. The analyticity of the flow v will be an
essential ingredient of the proofs. Our technique does not allow us to weaken this
assumption.

Proposition 3

Under assumptions (1) or if the conditions of Theorem 1 are satisfied

a) the mapping S has no one-parameter nontrivial symmetry group,

b) any one-parameter symmetry group of the flow v is generated (modulo a linear

change of a parameter) by this flow.

The definition of the centralizer for a flow is entirely analogous to that for a
diffeomorphism. So, the centralizer Z(v) consists of diffeomorphisms f , for which
the flow v is a one-parameter symmetry group. The concept of the triviality of the
centralizer remains also valid (now the group (v) is just the flow v). However, we
should correct the definition of the discreteness of the centralizer.

Definition 9. The centralizer Z(v) of a flow v is discrete if for any f ∈ Z(v) there
is a neighbourhood V of f in the space of diffeomorphisms such that Z(v) ∩ V ⊂
f ◦ (v) ≡ (v) ◦ f =

{
f ◦ vt ≡ vt ◦ f : t ∈ R

}
.

Proposition 3 is a direct corollary of the following.

Proposition 4

Under the conditions of Proposition 3

a) the analytic centralizer Z(S) of the mapping, or

b) the analytic centralizer Z(v) of the flow

is discrete in the compact–open (weak C0-) topology.

Proof of Propositions 3 and 4. First of all, while proving Proposition 4, it suffices
to establish the discreteness of the centralizer at the identity diffeomorphism id.
This means that there is a neighbourhood V of id such that a) Z(S) ∩ V = {id} or
b) Z(v) ∩ V = (v) ∩ V. Second, items b) concerning the flow v can be immediately
derived from the corresponding items a) concerning the first return map due to the
fact that the proofs of items a) are based on the presence of S-invariant compact
topologically transitive key sets C (the direct proofs for items b) can be also obtained
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by a simple modification of those for items a)). We explain this in detail. Let M̃
be the manifold carrying the flow v. In a small neighbourhood of M ⊂ M̃ , V , the
natural projection π:V →M along the trajectories of the flow v is well-defined. We
desire the inclusion f̃(M) ⊂ V for all the diffeomorphisms f̃ on M̃ that are close
to id. This is true only if M is compact. Fortunately, in the sequel, we are able
to replace M by a region in M , M ′, which has the compact closure in M , contains
the set C and is a DKP of the latter. Instead of M̃ we will consider the manifold
M̃ ′ ⊂ M̃ filled with the trajectories crossing M(= M ′) at least once.

Suppose now that Z(S) is discrete at id. If f̃ ∈ Z(v) is close enough to id
then f̃(M) ⊂ V and the map f = π ◦ f̃ | M belongs to Z(S) and is close to
id. Thus, f ≡ id and f̃(r) = vλ(r)(r) for every r ∈ M where λ:M → R is some
continuous function. This formula and the function λ are then extendible onto the
whole manifold M̃ ′ ⊂ M̃ . Here, λ happens to be a first integral of the flow v.
Next, the set C̃, filled with the trajectories passing through the points of C, is a
v-invariant topologically transitive key set. Hence, λ | C̃ = λ0 ≡ const. Finally,
analytic mappings f̃ and vλ0 coincide over the key set C̃ and are therefore identical
everywhere. The discreteness of Z(v) at id has been proven.

Now it suffices to prove item a) of Proposition 4. Nevertheless, because of
simplicity, we present a reduction of item b) to item a) in Proposition 3 and a
direct proof of item a). If a vector field ũ generates a one-parameter symmetry
group of the flow v then the infinitesimal variant of the above consideration yields
the following conclusion. There is a one-parameter (local) symmetry group of S
generated by a vector field u defined by the formula u(r) = πr

(
ũ(r)

)
, r ∈M , where

πr : TrM̃ → TrM is the projection along the vector v(r) of the flow. So, if u vanishes
on M then ũ(r) = λ(r)v(r) for every r ∈ M where λ is a continuous function. The
rest of the proof that ũ ≡ λ0v everywhere with some constant λ0 is analogous to
that presented above.

Now we prove item a) of Proposition 3. In the set A′ of quasi-random motions,
the set of periodic hyperbolic points, P , of the mapping S is everywhere dense. The
set P is a key set. Recall that under the conditions of Theorem 1, the set B is also
a key set. It is easily seen that a vector field generating a symmetry group vanishes
upon P or B and, thus, is identical to zero.

Finally, we have to prove item a) of Proposition 4. If f ∈ Z(S) is close enough
to id, which will be assumed in the sequel, then f | C ≡ id. This implies the desired
result f ≡ id due to the key property of C. The proof is very simple in the case C = B

(under the conditions of Theorem 1). The symmetry f permutes hyperbolic fixed
points. So, f(O±) = O± and f preserves the separatrices W±. Next, f preserves



148 Dovbysh

also the isolated double-asymptotic point10 r which implies f | B ≡ id. Now let
implication (1) hold. Recall that the compact set A′ is the maximal S-invariant
set in an open region. Therefore, f(A′) ⊆ A′. Applying the inverse symmetry, one
sees that f(A′) ⊇ A′. So, f preserves A′. It is well-known that the restriction
of S to the hyperbolic set A′ is expansive (see, for instance, [4, 37]), i.e., there
exists an expansive constant δ > 0 such that for any distinct points x, y ∈ A′ the
distance between Sm(x) and Sm(y) is greater than δ for some m ∈ Z. (In our case,
this is a direct corollary of the expansiveness of the corresponding TMC.) Therefore,
f | A′ ≡ id. (We note that the arguments used here for the set A′ are also applicable
for the set B.) This completes the proof. �
Remark 10. All the results remain valid if one considers meromorphic integrals
instead of analytic ones. Indeed, at first, assume that a first integral has the form
F = f/g where f and g are analytic functions, g �≡ 0. Then g �= 0 over an open set,
U . Recall that there exists an S-invariant topologically transitive key set C. Then
U∩C is a key set. Indeed, h | U∩C ≡ 0 ⇒ hg | C ≡ 0 ⇒ hg ≡ 0 ⇒ h | U ≡ 0 ⇒ h ≡
0 for any function h analytic in a connected DKP of C. The function F is analytic at
the points of U∩C and the latter set is S-invariant and topologically transitive. One
can assume that F | U ∩ C ≡ 0. Then f | U ∩ C ≡ 0 and, consequently, F ≡ 0 via
f ≡ 0. A meromorphic function is defined as one locally represented as the quotient
of complex holomorphic (or real analytic) functions. The problem of such a global
representation is called the Poincaré problem. It has been positively solved for the
functions over the polycylinder domains in C

n with simply connected cofactors in
C [20, 44], and even for those over an arbitrary domain in C

n [28]. It is easy to choose
a C1-chart that covers a small vicinity of the closure of the DKP of B while local
coordinates range over a rectangular parallelepiped I = I1 × · · · × In where Iν are
closed intervals in R. Then, C1-approximating the coordinate functions by analytic
ones (for instance, with the use of the Weierstrass Approximation Theorem [35]), one
gets analytic local coordinates ranging over int I and covering the DKP. Consider
the meromorphic first integral, F , as being expressed via these coordinates. Then
F is a function meromorphic in the desired polycylinder domain D = D1× · · ·×Dn

where Dν =
{
z : Rez ∈ int Iν , |Imz| < εν

}
⊂ C provided that εν > 0 were chosen to

be sufficiently small. As for the set A′, one does not need to cover the whole A′ by a
chart. Fortunately, it suffices to consider, instead of A′ itself, the intersection of A′

and a neighbourhood of any of its points. Other considerations remain unchanged.
Analogously, Proposition 3 remains valid if one considers meromorphic vector

fields that generate local symmetries, i.e., local phase flows commuting with the
mapping S or the flow v.

10 We mean that the double-asymptotic point is isolated in the topology of the immersed submanifolds W±.



Transversal intersection of separatrices and branching 149

Note that, in the case of an analytic diffeomorphism S, every nontrivial single-
valued first integral or vector field generating a local symmetry, has to be not mero-
morphic at one of the points O±, if the conditions of Theorem 1 are satisfied, or at
each point of the set A′ of quasi-random motions, if assumption (1) is met. This
is a direct consequence of the following two facts. Firstly, the images of any neigh-
bourhood of

{
O+, O−}

under iterations of S cover a DKP of B, and, secondly, the
images of a neighbourhood of any of the points of A′ cover the whole A′.

6. Proof of main Theorem 2. Nonautonomous linearization on

stable or unstable manifolds

6.1. Two basic Lemmas and proof of the main Theorem

It is well-known that the set A described by the Alekseev theorem is a hyper-
bolic set and for each point r ∈ A, are defined the incoming (“stable”) W+

r and the
outgoing (“unstable”) W−

r local CN -manifolds that depend (in the CN -norm) con-
tinuously on r. They are quite analogous to the separatrices of a hyperbolic periodic
point, and coincide with them if the point r is periodic (see, for example, [2, 27, 32,
34, 37] and a correction in [19]). These results can be proven via a nonautonomous
variant of the construction described in the proof of Lemma 1 (cf. [2, 32, 34] and
see Remark 16 below).

Let As → A be the bundle of s-dimensional tangent subspaces over A (the
restriction of the bundle Ms → M). For any finite number set K, let Kt, |K|, and
lnK be the sets whose elements are obtained from the elements of K via the cor-
responding mathematical operations (raising to the power t and evaluating moduli

and logarithms). Finally, let [K] =
[
min
λ∈K

|λ|,max
λ∈K

|λ|
]

be the minimal closed interval

containing |K|.

Lemma 4

Let a homoclinic structure generating, due to the Alekseev theorem, a set

A satisfy the conditions 1), 4) of Theorem 211 and let m be any element of the

set (10). Then, over the set A, the sections g+m and g−m corresponding to all the

hyperbolic points O = qi are extendible naturally to invariant continuous sections

u+
m = (id, h+

m):A → An−m and u−m = (id, h−m):A → Am that possess the same

properties. More precisely speaking:

11
A is not assumed to be a set of quasi-random motions, i.e., the graph Γ may be disconnected.
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a) h±m = f±i,m over W±
i ∩A,

b) h+
m(r)⊕ h−m(r) = TrM , h±n−(r) = TrW

±
r for any r ∈ A,

c) for z+ ∈ Am or z− ∈ An−m the point St(z±) tends to the set u∓m(A) as t→ ±∞
(i.e., the limit set of the corresponding semitrajectory lies in u∓m(A)) if and only

if z± = (r, σr), where σr ∩ h±m(r) = {0}. Moreover, St(z±) approaches u∓m(A)
exponentially rapidly, so that the distance from the point St(z±) to the set u∓m(A)
does not exceed const · κ±t, where the number 0 < κ < 1 does not depend on the

choice of r ∈ A.

Furthermore:

d) if 0 < m1 < · · · < mp < n, where p = p+ + p− − 1, are all the elements of the

set (10), then there exist invariant sections (id, ϕs) of the bundles of (ms −ms−1)-
dimensional subspaces, where 1 ≤ s ≤ p+ 1, m0 = 0, and mp+1 = n, such that

h−ms
= ϕ1 ⊕ · · · ⊕ ϕs, h+

ms
= ϕs+1 ⊕ · · · ⊕ ϕp+1, ϕs = h−ms

∩ h+
ms+1

,

e) under the conditions of item d), denote by ϕ−
s (r) = ϕs(r), 1 ≤ s ≤ p−, and

ϕ+
s (r) = ϕp+2−s(r), 1 ≤ s ≤ p+, the subspaces whose direct sums are TrW

−
r and

TrW
+
r , respectively. Let r ∈ A be T -periodic. Obviously, the eigenvalues of the

mappings ST | W±
r at the fixed point r decompose into partitions ξ± = {Λ±

s :
1 ≤ s ≤ p±} whose elements correspond to the invariant subspaces ϕ±

s (r). Then the

partitions ξ± are concordant with ξ±i . Moreover, the distances between different sets

ln |Λ±
s |1/T ⊂ R (i.e., ones corresponding to different subscripts or superscripts) are

bounded from below by a positive constant, not depending on the choice of r ∈ A.

Actually, these distances are ≥ − lnκ, where κ satisfies the condition of item c) for

all m under consideration.

Note that the sections (id, ϕs) separate the Lyapunov exponents for the trajec-
tories in A. A simplified version of this result concerning the periodic points is given
in item e) of the Lemma. Some relevant results in a more general aspect will be dis-
cussed in Appendix A. Analogously to Lemma 1, this Lemma has a clear geometrical
sense and its simple proof will be omitted here. Let us mention that this proof can
be performed in a manner analogous to the one used below in Remarks 16 and 19.
So, “negative”

{
St(r), t ≤ 0

}
and “positive”

{
St(r), t ≥ 0

}
“semitrajectories” of

the point r are considered to build the tangent subspaces h−m(r) and h+
m(r), respec-

tively. This geometrical construction of the bundles h−m(r) (h+
m(r), respectively)

can also be interpreted in somewhat different terms: the mapping S:Am → Am

(S−1:An−m → An−m) induces an automorphism of the space of continuous sec-
tions u = (id, h):A → Am (u = (id, h):A → An−m) which possesses an attracting
point—the required section u−m (u+

m) (cf., for example, [27, points (2.11)–(2.13)]).
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An elementary proof of item c) will be given in Appendix B. �

Remark 11. If a diffeomorphism S is of class C2 then u+
m(A) (u−m(A), respectively) is

an invariant set of the diffeomorphism S:Mm → Mm (S:Mn−m → Mn−m, respec-
tively) that exists due to Alekseev’s theorem near the homoclinic structure described
above in Remark 7 and that covers the homoclinic structure of the diffeomorphism
S. If S /∈ C2 then the points x+

i (x−i ) and the trajectories of the points r̃+j (r̃−j )
form also an analog of homoclinic structure in the non-smooth case and the set
u+
m(A) (u−m(A)) is again a maximal S-invariant set in some neighbourhood of this

“homoclinic structure”.

Remark 12. Let the conditions of Lemmas 1 (for one of the two superscripts ±)
and 4 be valid for numbers m belonging to a collection m = (m1, . . . ,mp), where
0 < m1 < · · · < mp < n. Denote n − m = (n − mp, . . . , n − m1). Then one can
pass in the formulations of the mentioned Lemmas from the mappings of bundles
Mm or Mn−m to the mappings of tangent bundles Mm or Mn−m of flags Fs of
type s = m or s = n − m, i.e., Ms =

⋃
r∈M

Fs(r), where s = (s1, . . . , sp) and

Fs(r) =
{
ds1 ⊂ · · · ⊂ dsp : ds1 ∈ Gs1(r), . . . , dsp ∈ Gsp(r)

}
. Here nested sequences

of spaces

f−m(r) =
{
f−m1

(r) ⊂ · · · ⊂ f−mp
(r)

}
, f+

m(r) =
{
f+
mp

(r) ⊂ · · · ⊂ f+
m1

(r)
}
,

h−m(r) =
{
h−m1

(r) ⊂ · · · ⊂ h−mp
(r)

}
, h+

m(r) =
{
h+
mp

(r) ⊂ · · · ⊂ h+
m1

(r)
}

can be treated as the images of sections g±m = (id, f±m) and u±m = (id, h±m). Re-
marks 2, 7 and 11 remain valid with the only change that now

W̃+

x+
m

=
{
(r, σr) ∈ Mm : σr = (σr,m1 ⊂ · · · ⊂ σr,mp) ,

(r, σr,mi
) ∈ W̃+

x+
mi

for all i
}
,

W̃−
x−m

=
{
(r, σr) ∈ Mn−m : σr = (σr,n−mp ⊂ · · · ⊂ σr,n−m1) ,

(r, σr,n−mi
) ∈ W̃−

x−mi

for all i
}
,

where the subscripts mi and m of x± are used to point the corresponding number
m or collection m = (m1, . . . ,mp).

Lemma 5

Let the assumptions of Theorem 2 be satisfied and Vi± be a given small neigh-

bourhood of the point qi± . Furthermore, let a number δ > 0 be small enough. If
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the trajectory of a periodic point r ∈ A′ spends, on the average, a relative part of

the whole time that does not exceed δ out of the neighbourhood Vi± and, moreover,

Sm(r) ∈ Vi± for |m| < (1− δ)T/2, where T is the period of r, then on W±
r the map-

ping ST possesses a linearization CN -close to the linearization of S |W±
i± . Moreover,

the partition ξ± = {Λ±
s : 1 ≤ s ≤ p±} of the eigenvalues of the mapping ST | W±

r ,

which was introduced in item e) of Lemma 4, satisfies the following condition: the

sets
∣∣Λ±

s

∣∣1/T are contained in small vicinities of
[
Λ±
i±,s

]
, respectively. In particular,

the partition ξ± is right concordant with ξ±i± . Besides, if the partitions ξ±i are right

concordant then it is sufficient to require the domain V to be small and the periodic

point r ∈ A′ to be close to qi± .

Remark 13. The assumption that A = A′ is a set of quasi-random motions is not
used while proving Lemma 5. However, all the periodic trajectories from A which
pass near the point qi and do not coincide with it belong to the set of quasi-random
motions (only due to this fact the set of quasi-random motions is dealt with in
the statement of Theorem 2). The latter corresponds to the maximal connected
branched subgraph Γ′ of the graph Γ. This subgraph is formed just by all the closed
paths passing through the vertex i.

Proof of Theorem 2. If a point r ∈ A′ is close to qi± then on W±
r there exist

homo-(hetero)clinic points close to those on W±
i± . Next, trajectories of all the points

r described in Lemma 5 are everywhere dense in A′. Therefore, the required re-
sult concerning the validity of condition (1) follows easily from Lemmas 3 and 5.
Moreover, the set A′ in a neighbourhood U of any of its points does not lie on
a regular CN -submanifold K of positive codimension. So, to prove the second
part of the statement of the Theorem, one can exploit an iterative procedure of
the diagonal process-type. If

{
Ki

}
is a sequence of CN -submanifolds such that⋃

iKi ⊃ A′∩U then there exists a sequence
{
Ui

}
of open sets, for which Ui∩A′ �= ∅

and U i+1 ⊂ Ui \Ki. Then for any sequence of points ri ∈ A′ ∩ Ui there is a limit
point r∞ ∈ A′ \

⋃∞
i=1Ki which completes the proof. �

6.2. Proof of Lemma 5. Nonautonomous linearization

The key idea in the proof of Lemma 5 is the following one. Sternberg’s proof [48]
can be slightly rephrased in such a way that the linearization of a contraction map-
ping T :U → U , T (0) = 0, of a neighbourhood U ⊂ R

n of the origin (under con-
ditions (2) for the spectrum at the origin which are sharper than conditions (2′)
considered in [48]) will be sought as a fixed point of a hyperbolic endomorphism DT
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in the Banach space of CN -mappings f . The endomorphism DT is defined so that
the following diagram is commutative:

T−−−−→

DT (f+id)

� �f+id

−−−−→
J

where T (0) = 0, J = dT (0), f :U → R
n, and f(0) = 0, df(0) = 0. Then the operator

DT transforms functions defined in the image of the mapping T into functions defined
in the pre-image, and l = id + f is the required linearization if DT l = l. In order
to deal with the linear space of CN -functions f whose 1-jets vanish at the origin,
it is convenient to represent the required f as a fixed point of the mapping (·) �→
DT (·) = DT (·)+dT , where dT = DT id−id = J−1◦T−id. Obviously, DT1◦T2 = DT2 ◦
DT1 , DT1◦T2 = DT2 ◦ DT1 , i.e., the correspondences T �→ DT , DT are contravariant
functors. The important Proposition 5, which utilizes the above ideas, will be
prefaced by the following

Remark 14. Now we explain the proof of the Sternberg theorem under condi-
tions (2′) and establish its local uniform variant as follows. The linearizing CN -
transformation depends continuously on a CN -diffeomorphism T :U → R

n if all the
mappings are treated in the Ck-topology for arbitrary 1 ≤ k ≤ N and T remains
uniformly CN -bounded from above. Here N ≥ 2 is determined by inequality (3).
Actually, we adopt the original proof [48]. A fixed point of the contractive map
T depends continuously on T ∈ C1. Hence, without loss of generality, one can
consider perturbations of T that leave the fixed point to be located at the origin.
There is a norm in R

n that induces an operator norm ‖ · ‖ such that ‖J‖ < 1 and
µ =

∥∥J−1
∥∥‖J‖N < 1 where J = dT (0): Rn → R

n. Let U be a small enough ball in
this norm centered at the origin and let G∗ be the space of CN -functions f :U → R

n

with zero (N − 1)-jets at the origin. Equip G∗ with the norm ‖ · ‖∗ being the ex-
act upper bound for the norm of the N -th differential at all the points of U . Here
the N -th differential is considered as a polylinear mapping R

n × · · · × R
n︸ ︷︷ ︸

N

→ R
n

symmetrical in each cofactor [15]. Then DT is well-defined and the key fact is that∥∥DT | G∗
∥∥
∗ ≤ µ̃, the operator norm being induced by the norm ‖ · ‖∗ in G∗, and µ̃

being close to µ if the neighbourhood U is chosen to be sufficiently small. This is eas-
ily derived from the expressions for the monomials constituting the N -th differential
and the estimates

∥∥dif∥∥ = O(ε)‖f‖∗, 0 ≤ i < N , and
∥∥dT (x) − J

∥∥ = O(ε)‖T‖C2

where di denotes the i-th differential, x ∈ U , and ε is the radius of the ball U .
Then |µ̃− µ| ≤ ε ·

∥∥J−1
∥∥PN

(
‖T‖CN

)
for small ε > 0 where PN is some polynomial
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depending on N only. (We notice, however, that the linear operators L and DT are
not close as will be explained in Remark 15.) So, the operator DT | G∗ is contrac-
tive and its Lipschitz constant can be chosen to be uniform and < 1 under C1-small
perturbations of T provided that T remains uniformly CN -bounded. There exists a
CN -transformation from the old coordinates x ∈ U ⊂ R

n to the new ones y = R(x)
such that R(0) = 0, dR(0) = id and in the coordinates y, the (N − 1)-jet of the
mapping T at the origin, jN−1

0 T , will coincide with the (N−1)-jet of the differential
J = dT (0), i.e., the mapping T will take the form T ′ = R ◦ T ◦ R−1 such that
T ′−J ∈ G∗. This corresponds to performing (N −2) steps of the formal normaliza-
tion procedure and this is possible due to the absence of resonances. Here, for any
k < N , the k-jet of the normalizing transformation R at zero, jk0R, is determined
only by the k-jet jk0T and depends continuously on the latter. This fact remains
valid for k = N if one performs an additional step of the formal normalization proce-
dure so that the N -jet of T ′ at the origin will coincide with the N -jet of J = dT (0).
If k = N or k = N − 1 then one can put R(x) to be a polynomial transformation
identified with jk0R. If k < N − 1 then one can choose uniformly CN -bounded
mapping R to be arbitrarily close to jk0R in the Ck-norm and to have the required
(N − 1)-jet, jN−1

0 R. Then in the new coordinates y, the desired linearization is
sought for as l′ = id+f where f is a fixed point of the contractive map DT ′ | G∗. In
the original coordinates, the linearization is written as l = l′ ◦ R. One can present
another version of the above proof where the preliminary transformation of coordi-
nates is not performed. Now R:U → R

n is a map such that R(0) = 0, dR(0) = id,
and h = DTR−R ∈ G∗. The desired linearization is sought for as l = R+ f where
f is a fixed point of the contractive map (·) �→ DT (·) + h in the space G∗.

Therefore, it suffices to prove the following result where all the mappings are
considered in the Ck-topology. Let gT ∈ G∗ remain uniformly CN -bounded and
depend continuously on T ∈ CN . Denote D̃T (·) ≡ DT (·) + gT . The unique fixed
point f ∈ G∗ of the mapping D̃T | G∗ depends continuously on T . In fact, the
desired fixed point can be expressed by the formula

f =
+∞∑
j=0

Dj
T gT .

The series is uniformly convergent in G∗. This fact is due to the uniformity of
the Lipschitz constant < 1 for DT | G∗ and the uniform CN -boundedness of gT .
Consequently, the series is also uniformly convergent in the Ck-norm and the desired
result follows immediately from here because of the continuous dependence of each
term on T in the Ck-topology.
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B. Anderson [5] claimed that the linearization as a Ck−1-mapping depends
continuously on the diffeomorphism T as a Ck-mapping, without assuming T to
be uniformly CN -bounded in a neighbourhood of the fixed point. The following
two examples show that the latter statement is not correct and our result is the
best possible. Let N0 + 1 be the minimal N satisfying (3). We construct C∞-
mappings T : Rn → R

n that are arbitrarily CN0-close to a given non-resonant linear
mapping J = dT (0) while the corresponding linearizations are not C0-close in any
neighbourhood of the origin. The second example is essentially one-dimensional
(n = 1) where N0 = 1. The first example treats an arbitrary N0 and can be easily
generalized to any dimension ≥ 2. Actually, the first example is some modification
of the second one.

Example 2: Let J(x, y) = (λx, λKy), where N0 < K < N0 + 1, and let U ⊂ R
n

be a bounded neighbourhood of the origin such that J(U) ⊂ U . Introduce a bump
C∞-function θ: Rn → R such that θ ≡ 1 over U and suppθ ⊂ J−1(U). Define
fr(z) = θ(z/r)xN0 , where z = (x, y) and r > 0. Then the j-th derivatives of fr are
O(rN0−j). So, the map

T :
(
x

y

)
�→

(
λx

λKy + cfr(x, y)

)
is O(c)-close to J in CN0 provided that r remains bounded. On the other hand,
the linearization of T and that of J are not C0-close in any given neighbourhood of
the origin if r is sufficiently small. Indeed, the desired linearization of T takes the
following form in the neighbourhood U of the origin:

l(x, y) =
(
x, y − cg(x)

)
, where g(x) = xN0/(λN0 − λK),

and the invariant curve C : y = cg(x) represents the x-axis of the linearizing coor-
dinates. Let (x0, y0) be one of the points of C ∩ ∂(rU) where the domain rU is
obtained from U by applying the homothety with coefficient r and center at the
origin. Then y0 = cg(x0) and x0 �= 0, x0 = O(r) as r → 0. Let m > 0 be an integer
such that the point (xm, ym) = T−m(x0, y0) has the x-coordinate, xm, of the order
of unit. Then

|ym| = |y0||xm/x0|K =
c

λN0 − λK |xm|K |x0|N0−K →∞

as r → 0 provided that c �= 0 is not changed. Here we have used the fact that all
the points (xk, yk), k > 0, are located in the complement to J−1(rU) where T ≡ J .
The point (xm, ym) lies on the x-axis of the linearizing coordinates. This implies the
desired result and shows, moreover, that the x-axis of the linearizing coordinates of
T and that of J diverge.



156 Dovbysh

Example 3: Now n = 1, J(x) = λx and θ: R → R, fr(x) = θ(x/r)x will be defined
as above. The map T (x) = λx + c

(
x − fr(x, y)

)
is O(c)-close to J in C1 over any

given bounded neighbourhood of the origin. It is easily seen that for small r the
linearization of T and that of J are not C0-close in the neighbourhood of the origin.

We proceed to the following important

Proposition 5
Let the following “concordance” and “uniformity” conditions be satisfied for

CN -mappings Ti:U → R
n of a domain U ⊂ R

n that have the common fixed point
0 ∈ U :

i) the sets of eigenvalues for the operators Ji = dTi(0): Rn → R
n possess the right

concordant partitions ξi =
{
Λi,s : 1 ≤ s ≤ p

}
, and, moreover, invariant subspaces

Ms corresponding to the elements Λi,s of the partitions ξi are coincided. The number
N is defined by the inequalities of type (3) via the eigenvalues of the operators Ji;
ii) moreover, some norm in R

n and its restrictions to Ms induce operator norms ‖ · ‖
such that

∥∥Ji∥∥ < 1 and the partition into classes
{∥∥Ji,s∥∥, ∥∥J−1

i,s

∥∥−1
}

, Ji,s = Ji |Ms,

that correspond to right concordant partitions ξi, are also right concordant with ξi.
These conditions must be persistent under δ-perturbations of the operators Ji,s,
where δ > 0 is some number;
iii) the CN -norms of Ti and T−1

i are uniformly bounded.

Then in a small enough ball (in the sense of the norm from condition ii)) U ,
centered at the origin 0 ∈ R

n, all the mappings Ti are contractive. Besides, there
exist a number 0 < µ < 1, a direct sum decomposition E = E+ ⊕ E− of the space
E of CN -functions f :U → R

n whose 1-jets vanish at the origin, and a norm in E
(that is equivalent to the original one) such that the following statements hold. Each
linear operator Li = DJi is hyperbolic with separatrices E+ and E− and, moreover,∥∥∥(
Li | E±)±1

∥∥∥ ≤ µ for the corresponding operator norms. The functional spaces

E± = E±(U) do not depend on the choice of U in the sense that for U ′ ⊂ U ′′,
restricting the functions f ∈ E±(U ′′) onto U ′ generates the natural projections of
E±(U ′′) onto E±(U ′). Obviously, to the decomposition of E, there correspond the
block forms of the linear operators DTi

:

DTi =
(
Ai Bi

Ci Di

)
,

where Ai:E+ → E+, Bi:E− → E+, Ci:E+ → E−, and Di:E− → E− are linear
operators. Next, given ε > 0, the small enough neighbourhood U of the origin
and the norm in E can be chosen in such a manner that in addition the following
condition will hold: for all i the norms of the block components satisfy estimates
‖Ai‖ ≤ µ+ε, ‖Bi‖ ≤ ε, ‖Ci‖ ≤ ε, and

∥∥D−1
i

∥∥ ≤ µ+ε, and the norms of the vectors
dTi do not exceed unit.



Transversal intersection of separatrices and branching 157

Corollary

If the subscript i ranges over the set N then, under the conditions of Proposi-

tion 5, there exists a unique sequence of uniformly CN -bounded mappings li pos-

sessing at the origin a tangency of (at least) first order with the identity map id and

such that the following diagram commutes:

· · · T−1−−−−−→ T0−−−−−→ T1−−−−−→ T2−−−−−→· · ·
l−1

� l0

� l1

�
· · · −−−−−→

J−1
−−−−−→

J0
−−−−−→

J1
−−−−−→

J2
· · · (11)

Historical comment 2. Recently the author found out that, in essence, this con-
struction had been considered by Y. Yomdin [49] a few years ago. He called the
mappings li “nonautonomous linearization”. The simplicity of the spectra assumed
by Y. Yomdin is not essential. On the other hand, he considered a slightly more
general case where the sequences

{
Ti

}
,
{
Ji

}
, and {li} grow not faster than exponen-

tially. This generalized situation can also be easily described in terms of itinerary
schemes as it will be done in Remark 16. Y. Yomdin dealt also with some special
situation where all the elements of the sequence

{
Ji

}
coincide and possess a simple

spectrum that lies in the Siegel domain, and, moreover, all the mappings are analytic
(we treat a situation where the spectra belong to the Poincaré domain).

Remark 15. In Proposition 5, the linear operators DTi
and Li = DJi

are not close,
although the norms of their block components admit the close upper estimates.
Indeed, let T :U → U be a CN -mapping possessing a nondegenerate fixed point and
let J be the corresponding linear part of T . Assume that a mapping T ′:U → U is
CN -close to T . Then, using the chain rule, one can represent the N -th differential
of

(
DT ′ − DT

)
(f) at a point x ∈ U as a sum of monomials such that the norm of

one of them,
J−1

(
dNf |T ′(x) −dNf |T (x)

)(
dT |x, · · · , dT |x︸ ︷︷ ︸

N

)
,

can be estimated from above only in terms of the continuity modulus of dNf , while
the norms of the other monomials admit a suitable upper estimate ‖T ′ − T‖CN ·∥∥J−1

∥∥2
PN

(
‖T‖CN

)
·‖f‖CN where PN is a polynomial depending on N only. There-

fore, Proposition 5 is unimprovable in the above-mentioned sense if one imposes no
restrictions on the continuity modulus of the N -th differential of f . Due to the same
reason, the operator DT does not depend continuously on T ∈ CN although DT f

does for each f ∈ E.
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Remark 16. The previous Corollary is easily established by standard means of
hyperbolic theory (the finite-dimensional case with invertible mappings Si is usu-
ally considered. We deal here with the infinite-dimensional Banach case with non-
invertible Si). We sketch the underlying geometrical ideas that are very natural
and can be found in many works (see also a relevant discussion in [6] and [27]).
These ideas are “nonautonomous” and a many-dimensional variant of the above-
described J. Hadamard’s “graph transform” approach. In essence, we will construct
a mathematical object that was called an itinerary scheme by V. M. Alekseev [2,
Part 1]. Different names were attached to the elements of the below-defined spaces
Σ−, Σ+. For example, they can be called unstable and stable slices. Let R > 0
be large enough and D = D+ × D−, where D± is an R-ball in E± (centered at
zero). Consider spaces Σ± of continuous mappings f±:D± → D∓ whose Lipschitz
constants are ≤ ρ±, where the positive numbers ρ− and ρ+ are such that ρ−ρ+ < 1.
We will identify functions f± and their graphs. Let S = Si = DTi . Then the cor-
respondences α �→ S∓1(α) ∩D, for α ∈ Σ±, will determine well-defined contracting
(in the usual C0-norm) mappings S

±
i = S±: Σ± → Σ± (although the mappings

Si are non-invertible) if small enough ε > 0 was chosen depending on µ and ρ±.
The Lipschitz constant λ < 1 of these contracting mappings and a lower bound
for the radius R depend only on µ, ρ±, and ε. Thus, to (11) there corresponds a
double-infinite chain

· · ·
DT−1←−−−− DT0←−−− DT1←−−− DT2←−−− · · · . (12)

Then the sets S
−
i+1 ◦ S

−
i+2 ◦ · · · ◦ S−

m(Σ−) and S
+
i ◦ S

+
i−1 ◦ · · · ◦ S

+
−m(Σ+) shrink,

respectively, exponentially fast to some elements α−
i ∈ Σ− and α+

i ∈ Σ+ as m →
+∞. The intersection α−

i ∩ α+
i consists of a single point due to the inequality

ρ−ρ+ < 1 and coincides with the mapping li− id. Due to the affine character of the
mappings S, one can consider in our case only linear mappings f±, i.e., the affine
stable and unstable slices.

We notice that the mapping S+ of the stable slices is well-defined and contrac-
tive although S may be non-invertible. A simple construction of S+, that is based
on the invertibility of the restrictions of the mapping S onto unstable slices, can be
found in [27, Proof of Theorem 5.1; 25; 33] and will be shortly described here. A
stable slice α ∈ Σ+ will be transformed into the set S+(α) = S−1(α) ∩ D ∈ Σ+

which is the graph of a function g:D+ → D− to be constructed as follows. The
mapping S transfers an unstable slice βξ = {ξ}×D− ∈ Σ−, ξ ∈ D+, into its image,
whose piece which is located inside D = D+×D− is an unstable slice β̃ξ = S−(βξ).
Then

(
ξ, g(ξ)

)
∈ D+×D− is the pre-image of a unique point of intersection, α∩ β̃ξ,

under the invertible map S | β′ξ:β′ξ → β̃ξ, where β′ξ = S−1(β̃ξ) ∩ βξ.
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We return to the problem of constructing the topological equivalence between
TMC and the restriction of the diffeomorphism S to an invariant set A. The descrip-
tive exposition of the relevant ideas can be also found in the lectures [32]. The basic
property of the diffeomorphism S allowing one to build the itinerary scheme, i.e.,
to choose the proper graph Γ and the subsets Di and li,j , is hyperbolicity , or more
precisely, the possibility to decompose the tangent space at any point x in some
subset of M into the direct sum of two (many-dimensional) maybe non-invariant12

subspaces such that the expansion occurs along one of them (E−
x ) and the contrac-

tion takes place along the other (E+
x ) (in an appropriate metric on M). The sets Di

are chosen as “rectangles” D+
i ×D−

i whose sides D±
i are parallel to these subspaces

and are closed balls or, more precisely, are nearly closed balls (in the mentioned
metric). More rigorously speaking, using a chart, a small vicinity U of the point x
of the manifold M can be identified with a neighbourhood of zero in the tangent
space TxM . This makes possible to construct the required set Di in U . Denote by
Σ±

i the corresponding spaces Σ± for the rectangle D+
i ×D−

i . Next, only “good” in-
tersections [32] li,j , where the rectangles S(Di) and Dj cross, must be considered13.
In this case the corresponding maps S−(li,j): Σ−

i → Σ−
j and S+(li,j): Σ+

j → Σ+
i

are well-defined and contractive under a proper choice of ρ+ and ρ−. The precise
formulations and strict estimates for these geometrically visual results can be found
in [2, Part 1]and will be reproduced in the continuation (Part II) of the present
paper. Thus, every sequence ω ∈ ΩΠ determines stable W+

r ∈ Σ+
ω0

and unstable
W−

r ∈ Σ−
ω0

slices by the above-described way: the images of the compositions
Σ−

ω−m
→ Σ−

ω−m+1
→ · · · → Σ−

ω0
and Σ+

ωm
→ Σ+

ωm−1
→ · · · → Σ+

ω0

shrink exponentially fast to W−
r and W+

r , respectively, as m→ +∞. The required
point ψ(ω) = r is a single point of intersection W−

r ∩W+
r . Therefore, the Markov

property is valid. Note that the sliceW±
r is determined by the sequence [ωn : ±n ≥ 0]

infinite in one direction. The mapping ψ constructed is indeed continuous because
any change of far elements of the sequence ω leads only to a small perturbation of
the manifolds W±

r and the mappings κi: Σ+
i × Σ−

i → Di, defined as κi(α+, α−) =
α+∩α−, are continuous (in fact, Lipschitz). Moreover, the mapping ψ is easily seen
to be Hölder if the space Ω is equipped with the conventional distance function

ρ
([
ω′
n

]
,
[
ω′′
n

])
=

+∞∑
n=−∞

δω′n,ω′′n
a|n|

,

where a > 1 is an arbitrary constant and δ·,· is the Kronecker symbol.

12 We keep in mind the invariance of the bundles formed by these subspaces with respect to the action of the
tangent mapping TS:TM→TM .

13 One could consider “good” connected components of the intersection. In this case, the multigraph Γ should
be dealt with where a few edges may possess the common origins and ends. However, the equivalent dual
graph can be considered whose vertices and edges are identified with the edges and vertices of the multigraph
Γ, respectively. We emphasize that this representation was used in [2] .
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We mention in this connection the following facts. Firstly, the stable, W+
r , and

unstable, W−
r , manifolds of a point r of the hyperbolic set A can be constructed in

this way (see [32]) on the basis of the corresponding itinerary scheme and “positive”{
St(r), t ≥ 0

}
and “negative”

{
St(r), t ≤ 0

}
“semitrajectories” of the point r ∈ A.

Secondly, the proof of Alekseev’s theorem can be carried out via the construction
of an itinerary scheme that deals with (nonlinear) diffeomorphisms S. It is closely
related to the C1-variant of the well-known λ-lemma [39; 37, Lemma 6.1]. Moreover,
as it was explained, the construction of the mapping S+ described above remains
valid if one considers an itinerary scheme in the nonlinear Banach non-invertible case.
In essence, the itinerary scheme was constructed in [25, 33] to establish an analog of
Alekseev’s theorem for a homoclinic structure of a smooth, possibly non-invertible
map of a Banach manifold (the simplest case of a single homoclinic trajectory was
discussed in [25, 33], but the result obtained is immediately transferable to the
general case). Here one has to require the differential of the mapping to be uniformly
continuous in a small vicinity of the trajectories of hyperbolic points qi, otherwise
the C1-variant of the λ-lemma does not hold. The necessity of this condition was
pointed out in [25] (the C2-case was considered in [33]). The special features of the
problem (the infinite dimension and non-invertibility) require also some accuracy in
stating the conditions concerning the points rj (see [25, 33]).

Remark 17. Let us consider the sequence of mappings Si:Di → Ei+1,

· · · S−1−→ S0−→ S1−→ · · ·

(in contrast to (12) the order is direct), and rectangles Di = D+
i ×D−

i ⊂ Ei which
determine the itinerary scheme with some positive maximal “slopes” ρ+, ρ− of stable
and unstable slices and the corresponding Lipschitz constant 0 < λ = λ(ρ+, ρ−) < 1.
Then the stable α+

i ∈ Σ+
i and unstable α−

i ∈ Σ−
i slices, defined as above by the

itinerary scheme, and their intersection, ri = α+
i ∩ α−

i , will depend continuously on
the sequence of mappings Sj . To attach the precise meaning to the last statement,
one should consider [Si : i ∈ Z] as an element of the corresponding Tychonoff
product (over i ∈ Z) of the spaces Vi, where Vi is the space of mappings Si for
which Si(Di) and Di+1 cross and define the contractive maps S

−
i : Σ−

i → Σ−
i+1

and S
+
i : Σ+

i+1 → Σ+
i with Lipschitz constant λ. Equip each Vi with the usual C0-

norm and recall that Σ±
i are equipped with the analogous norms. Then, firstly,

S
−
i β

− ∈ Σ−
i+1 (S+

i β
+ ∈ Σ+

i , respectively) depends continuously on the map Si ∈ Vi
and the slice β− ∈ Σ−

i (β+ ∈ Σ+
i+1). Next, recall that, secondly, the C0-diameter

of S
−
i−1 ◦ · · · ◦ S

−
−m

(
Σ−

−m

)
(S+

i ◦ · · · ◦ S
+
m−1

(
Σ+

m

)
, respectively) tends uniformly

to zero as m → +∞ for all the mappings Sj ∈ Vj , and, thirdly, the intersection
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map κi: Σ+
i × Σ−

i → Di is continuous. It is easily seen from these results that α±
i

and ri = α+
i ∩ α−

i depend continuously on [Si]. (Moreover, the mapping κi and
the dependence of S

±
i β

± on Si ∈ Vi are Lipschitz with some constants determined
by ρ+ and ρ− only. Therefore, the dependencies of α±

i and ri on Sj ∈ Vj are also
Lipschitz with constant Cλ|i−j| where C = C(ρ+, ρ−) > 0.) For further purposes,
we notice that the analogous results can be easily proven if the spaces Σ±

i and Vi
are equipped with the pointwise convergence topologies. We emphasize that these
topologies are finer than the C0-topologies if E± or E are infinite-dimensional,
respectively. This is a direct consequence of the analogous result that in the space
of linear operators E± → R, whose norms do not exceed a given positive constant,
the topology defined by the operator norm (the strong topology) is coarser than that
of the pointwise convergence (the weak topology).

Proof of Proposition 5. The existence of the required ball U follows immediately
from conditions ii) and iii). The operators Li are hyperbolic and the separatrices
E+, E− for all of them coincide if condition i) is satisfied. Indeed, let Φ be the
finite set of all couples (s,m) such that |m| ≥ 2 and |λs| < |λm| in inequality (2),
where {λj} is the spectrum of Ji. Given a multiindex m = (m1, . . . ,mn), introduce
m̃ = (m̃1, . . . , m̃p), where m̃t =

∑
λj∈Λi,t

mj ≥ 0, and denote (s, m̃) = Ψ(s,m) and

Φ̃ = Ψ(Φ). Then the correspondence Ψ does not depend on the number i and
Φ = Ψ−1(Φ̃) due to condition i). Obviously, |m̃| = |m|. Furthermore, let πs be
the projection of R

n onto Ms along
⊕
l �=s

Ml, and let G
s,m̃

be the linear space of the

polynomials of the form P
(
π1(·), . . . , πp(·)

)
, where P :M1 × · · · × Mp → Ms is a

homogeneous Ms-valued polynomial in p variables that has degree m̃t in the t-th
argument. Let

F =
⊕

(s,m̃)∈Φ̃

G
s,m̃
, H =

⊕
(s,m̃)/∈Φ̃

|m̃|<N

G
s,m̃

.

Then the outgoing separatrix E− is F and the incoming separatrix E+ is the space
of functions that have at the origin 0 ∈ R

n (N−1)-jets lying inH, i.e., E+ = H⊕G∗,
where G∗ is the space of functions with zero (N−1)-jets at the origin. Indeed, in the
spaces G∗ ⊂ E and G

s,m̃
invariant under Li, the following norms ‖ · ‖∗ and ‖ · ‖

s,m̃

will be induced. The norm ‖ ·‖∗ was defined above as the exact upper bound for the
norm of the N -th differential, and ‖ · ‖

s,m̃
is the norm in the space of polynomials P

that are considered as polylinear mappings P :M m̃1
1 ×· · ·×M m̃p

p →Ms symmetrical

in each cofactor M m̃t
t (the case p = 1 being discussed in [15] but the results being
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transferable immediately to the case of arbitrary p ≥ 1). The corresponding operator
norms (denoted by the same symbols) satisfy inequalities∥∥∥∥(

Li

∣∣ G
s,m̃

)−1
∥∥∥∥
s,m̃

≤ µ for (s, m̃) ∈ Φ̃,∥∥∥Li

∣∣ G
s,m̃

∥∥∥
s,m̃

≤ µ for (s, m̃) /∈ Φ̃, |m̃| < N, and∥∥∥Li

∣∣ G∗
∥∥∥
∗
≤ µ

for some 0 < µ < 1. Recall that the inequality for ‖ · ‖∗ was the basic one in [48].
In our case

µ = max

 max
(s,m̃)∈Φ̃

∥∥Ji,s∥∥ p∏
j=1

∥∥J−1
i,j

∥∥m̃j ;

max
(s,m̃)/∈Φ̃

∥∥J−1
i,s

∥∥ p∏
j=1

∥∥Ji,j∥∥m̃j

 . (13)

It follows from condition ii) that the number µ can be chosen independently of i.
Define a norm in

E = E+ ⊕ E− =
⊕
(s,m̃)

|m̃|<N

G
s,m̃

⊕G∗

as the direct sum (or maximum) of the norms inG
s,m̃

, G∗. Then
∥∥∥(
Li | E±)±1

∥∥∥ ≤ µ.
Due to condition iii), using a homothetic transformation with center at the origin
one can make the difference between Ti and Ji arbitrarily small in the CN -norm if
the neighbourhood U was chosen to be small enough (with a size of order ε). Then
the operators DTi

and Li = DJi
satisfy the required conditions and the norms of

the vectors dTi are close to zero. However, another representation of this idea is
preferable: the norm in E is built of the norms in G

s,m̃
and G∗ with corresponding

weight coefficients κ
m̃

and κ∗ that decrease quickly as |m̃| rises (one supposes |m̃| =
N for G∗), ∥∥∥∥∥∥∥∥∥

⊕
(s,m̃)

|m̃|<N

u
s,m̃

⊕ u∗

∥∥∥∥∥∥∥∥∥ = κ∗
∥∥u∗∥∥∗ +

∑
(s,m̃)

|m̃|<N

κ
m̃

∥∥u
s,m̃

∥∥
s,m̃
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(the sums in the right-hand side can be replaced by the maxima). The possibility
of such a choice follows from the two auxiliary results. Firstly, the operator DT has
triangular form: if Gt =

⊕
s,m̃

|m̃|=t

G
s,m̃

for 2 ≤ t < N , GN = G∗, and DT

(
⊕tut

)
= ⊕tvt,

where ut, vt ∈ Gt, then

vt = DJut + Θt

(⊕
t′<t

ut′
)
, t < N,

vN = DTuN + ΘN

( ⊕
t′<N

ut′
)

(14)

(the subscript i is omitted for brevity). Secondly, the required estimate ‖DT |
G∗‖∗ ≤ µ+ ε/2 is provided by the arguments of Remark 14 if the neighbourhood U
is chosen to be of a size of order ε. Proposition 5 is proven. �
Remark 18. As a required norm in E, one can take the CN -norm induced by the
norm

‖x1 ⊕ · · · ⊕ xp‖∗ = Cε−1

p∑
s=1

‖xs‖s (15)

in R
n, where xs ∈ Ms, ‖ · ‖s are the restrictions of the original norm in R

n (which
is used in condition ii)) to Ms, and C > 0 is some constant. (Recall that the t-th
derivative of a mapping R

n → R
n is a polylinear symmetrical mapping

(
R

n
)t →

R
n [15, 37] which allows one to define the CN -norm in a coordinate-free way [37].)

This result follows immediately from some ideas of the above proof (that concern
the use of the homothetic transformation) and from the following facts. Firstly,
for each polylinear mapping u:

(
R

n
)t → R

n, the function ‖u(·, . . . , ·)‖(+) attains its
maximum over the product Bt of unit balls B ⊂ R

n of the norm

‖x1 ⊕ · · · ⊕ xp‖(+) =
p∑

s=1

‖xs‖s

at some point of the set

Bt =
⋃

s1,...,st

(
Bs1 × · · · × Bst

)
,

where B =
p⋃

s=1
Bs is the union of “ribs”

Bs =
{
x = x1 ⊕ · · · ⊕ xp : xi ∈Mi, xj = 0 for j �= s, ‖xs‖s = 1

}
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of the ball B (because Bt is the convex hull of Bt). Secondly, each homogeneous
polynomial v =

⊕
s,m̃

|m̃|=t

u
s,m̃

∈ Gt of degree t if considered as a polylinear symmetrical

mapping v:
(
R

n
)t → R

n is reduced over Bt to one of the mappings v
m̃

=
⊕
s
u
s,m̃

.

More precisely speaking, v = v
m̃

over Bs1 ×· · ·×Bst , where m̃i are the quantities of
numbers j (1 ≤ j ≤ t) such that sj = i. Thirdly, the mapping DJ :Gt → Gt in the
space of polylinear mappings has the form

DJu(·, . . . , ·) = J−1u
(
J(·), . . . , J(·)

)
and induces operators ϕ− and ϕ+ in the spaces of polylinear mappings

Ms1 × · · · ×Mst →
⊕

s: (s,m̃)∈Φ

Ms ⊂ R
n and

Ms1 × · · · ×Mst →
⊕

s: (s,m̃)/∈Φ

Ms ⊂ R
n,

where
∥∥(ϕ−)−1

∥∥ ≤ µ and ‖ϕ+‖ ≤ µ for the corresponding operator norms, the
number µ is defined by formula (13) for t ≥ 2. Fourthly (this statement is also
related to the homothetic transformation), the norm (15) induces norms in the spaces
of polylinear mappings such that

∥∥dtu∗∥∥ ≤ constCε
∥∥dNu∗∥∥ for any u∗ ∈ G∗ and

t < N , where dt denotes the t-th differential. The proofs of the last two inequalities
for operator norms and the inequality for norms of differentials are quite elementary
and will be omitted. Note, however, that the norms of the polylinear mappings

v
m̃

=
⊕
s

u
s,m̃

:Ms1 × · · · ×Mst →
⊕
s

Ms

are not expressed by any definite formula via the norms of the mappings

u
s,m̃

:Ms1 × · · · ×Mst →Ms.

Thus, there is no definite expression for the norm ‖v‖ = max ‖v
m̃
‖ of homogeneous

polynomial v ∈ Gt in terms of the norms ‖u
s,m̃

‖
s,m̃

. A fortiori , there is no such
expression for the CN -norm under consideration. Obviously, one can take in the

right-hand side of (15) a slightly more general expression Cε−1
p∑

s=1
αs‖xs‖s, where

αs > 1.
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Now we will explain briefly, omitting technical details, the basic ideas needed
to prove Lemma 5. Some of these ideas will be partially revised in the sequel.
First of all, assume the partitions ξ±i to be right concordant. Then the invariant
sections (id, ϕ±

s ) allow one to define local coordinates on W±
r , r ∈ A′ such that

for the mappings T = S±m | W±
r :W±

r → W±
S±m(r) with large m the conditions

of Proposition 5 will be satisfied (with the common invariant subspaces identified
with ϕ±

s ). This enables one to construct the required linearizations. Incidentally,
one can take m = 1 here via the use of a simple generalization of a result [11,
12] which will be discussed in Appendix A. However, if the partitions ξ±i are not
right concordant then these mappings, in the local coordinates under consideration,
possess the common invariant subspaces Ms and the corresponding partitions ξ± of
their eigenvalues are concordant but maybe not right. To a periodic point r ∈ A′ of
period T , there corresponds a periodic chain of mappings

W±
r

S±1

−−−−→W±
S±1(r)

S±1

−−−−→· · · S±1

−−−−→W±
S±T (r)

(16)

with identified ends. In turn, to this chain there corresponds a periodic diagram (11)
and an associated periodic chain

DS±1←−−−− DS±1←−−−− · · · DS±1←−−−− (17)

whose endspaces are also identified and coincide with the space E of the CN -
functions over W±

r . In a piece of relative length δ in the middle of diagram (16),
there are placed “bad” mappings, for which the partitions ξ± of the eigenvalues
do not satisfy the required condition of right concordance with ξ±i± . These map-
pings correspond to the points of the trajectory

{
Sm(r)

}
that are placed out of a

small vicinity of qi± . However, if δ > 0 is small enough then the composition of
mappings (17) possesses a unique fixed point that will coincide with the required
linearization (under the subtraction of the identity mapping). Moreover, the con-
structed linearization on W±

r tends to that on W±
i± as r → qi± , i.e., T → +∞, and

this fact is a corollary of a continuous and (exponentially fast) decreasing depen-
dence of the built stable and unstable slices on the mappings of the Banach space.
This property is quite typical for situations described by itinerary schemes (see Re-
mark 17). To explain this briefly, let us attribute to “bad” mappings those which
occupy the part of relative length 2δ in the middle of diagram (16). Then all the
other mappings tend CN -uniformly to S±1 |W±

i± as T → +∞ and their influence on
the linearization will vanish. Here, one uses Remark 17 and the fact that the map
DT , being treated in the pointwise convergence topology, depends continuously on
T ∈ CN (see Remark 15). Next, if δ > 0 is small enough then will also vanish the
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influence of “bad” mappings placed at a distance of order T from both ends of the
diagram.

Now we will explain in detail for W+
r how to construct the linearizations and

to establish their proximity to the linearization over W+
i+ . For u ∈ A′ close to qi+ ,

local CN -coordinates, y ∈ R
n+

, on W+
u in a neighbourhood of qi+ will be defined

that depend continuously (in the CN -norm) on u. One can set the coordinates of
each one of these points u ∈ W+

u to be y = 0 and suppose that to the tangent sub-
spaces ϕs(u),ms > n

−, there corresponds the same unique (ms−ms−1)-dimensional
subspace in R

n+
for each s. Let positive δ1, δ2 be small enough and δ = δ1δ2,

p =
[
(1 − δ)T/2

]
, p1 =

[
(1 − δ1)T/2

]
. The period T of a point r ∈ A occurring in

the condition of Lemma 5 tends to infinity as the vicinity Vi+ shrinks to the point
qi+ . The mapping ST |W+

r can be represented as the composition of mappings

W+
r

S→W+
S(r)

S→ · · · S→W+
Sp1 (r)

ST−2p1−−−−→W+
S−p1 (r)

S→ · · · S→W+
r (18)

and the manifolds W+
St(r) (|t| ≤ p1) can be identified near the point qi+ with a

neighbourhood of the origin in R
n+

by means of coordinates y ∈ R
n+

. Then all
the conditions i)–iii) of Proposition 5 happen to be satisfied for the mappings S
considered in (18). We introduce ρ± > 0 and choose a small ε > 0 and an appro-
priate neighbourhood U of the origin 0 ∈ R

n+
in the statement of Proposition 5.

Due to Remark 16, the mappings DS that correspond to diffeomorphisms S in the
chain (18) will define the contracting mappings of the spaces Σ+ and Σ− with Lip-
schitz constant λ < 1. We shall prove that this condition remains also valid for
DST−2p1 if one chooses small enough ε > 0 and large enough R > 0 depending on
r. Moreover, the norm of dST−2p1 admits an upper exponential estimate CT−2p1 ,
where C > 1 does not depend on r. The mapping ST−2p1 is the composition of

W+
Sp1 (r)

S→ · · · S→W+
Sp(r)

ST−2p

−−−−→W+
S−p(r)

S→ · · · S→W+
S−p1 (r)

.

Due to the smallness assumption for δ2 > 0, the mappings ST−2p1 for all r satisfy
also condition i), but not conditions ii)–iii).

Some trouble is the fact that, generally speaking, there exists no neighbourhood
U of the origin that is invariant for all the mappings (18). Therefore, at first we
sharpen the definition of the mappings DS and DST−2p1 . Let U be a small ball
centered at the origin 0 ∈ R

n+
with respect to the norm from condition ii) for the

mappings S. If δ2 > 0 is small enough then the mappings St |W+
r (0 < t ≤ T ) cast

U onto domains U (t), where U (t) ⊂ U under the identification of W+
St(r) and R

n+

for t ≤ p or t ≥ T − p. For other values of t, the sizes of the domains U (t) ⊂W+
St(r)
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will be also small enough and upper estimates for their diameters do not depend on
the choice of r ∈ A and are proportional to the diameter of U . On each separatrix
W+

St(r) = W+
St−T (r)

(0 ≤ t < T ), we confine our consideration to the domain U (t).
Note now that the estimates of Proposition 5 remain valid if DT is considered as an
operator from the space of the CN -functions on U ′′ to the space of the CN -functions
on U ′, where T (U ′) ⊂ U ′′, 0 ∈ U ′, U ′′ ⊂ U .

To analyze the mapping ST−2p we observe that, since the set A is of dimen-
sion zero (totally disconnected), the following holds true. The above-discussed CN -
coordinates y ∈ R

n+
in a neighbourhood of u ∈ A onW+

u which depend continuously
on u can be introduced for all u ∈ A. Thus, the mappings S:U (t) → U (t+1) for all
0 ≤ t < T can be considered as mappings of vicinities of the origin in R

n+
into

analogous vicinities. (Incidentally, such the representation is suitable to prove that
all the domains U (t) are small enough.) Here, for the operator L = DJ , where J is
the differential of S at the origin, the subspaces E± are invariant. Moreover, for the
operators

(
L | E−)−1 and L | E+ and for the vector dS , their norms are bounded

from above by a constant that does not depend on r. The desired properties of the
operator DST−2p1 and the estimate for the norm of the vector dST−2p1 follow from
the facts described and the functorial nature of the correspondence T �→ DT . Note
that in the case E− = {0} (the operators DS are contractive) there is no necessity
of the choice of ε > 0 and U depending on r ∈ A.

The next result follows from the above-found properties of the mappings DS

and DST−2p1 pertaining to diffeomorphisms forming the chain (18): an itinerary
scheme is defined for the closed chain obtained via identification of the ends of the
associated diagram

DS←− · · · DS←−←−−−−−−
D

ST−2p1 DS←− · · · DS←− . (19)

If δ1 is small enough then CT−2p1λp1 → 0 as T → +∞ (this condition is required
to “paralyze” the influence of the “bad” mapping DST−2p1 in the chain (19) upon
its ends) and if r → qi+ then T → +∞. Therefore, the following holds true. Let E
be the space of the CN -functions on W+

r , to which the endpoints of diagram (19)
correspond. Then the itinerary scheme determines affine subspaces W± of E that are
invariant under the composition of mappings (19) and are close to those for DS|W+

i+

if r is close to qi+ . The intersection W+ ∩W− is just the desired linearization (with
the identity mapping subtracted) and the required result would follow immediately
from here if the number ε > 0 and, consequently, the ball U in R

n+
and the norm

in E were also chosen independently of r. One can overcome this difficulty via a
slight modification of the proof proposed. The idea is to use the triangle form (14)
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of the operators D. In this case, instead of the chain (19) of mappings DT , one
considers the corresponding chains for subspaces Gt, 2 ≤ t ≤ N , and the quantity
Θt, that depends on the dynamics in the subspaces Gt′ with less indices t′ < t, can
be interpreted as a supplement to the Gt-component of the vector dT . The above
constructions can be repeated almost literally in sequence for increasing indices t (Θt

is determined by a point of the space
⊕
t′<t

Gt′ that was found at the previous steps and

corresponds to the linearization sought for) and decreasing numbers δ1 = δ1(t) > 0.
For each t > 2, the quantity δ1(t)/δ1(t− 1) should be chosen small enough in order
to “paralyze” the influence of “bad” mappings, as was done above with respect
to DST−2p1 . The quantity δ2 can be chosen independently of t. Now, there is no
problem of the choice of ε > 0 and U depending on r because the role of the
operator DT for t < N is played by DJ and for t = N , by the contractive operator
DT | GN whose unstable separatrix is E− = {0}. As a result, one establishes the
desired proximity of the linearizations in the CN -norm not depending on the choice
of r ∈ A. At last, the proof is elementary for the case where the partitions ξ+i are
right concordant. It is based on the fact that ST | W+

r can be represented as the
composition of mappings satisfying the conditions i)–iii) with uniform estimates that
do not depend on r ∈ A. The statement of Lemma 5 that concerns the properties
of the moduli for the eigenvalues of the mapping ST |W+

r will also follow from the
above analysis. So, the proof of Lemma 5 has been completed. �

We will discuss briefly in the following two Remarks the construction of the
nonautonomous linearization.

Remark 19. The conditions i)–iii) of Proposition 5 and the construction of the
nonautonomous linearization described above are stable under small perturbations
of the mappings Ti. Precisely speaking, the uniform estimates of conditions i)–iii)
for Ti and Ji will determine a number ∆ > 0 such that the following statement
holds. If each CN -mapping T ′

i :U → R
n is ∆-close to Ti in the C1-norm and its

CN -norm admits the previous upper bound then for the sequence T ′
i :

a) there exist unique sequences of points r′i ∈ U and spacesM ′
i,s ∈ GdimMs

(r′i)
(1 ≤ s ≤ p) close, respectively, to zero ri = 0 ∈ U and Ms ⊂ T0U such that
they satisfy the “invariance” conditions T ′

i (r
′
i) = r′i+1, dT

′
i

(
M ′

i,s

)
= M ′

i+1,s;
b) there exists a unique sequence of mappings l′i such that diagram (11) com-

mutes, where the mappings Ti and li are replaced by T ′
i and l′i, the condi-

tions dli(0) = id are replaced by dl′i(r
′
i) = id, and all the mappings l′i are

uniformly bounded in the CN -norm.

Let Ui be the definition domain of the mappings Ti, T ′
i :Ui → Ui+1 and li, l′i:

Ui → R
n. Embedding Ui ⊂ R

n induces the coordinates in Ui that will be referred



Transversal intersection of separatrices and branching 169

to as “natural”. According to item a), there exist CN -coordinates uniformly CN -
close in domains Ui to the “natural” ones and such that the mappings T ′

i in these
coordinates will satisfy the conditions of Proposition 5 with uniform estimates close
to the “unperturbed” ones (i.e., those for Ti in “natural” coordinates). The item b)
follows immediately from both the latter fact and the general construction of an
itinerary scheme for the mappings DTi which is stable under small perturbations of
the uniform estimates. The item a) is easily proven via an analogous geometrical
construction: the desired sequence r′i is determined by the itinerary scheme for the
mappings T ′

i and spacesM ′
i,1⊕· · ·⊕M ′

i,s andM ′
i,s+1⊕· · ·⊕M ′

i,p (1 ≤ s < p) are built
on the basis of negative

[
r′j , j ≤ i

]
and positive

[
r′j , j ≥ i

]
“semitrajectories”of the

point r′i by the method used earlier in Remark 16 to construct stable and unstable
slices α+

i and α−
i . (For the itinerary scheme determining the sequence r′i, the unsta-

ble subspace degenerates into the trivial one and the set Σ+ of stable slices consists
of a single element, the set Σ− of unstable slices coincides with the set of the points
of Ui. Therefore, the point r′i is determined by the sequence

[
T ′
j , j ≤ i

]
infinite to

the left.) Moreover, the sequences of points r′i, subspaces M ′
i,s, and CN -mappings

l′i treated in the Ck-topology, 1 ≤ k ≤ N , depend continuously on the sequence of
CN -mappings T ′

i treated in the Ck-topology. To attach the precise meaning to the
last statement, one should consider

[
r′i

]
,

[
M ′

i,s

]
,

[
l′i
]
, and

[
T ′
i

]
as elements of the

corresponding Tychonoff products (over i ∈ Z) of the spaces Ui, Ui,s, CN
(
Ui,R

n
)
,

and Bi, where Ui,s → Ui is the tangent bundle of the Grassmannian manifolds of the
linear spaces of dimension dimMs and Bi is the space of CN -mappings Ui → Ui+1

that are ∆-close to Ti in the C1-norm.
This result is proven by a nonautonomous version of the arguments of Re-

mark 14. Note that in the case k = N , it is a direct consequence of Remark 17 and
the fact that the mapping DT , being treated in the pointwise convergence topology,
depends continuously on T ∈ CN (this argument was used in the proof of Lemma 5).
In the general case 1 ≤ k ≤ N , it suffices to assume that r′i = 0 for all i (small par-
allel translations should be used) because r′i depends continuously on Tj . Next, the
k-jets of the nonautonomous linearizations l′i at r′i = 0, jk0 l

′
i, are determined only by

the k-jets jk0T
′
j and depend continuously on the latters. Indeed, jk0 l

′
i are determined

by an itinerary scheme obtained from the original one by considering, instead of the
spaces of all the functions f :Ui → R

n with zero 1-jets at the origin, only the spaces
of the k-jets for these functions at the origin (see Appendix B). We will perform the
CN -transformation from the old coordinates x ∈ Ui ⊂ R

n to the new ones y = Ri(x)
such that all the Ri are uniformly CN -bounded, are arbitrarily close to jk0 l

′
i in the

Ck-norm, and have the desired N -jets, jN0 l
′
i. Then in the new coordinates y, the

mappings T ′
i will take the form T̃ ′

i = Li ◦ Ji ◦ L−1
i−1 where Li = Ri ◦ l′i

−1, and the
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desired nonautonomous linearizations are sought for as l′i = id + fi where fi ∈ G∗
are determined by the sequence of the contractive mappings D

T̃ ′
i

| G∗. Then

fi =
+∞∑
j=1

DTi+1 ◦ · · · ◦ DTi+j
gTi+j

and the arguments of Remark 14 provide the desired result. Note that this expres-
sion in terms of the uniformly convergent series remains valid under the conditions
of Lemma 5 although the assumptions of Proposition 5 are not necessarily met.
Therefore, under the conditions of Lemma 5, the CN -linearization of ST on W±

r

depends continuously on S ∈ CN if all the mappings are treated in the Ck-topology
and S remains uniformly CN -bounded.

Remark 20. a) Let the partitions ξ±i be right concordant and the neighbourhood V
of the homoclinic structure be small enough. Then, in accordance with the Corollary
of Proposition 5, for each point r ∈ A a nonautonomous CN -linearization W±

r →
R

n± can be naturally introduced. This mapping plays the role of linearization,
coincides with it if the point r is periodic, and depends continuously on r. (Note
that the graph Γ can be disconnected and, thus, set A is not necessarily a set of
quasi-random motions.)

b) The local manifolds W±
r are well-known to be extendible to the global man-

ifolds by means of iterations of the mapping S [37]. Obviously, the commutativity
condition for the diagram (11) enables one to extend uniquely the nonautonomous
linearization onto the global manifolds W±

r .
c) The nonautonomous linearization li admits an invariant coordinate-free de-

scription. Indeed, consider a sequence
{
Ti

}
that satisfies the conditions of Proposi-

tion 5. Let, as above, Ui = U be the definition domain of the mapping Ti:Ui → Ui+1.
There exists a unique sequence ri = 0 ∈ U such that Ti(ri) = ri+1. The nonau-
tonomous linearization is given by the mappings li:Ui → R

n such that li(ri) = 0,
dli(ri) = id | R

n. Using the “natural” coordinates in Ui ⊂ R
n, one can identify the

spaces R
n containing the images imli with the tangent spaces TriUi. Then the nonau-

tonomous linearization is just the sequence of CN -mappings li:Ui → TriUi uniformly
CN -bounded and such that li(ri) = 0 ∈ TriUi, dli(ri) = id | TriUi ≡ id:TriUi ⊃←
(the space TrU is equipped with the natural linear structure and, therefore, for
each ξ ∈ TrUi there is the canonical identification TrUi ≡ Tξ

(
TrUi

)
used here for

ξ = (ri, 0), 0 ∈ TriUi) and diagram (11) commutes, where Ji = dTi(ri):TriUi →
Tri+1Ui+1. All the constructions are analogous in the case of the nonautonomous
linearization on the separatrices W±

r , r ∈ A. Here the dimension n± = dimW±
r , a
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trajectory of the mapping S±1 in A, some vicinity of ri in W±
ri , and the restriction

S±1 | Ui play the roles of n,
[
ri : i ∈ Z

]
, Ui, and Ti, respectively. A completely

coordinate-free representation is in some sense impossible because of the following
two reasons. Firstly, in appropriate coordinates on Ui the mappings Ti are supposed
to satisfy the conditions of Proposition 5, and, secondly, the uniform boundedness
of li is required in the corresponding CN -norm that will be called an “original”
norm. Let gi:Ui → R

n be CN -mappings introducing new coordinates in Ui. If all gi
and g−1

i are uniformly bounded in the original CN -norm then the uniform bound-
edness of li in the original CN -norm is equivalent to that in CN -norms induced by
coordinates y = gi(u), u ∈ Ui. In particular, in the case of the nonautonomous lin-
earization on the separatrices W±

r , due to the compactness of A, one can set on W±
r

arbitrary CN -coordinates depending continuously on r ∈ A. Thus, in this situation
a completely coordinate-free description of nonautonomous linearization is possible
because conditions i)–iii) of Proposition 5 are guaranteed by the assumption that
the partitions ξ±i are right concordant. Note in conclusion the following fact. If
li: Rn ⊃ U → R

n = T0U is an arbitrary mapping written in the natural coordinates
then in the coordinates y = gi(u), u ∈ Ui, where gi(0) = 0, this mapping possesses
the form Dg−1

i
li.

Problem 2. It would be interesting to investigate in detail the above mathematical
object — nonautonomous linearization {li}, and its relation to the sequence

{
Ti

}
.

7. Modifications of condition 2) of main Theorem 2

Let the partition ξ±i be right, and let N ≥ N±
i . It is convenient to use on W±

i

coordinates y ∈ R
n± defined by the diffeomorphism l±i and such that the mapping

S becomes linear in these coordinates: y �→ J±
i y. To each element Λ±

i,s of the
partition ξ±i , there corresponds a c±s -dimensional invariant subspace M±

s ⊂ R
n±

of the operator J±
i that can be chosen independently of the number i. Moreover,

p±⊕
s=1

M±
s = R

n± . The spaces L±
i,s =

⊕
t≤s

M±
t were used above.

Let T =
(
J±
i

)±1 and U be a small vicinity of the origin 0 ∈ R
n±{y} identified

with the point qi, T (U) ⊂ U . Denote the subset Φ of the set of couples (s,m) and the
linear subspaces F = E− and H in the space of polynomials (which were introduced
in the proof of Proposition 5) as Φ±, F±, and H±, respectively, for the map T under
consideration. Consider the mapping DT defined on the functions f :U → R

n± with
1-jets vanishing at the origin. The role of the outgoing separatrix for the hyperbolic



172 Dovbysh

fixed point f ≡ 0 is played by F±, and the role of the incoming separatrix is played
by the space of functions whose (N − 1)-jets lie in H±. The mapping g = id + ∆l
realizes a diffeomorphism R

n± → R
n± for every ∆l ∈ F± because its inverse g−1 is

also of the form id + ∆̃l, ∆̃l ∈ F±. Indeed, the mappings g of such form are exactly
all the mappings having, at the origin, a tangency (at least) of first order with the
identity map id, and such that the following diagram commutes:

T−−−−−→ T−−−−−→ T−−−−−→· · ·
g
� � �
−−−−−→

T=J
−−−−−→

T=J
−−−−−→

T=J
· · ·

where all the mappings are uniformly bounded in the CN -norm. The mapping g−1

also satisfies this condition because it is possible to invert the direction of the vertical
arrows, replacing simultaneously the corresponding mappings by their inverses. One
establishes, analogously, the more general result: the mappings id+F± form a group
with respect to the composition operation. If the mapping g has, at the origin, a
tangency of first order with the identity map, then the k-jet of g−1 at the origin is
a polynomial in the j-jets of g at the origin, where j ≤ k. Therefore, the mapping
of the set id + F± into itself that links a function and its inverse is polynomial.

Let the conditions 1) and 4) of Theorem 2 be satisfied and r = rj be a point
such that i = i±(j), i1 = i∓(j), let the partitions ξ±i , ξ

±
i1

be right concordant, and
N ≥ N±

i = N±
i1

. In particular, it is sufficient to consider the homoclinic structure
formed by the trajectory of a single double-asymptotic point r = rj and to require
the partitions ξ±i , ξ

±
i1

to be right concordant, the appropriate inequality on numberN
to be true, and condition 4) of Theorem 2 to be satisfied, under the assumption that
each partition ξ∓i , ξ

∓
i1

contains one element, i.e., p∓ = 1. Then, due to Remark 20, in
a neighbourhood, Ur, of the point r on W±

i , there is a well-defined nonautonomous
linearization l±:Ur → R

n± associated with the trajectory of r. Moreover,

g±(·) =
(
l±

)−1(·) = y(r) + (·) + ∆g±(·) (20)

in coordinates y on Ur, where ∆g± ∈ F±, y(r) = l±i (r) are the coordinates of the
point r, and the domain Ur is extendible to the whole separatrix W±

i because of the
invertibility of g± and due to Remark 20.

Now some generalizations of condition 2) of the main Theorem 2, which are
based on this nonautonomous linearization corresponding to a double-asymptotic
point, will be given.
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Let conditions 1) and 4) of the main Theorem 2 be satisfied and the concordant
partitions ξ±i for all i be refinements of concordant partitions ξ̃±i : ξ±i ) ξ̃±i (the case
ξ±i = ξ̃±i is possible). In accordance with Lemma 4, to the elements of the partition

ξ±i =
{

Λ±
i,s : 1 ≤ s ≤ p±

}
there correspond invariant subspaces that were naturally

denoted as ϕ±
s (1 ≤ s ≤ p±).

Lemma 6

Let Vj be a given small neighbourhood of the closure of the trajectory of the

point rj and r ∈ A′ be a periodic point placed near rj . Let the partitions ξ̃±i and ξ̃±i1
be right concordant, where i = i±(j), i1 = i∓(j), and the mapping S be of class CN ,

where N ≥ N± = N±
i = N±

i1
. Suppose that a number δ > 0 is small enough and

that the trajectory of the periodic point r spends, on the average, a relative part of

the whole time that does not exceed δ out of the neighbourhood Vj and, moreover,

Sm(r) ∈ Vj for |m| < (1 − δ)T/2, where T is the period of r. Then on W±
r the

mapping S±T possesses a linearization CN -close to the nonautonomous linearization

l±:W±
i ⊃ Ur → R

n± associated with the trajectory of rj . Moreover, the eigenvalues

of the mapping S±T |W±
r have a partition ξ± concordant with ξ±i and a partition ξ̃±

right concordant with ξ̃±i , ξ̃
±
i1

. The eigensubspaces that correspond to the elements

Λ±
s of the partition ξ± are ϕ±

s (r).

This Lemma differs from Lemma 5 by considering the linearization on the sep-
aratrices of a periodic point placed near a homo-(hetero)clinic point instead of one
near a fixed point.

Definition 10. A set P ⊂ W±
i will be said to be in general position with respect

to a point r ∈ A ∩W±
i , asymptotic to qi, if there is a nonautonomous linearization

l± on a vicinity Ur of the point r in W±
i and the following conditions are valid

for the set N = l±(P): the images of N under the projections into eigensubspaces
ϕ±
s (r) = l̇±

∣∣
r

(
ϕ±
s (r)

) ( ⊕
s
ϕ±
s (r) = TrW

±
i

)
span these subspaces.

Remark 21. The coordinates of the points of the projection of N into ϕ±
s (r) are

polynomials of degrees not greater than N± − 1 in the coordinates of the points of
the set l±i (P). The coefficients of these polynomials are determined in terms of ∆g±,
y(r) = l±i (r), and ϕ±

s (r) (if the tangent spaces TrW±
i at all the points r ∈ W±

i are
identified by using the linearization l±i ).
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Remark 22. If there is a set of homo-(hetero)clinic points onW±
i which is in general

position then the following holds. For each rj ∈W±
i such that the partitions ξ±i and

ξ±i∓(j) are right concordant, there exists also a set of homo-(hetero)clinic points on
W±

i in general position with respect to rj . The proof follows from the fact that, due
to the Corollary of Lemma 3, this condition is satisfied for a point of the trajectory
of rj which is close to qi because the corresponding nonautonomous linearization l±

is close to l±i . Therefore, the new formulation of condition 2), that will be written
in Proposition 6, is more general than the preceding one if the condition of right
concordance mentioned here holds.

Proposition 6

Condition 2) of Theorem 2 can be replaced by the following one for one or both

cases marked by the superscripts ±, respectively. There exist i+ (i−, respectively)

and j such that i+(j) = i+, i−(j) = i+1 (i−(j) = i−, i+(j) = i−1 ), there exist right

concordant partitions ξ̃+i+ and ξ̃+
i+1

(ξ̃−i− and ξ̃−
i−1

) such that ξ̃+i+ * ξ+i+ (ξ̃−i− * ξ−i−)

(and, as a consequence, ξ̃+
i+1

* ξ+
i+1

(ξ̃−
i−1

* ξ−
i−1

)), and the set of double-asymptotic

points on W+
i+ (W−

i−) is in general position with respect to rj .

Proof. It is based on using Lemma 6 instead of Lemma 5. �

Remark 23. One can obtain concordant partitions ξ̃±i for all i via roughing parti-
tions ξ±i . In contrast to the earlier situation, where the linearizations on separatrices
W±

i± were dealt with, in the present case one has also to consider finer partitions
ξ±i . This is because of the necessity to define the generality of position of a set P

with respect to an asymptotic point rj via using the corresponding invariant sub-
spaces ϕ±

s (rj). Indeed, if one uses the partitions ξ̃±i in Definition 10 instead of the
partitions ξ±i , then the set P can break the general position condition.

Both variants of condition 2) of Theorem 2 admit also the following generaliza-
tion. Let I± be a set of indices i, for which there exist right concordant partitions
ξ̃±i such that ξ̃±i * ξ±i .

Definition 11. Let us say that a set P ⊂W±
I± =

⋃
i∈I±

W±
i is in general position if

for each s = 1, . . . , p± either

a) there is i = i±s ∈ I± such that conditions (7) are satisfied for the set Ns

being the projection of N = l±i
(
P ∩ W±

i

)
into L±

i,s = ϕ±
s (qi) along the

subspaces L±
i,s′ = ϕ±

s′(qi) (s′ �= s) and for the mapping Ts =
(
J±
i

)±1
∣∣∣

ϕ±
s (qi), or
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b) there is j = j±s such that i+ = i+(j), i− = i−(j) ∈ I± and, therefore,
a nonautonomous linearization l± on a vicinity Urj ⊂ W±

i± of the point
rj , which is associated with the trajectory of rj , is well-defined; moreover,
the image of N = l±

(
P ∩ W±

i±

)
under the projection into ϕ±

s (rj) along⊕
s′ �=s

ϕ±
s′(rj) spans the whole space ϕ±

s (rj).

Proposition 7
The condition 2) of Theorem 2 admits the following generalization: I± �= ∅ and

the set of homo-(hetero)clinic points lying on W±
I± is in general position.

Proof. It is based on the consideration of everywhere dense sets, P±, in A′ formed by
periodic trajectories that spend most of the time near the points qi, i ∈ I± and pass
close to all the points qi±s and rj±s described above. We require in addition that the
set P± contains only points of the trajectories γ possessing the following property:
for every s = 1, . . . , p± there exists rs ∈ γ such that Sm(rs) ∈ Vk for |m| < gsT/2,
where k = i±s or k = j±s in accordance to the cases a) and b). Here T is the period of
the trajectory γ and gs > 0 are some given constants such that g1+· · ·+gp± < 1 (for
brevity we drop the superscripts ± of rs and gs). The last inequality guarantees the
existence of the desired trajectories γ and their density in A′. Then the eigenvalues
of ST | W±

rs at the point rs satisfy the non-resonance condition and the mapping
ST on the separatrix W±

rs has a linearization CN -close to l±
i±s

or l±, where l± is the
nonautonomous linearization associated with the trajectory of the point rj±s . The
proof of this fact is based on the ideas of the proof of Lemma 5. Introduce the number
p1 =

[
(1 − δ1)gsT/2

]
, where 0 < δ1 < 1, and consider the chain of mappings (18)

and the corresponding chain of functional endomorphisms (19). If the trajectory of
a point r spends a relative part of the whole time that does not exceed δ > 0 out
of small vicinities Vi of the points qi, i ∈ I±, then the norm of the vector dST−2p1 is
easily shown to admit the upper exponential estimate const · CδT . If δ was chosen
small enough then CδTλp1 → 0 as T → +∞. Obviously, one can take δ such that
δ < δ0 min

1≤s≤p±
gs, where the small number δ0 > 0 is chosen independently of gs in

order to satisfy the inequality C2δ0λ1−δ1 < 1. If δ0 > 0 is small enough then the
non-resonance conditions for the eigenvalues of the composition of mappings (18)
are also valid. The rest of the proof is quite analogous to the preceding one. Next,
linearizations on the separatrices W±

r of points r belonging to the same trajectory
γ are conjugated by powers Sp of the mapping S and by their differentials Ṡp |r.
Thus, there is a set of homo-(hetero)clinic points onW±

r which is in general position
in the sense of Definition 8. The proof is finished as in Section 6. �
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8. The case of a diffeomorphism close to a direct product

We shall formulate now some general statements that allows one, in particular, to
transfer results concerning the non-existence of an integral and symmetry group to
systems of an arbitrary finite number of weakly interacting particles in an external
time-periodical force field. Note that the direct product of topological Markov chains
T | ΩΠt defined by the graphs Γt (t ∈ t) is also a TMC, T | ΩΠ, such that the
corresponding graph Γ is the direct product of the graphs Γt. Elements of the
matrices Πt =

(
πtat,bt

)
and Π = (πa,b) determining edges of the graphs Γt and

Γ are connected by the relations πa,b =
∏

t π
t
at,bt

for a = [at : t ∈ t], b = [bt :
t ∈ t]. Consider diffeomorphisms St:Mt → Mt (t = 1, . . . , k) of manifolds Mt that
possess homoclinic structures Ht satisfying conditions of Theorem 2 (for t ∈ t) or
Theorem 1 (for t /∈ t), where t is a given subset of {1; . . . ; k}. Define a direct product
S = S1 × · · · × Sk:M → M of the mappings St, where M = M1 × · · · ×Mk. Then
the direct product H = H1 × · · · ×Hk is the homoclinic structure for S. It is easily
seen, by choosing a neighbourhood U of the set H in the form of the direct product
U = U1 × · · · × Uk, that analogous decompositions take place for the TMC and its
graph Γ =

∏
t Γt which exist due to the V. M. Alekseev theorem, and for the set

A of points whose trajectories lie in U . Let C = A′ × B ⊂ A, where A′ =
∏

t∈t
A′

t

and B =
∏

t/∈t
Bt, and A′

t and Bt denote the above-introduced sets A′ and B for the
diffeomorphisms St.

Proposition 8
The diffeomorphism S has no analytical first integral or one-parameter sym-

metry group. Moreover, its analytic centralizer is discrete in the compact–open
topology.

Proof. The direct product of key sets is easily seen to be also a key set whose DKP
is the product of the DKP’s of the original sets. Therefore, it is sufficient to show
that a continuous first integral is constant over C. The α- and ω-limit sets for the
trajectories in C lie, respectively, in the sets A′×

{
O−}

and A′×
{
O+

}
, where O± =[

O±
t : t /∈ t

]
, and O±

t denote points O± for the maps St, t /∈ t. Thus, we can restrict
ourselves to the case t = {1; . . . ; k}. Due to the fact that the graph Γt contains
a circuit formed by one edge and corresponding to a fixed point, the related TMC
T | ΩΠt is primitive [4], i.e., for some N every two vertices can be joined by a path of
length exactly equal to N . The direct product of indecomposable primitive TMC has
also these properties. The desired result related to first integrals and one-parameter
symmetry groups follows from here because there is a trajectory everywhere dense
in A′. Moreover, the hyperbolic set C is expansive which guarantees the discreteness
of the centralizer (see the proof of Proposition 4). �
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Let t = {1; . . . ; k}, i.e., the conditions of Theorem 2 are valid for all the diffeo-
morphisms St. The mapping S will have a homoclinic structure H′ ⊂ H satisfying
the conditions of Theorem 2 if simple additional assumptions hold. However, it
is more convenient to remove non-essential conditions by considering a homoclinic
structure H′ ⊂ A′ which does not belong, generally speaking, to H. Note that
one can also point out additional restrictions under which the required homoclinic
structure will exist in a neighbourhood of a given one H0 ⊂ H. All the hyper-
bolic fixed points for S are qi =

[
qt,it : 1 ≤ t ≤ k

]
and they possess eigenvalue

sets
{
λt,it,lt , µt,it,lt : 1 ≤ t ≤ k

}
, with multiindices i = (i1, . . . , ik) where qt,it

and
{
λt,it,lt , µt,it,lt

}
are hyperbolic fixed points and their eigenvalues for St. Let

I± = I±1 × · · · × I±k , where I±t is the set I± for St.

Proposition 9

For some i+ ∈ I+ (i− ∈ I−, respectively) let the eigenvalues of the mapping

S at qi+ (qi−), whose moduli are less (greater) than unit, satisfy the non-resonance

conditions (2) and S ∈ CN , where N ≥ N±
i± , N±

i are determined by (4). Then

there exists a homoclinic structure H′ ⊂ A′ satisfying the conditions of Theorem 2.

This result remains valid in the more general situation of the presence of non-empty

subsets Ĩ± ⊂ I± possessing the following property. For any couple (s,m), where the

multiindex m = (m1, . . . ,mn±) is such that
∑

jmj ≥ 2, mj ≥ 0 and 1 ≤ s ≤ n±,

there is i± ∈ Ĩ± for which the eigenvalues of the mapping S at qi+ (or at qi−), whose

moduli are less (greater) than the unit, satisfy the non-resonance condition (2) for

the given (s,m). Here S ∈ CN must be supposed with N ≥ min
i±∈̃I±

N±
i± .

Proof. One should take δ > 0 and ε > 0 small enough and consider the set P± of
periodic trajectories that spend near all the points qi, i ∈ I± at least a relative part
1−δ of the whole time and near qi± , at least a relative part (1−ε)(1−δ) of the whole
time. Under the projections πt:M → Mt, to these trajectories there correspond
the quite analogous trajectories for St. Moreover, an additional restriction must
be imposed on the trajectories forming the set P±: πt

(
P±)

= P±
t , where P±

t is
the set P± for the diffeomorphism St, P± having been constructed in the proof of
Proposition 7. Precisely speaking, constants gt,s

(
1 ≤ s ≤ p±t

)
for each of the sets

P±
t are given in such a manner that the following is valid: gt,st > (1 − ε)(1 − δ)

for the indices st satisfying the condition i±t = i±t,st , where i± =
[
i±t : 1 ≤ t ≤ k

]
,

and p±t , gt,s, and i±t,s are the numbers p±, gs, and i±s for the mapping St. If the
number i±t does not occur among i±t,s then one should put i±

t,p±t +1
= i±t and increase

the number p±t by one unit. The above-supposed additional condition of “delay”
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near qi± guarantees the validity of the non-resonance conditions for the eigenvalues.
Moreover, the linearizations on the separatrices of periodic points of the mapping
S are the direct products of the corresponding linearizations for the mappings St.
Let r± ∈ P±, T be a common period for both points r±. It is seen from the proof
of Theorem 2 that for each t the mapping ST

t has a homoclinic structure H′
t that

is constituted by trajectories double-asymptotic to hyperbolic fixed points πt(r±)
and satisfies the conditions of Theorem 2. It follows easily from Lemma 3 that the
homoclinic structure H′ = H′

1 × · · · ×H′
k also satisfies the conditions of Theorem 2.

Next, if the sharpened variant of the statement of Proposition is satisfied then
there exist numbers f±i ≥ 0, i ∈ I± such that

∑
i∈I±

f±i = 1 and the sets

λt,lt ≡ ∏
i=(i1,...,ik)∈I+

λ
f+
i

t,it,lt

 and

µt,lt ≡ ∏
i=(i1,...,ik)∈I−

µ
f−
i

t,it,lt


satisfy the non-resonance conditions (2) for all (s,m). The sets of all such

{
f±i

}
constitute the complements to a finite collections of hyperplanes. Therefore, one
can choose f±i± close to the unit for a subscript i± ∈ Ĩ±, on which the number
N±

i± attains its minimum. Then the numbers N+ and N−, determined by the sets{
λt,lt

}
and

{
µt,lt

}
according to (4), will coincide with N+

i+ and N−
i− , respectively.

One can suppose that f±i > 0 for all i ∈ I±. Now the proof of Proposition follows
without any change if one considers the sets P± of periodic trajectories satisfying
the following conditions that we shall describe in detail. Let Qt =

{
qt,it , rt,jt

}
be the set of the hyperbolic and double-asymptotic points for the diffeomorphism
St and let Q = Q1 × · · · × Qk be the analogous set for S. Choose any subset
Q̃± =

{
w±

ν : 1 ≤ ν ≤ h±
}
⊂ Q containing

{
qi : i ∈ I±

}
and such that πt(Q̃±)

coincides with the set of all the points qi, i ∈ I±t and rj±s for the mapping St.
Let V ±

ν be a small enough neighbourhood of the closure of the trajectory of the
point w±

ν ∈ M . Choose a small ε > 0 and fix gν = f±i (1 − ε) for w±
ν = qi and,

later, take small enough numbers gν depending on ε for the other indices ν in order

to satisfy
h±∑
ν=1

gν < 1. Next, let δ > 0 be chosen small enough depending on gν :

δ < δ0 min
1≤ν≤h±

gν , where the small δ0 > 0 does not depend on ε, f±i , and gν . The

desired set P± is formed by periodic trajectories γ such that every γ spends a relative
part of the whole time that does not exceed δ > 0 out of the domains V ±

ν , and for
each ν there is a point rν ∈ γ such that Sm(rν) ∈ V ±

ν if |m| < gνT/2, T being
the period of γ. Then πt

(
P±)

⊆ P±
t (the set of numbers i±t,s is extended to the

whole set I±t ) and the non-resonance conditions for the eigenvalues of the mapping
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ST | W±
r , r ∈ γ at the point r (the multiplicators of the trajectory γ lying at one

side of the unit circle) are satisfied because ε was chosen small enough depending on
f±i . Moreover, the corresponding number N± defined by formula (4) will coincide
with N±

i± . �

Proposition 10

Let S:M →M be a diffeomorphism satisfying the conditions of Theorem 2 and

A′ be the set of quasi-random motions. If R ⊂ M is a closed S-invariant set that

does not contain the whole A′ (this is valid if in a neighbourhood of some point

of A′, R is the union of a finite collection of regular CN -submanifolds of positive

codimensions), then there exist a vicinity, U , of the set R and a number δ > 0
such that the following property holds true. Any diffeomorphism, S′, that is δ-close

to S outside the domain U in the space of CN -functions will possess a homoclinic

structure satisfying the conditions of Theorem 2.

Proof. The sets P± of periodic points, which are everywhere dense in A′, have been
used in the proof of Theorem 2. There is an element of P± \ R near an arbitrary
point of the set A′ \ R. Let r± ∈ P± \ R and T be the common period of both
points r±. Then the mapping ST has a homoclinic structure H that is constituted
by trajectories double-asymptotic to the hyperbolic fixed points r± and satisfies the
conditions of Theorem 2. Obviously, the set H′ = H ∪ S(H) ∪ · · · ∪ ST−1(H) is
S-invariant. Moreover, H′ ∩ R = ∅ and it is enough to choose a vicinity U not
intersecting some neighbourhood of the set H′ and, later, a small enough δ > 0.
The desired homoclinic structure is a perturbation of H′. �

Remark 24. Let A′′ be the maximal S-invariant subset of A′ out of some small
neighbourhood of R. Then A′′ �= ∅ is a hyperbolic set, and under the perturbation S′

of S described in Proposition 10 this set is deformed into the S′-invariant hyperbolic
set A′′′ [37] possessing property (1).

Remark 25. Propositions 9 and 10 can be useful in studies of a system of many
weakly interacting particles in an external time-periodic force field. In this case
R is the set of collision trajectories, the mapping S corresponds to the absence
of interaction between the particles. Here S = S1 × · · · × Sk, where Si is the
first return map (Poincaré map) along the temporal period for the i-th particle.
If the dynamical properties of all the particles are identical then all the mappings
Si coincide, and the validity of the conditions of Theorem 2 for one mapping Si
implies the validity of the conditions of Propositions 9 and 10. The situation under
consideration, where any particle does not affect the external time-periodic field, can
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appear as a result of the transition to the “restricted” setting of the problem upon a
common nonsingular level MJ of a priori first integrals J of the “general” problem.
Then S is identified with some first return map for the flow onMJ . The perturbation
of the system, which is the transition from the “restricted” setting of the problem to
the “general” one, leads only to a small perturbation of the flow on MJ and, hence,
to the persistence of the non-integrability conditions14. We will describe generally
the situation discussed here. Let the motion equations depend smoothly on a (multi-
dimensional) “perturbation parameter” ε and possess a collection of first integrals
J that depend also smoothly on ε. Furthermore, suppose that for ε = 0, which
corresponds to the “restricted” setting of the problem, the following conditions are
satisfied:

1) The influence of the variables corresponding to the infinitesimal particles
vanishes on the field variables. This means that, firstly, the finite-dimensional phase
space, M , of the continuous dynamical system (flow) {vt} is the total space of a
locally-trivial bundle π:M → Y with fibers My = 1Xy × · · · × kXy, y ∈ Y and base
Y and, secondly, the dynamical system {vt} on M “covers” some dynamical system
{ut} on Y (i.e., the flows v:M × R →M and u:Y × R → Y make the diagram

M
vt−−−−→ M

π
� �π

Y −−−−→
ut

Y

to be commutative for each t ∈ R. One says also that the flow {vt} is fibered or
that the system {vt} is an extension of the system {ut} and the system {ut} is a
factor of the system {vt}). Here Y is the space of the field variables and iXy is the
space of variables corresponding to the i-th infinitesimal particle for a given y ∈ Y .
Moreover, since a mutual influence of the particles vanishes also, there are flows
{ivt} on bundles iM → Y with fibers iXy, y ∈ Y and base Y such that

v(y),t(1xy × · · · × kxy) = 1v(y),t(1xy)× · · · × kv(y),t(kxy),

where the notations

vt(y, xy) =
(
ut(y),v(y),t(xy)

)
and ivt(y, ixy) =

(
ut(y), iv(y),t(ixy)

)
14 Such approach will be used in a forthcoming part of this paper to prove the non-integrability of the planar

problem of more than three point vortices in an ideal incompressible liquid and the planar problem of more
than two bodies attracting by the Newton law.
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for y ∈ Y , xy ∈ My, v(y),t(xy) ∈ Mut(y), and ixy ∈ iXy, iv(y),t(ixy) ∈ iXut(y) have
been introduced. In other words, the flow {vt} covers the flow {ivt} under the
natural projection M → iM . The flow {ivt} corresponds to the dynamics of the i-th
infinitesimal particle. If the particles are identical then the corresponding bundles
iM → Y and the flows {ivt} will coincide. Note that the bundle M → Y (not
necessarily a vector one) could be called the Whitney sum of the bundles iM → Y .

2) The dependence of the integrals J vanishes on the point of the fiber My.
Thus, J = Φ◦π, where Φ is the collection of integrals for the flow {ut} on the base Y .
Moreover, the considered common level of the integrals Φ on Y is supposed to have a
nonsingular connected component which is a closed trajectory15 γJ of the flow {ut}.
Then the level, MJ , of the integrals J has the nonsingular component π−1(γJ) ⊂M .
To the point y ∈ γJ , there correspond the first return maps S:My → My and
Si: iXy → iXy according to formulas S(xy) = v(y),T (xy) and Si(ixy) = iv(y),T (ixy),
where T is the period of the trajectory γJ .

Acknowledgments. The author thanks M. I. Grinchuk for TEXnical help and
M. B. Sevryuk for reading the manuscript and numerous editorial corrections. The
author is especially indebted to C. Simó for stimulating attention to the work, care-
fully reading the original version of the paper, and very useful criticism / comments.

Appendix A. Exponential separation, cocycles, and the

construction of the adapted metric

Let π:X → B be a finite-dimensional real or complex vector bundle with compact
base B and let f :B → B, F :X → X be some homeomorphisms. Recall some
definitions (see also Remark 25). Homeomorphisms f and F generate dynamical
systems with discrete time n ∈ Z, i.e., cascades {fn} and {Fn}. The cascade {Fn}
is called an extension of {fn} if Fn “covers” fn, i.e., π ◦ F = f ◦ π. The extension
{Fn} is said to be linear if the restriction of F to any fiber X(b) = π−1(b), b ∈ B,
is linear. For simplicity, we consider linear extensions of cascades. However, all
the results are easily carried over to the case of linear extensions of flows. The
presentation will follow, in general, [12] (where the proofs are given for the case
of flows). A norm in the vector bundle X → B is a continuous function X → R

that is a norm on each fiber X(b). A continuous function ‖ · ‖∗:X → R is called a
quasinorm if the following conditions are satisfied: 1) ‖x‖∗ ≥ 0 for any x ∈ X and

15 In particular, the number of a priori integrals is one unit less than the dimension of the field variables space
Y .
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‖x‖∗ = 0 if and only if x is the zero element of a fiber, 2) ‖kx‖∗ = |k| · ‖x‖∗ for
any element x ∈ X and real number k. In contrast to a norm, one does not require
here the validity of the triangle inequality ‖x + y‖∗ ≤ ‖x‖∗ + ‖y‖∗, π(x) = π(y).
Due to the compactness of the base B and the finite-dimensionality of the bundle,
any two quasinorms ‖ · ‖1 and ‖ · ‖2 are equivalent in the sense that inequalities
c−1‖x‖2 ≤ ‖x‖1 ≤ c‖x‖2, x ∈ X, hold for some c > 0.

A continuous mapping G:B × Z → R+ is called a multiplicative cocycle of the
cascade {fn} if G(b, n+m) = G(b, n)G

(
fn(b),m

)
for any b ∈ B and integers n, m.

A cocycle is uniquely determined by setting an arbitrary continuous everywhere
positive function g(·) = G(·, 1).

One gives convenient two-sided estimates for quasinorms
∥∥Fn(x)

∥∥ in terms of
cocycles. Indeed, let

Φ(x) =

∥∥F (x)
∥∥

‖x‖ ,

g−(b) = inf
{
Φ(x) : ‖x‖ = 1, π(x) = b

}
, . (A1)

g+(b) = sup
{
Φ(x) : ‖x‖ = 1, π(x) = b

}
It follows from the uniform continuity of Φ over the compact set {x ∈ X : ‖x‖ = 1}
that the functions g±:B → R are also continuous. The functions g± determine
cocycles G±. Then

G−(b, n) ≤
∥∥Fn(x)

∥∥
‖x‖ ≤ G+(b, n), n ≥ 0, x ∈ X(b).

Let X = X1⊕X2 be the decomposition of the bundle X into the Whitney sum
of F -invariant subbundles. The subbundles X1, X2 (up to their permutation) are
said to be exponentially separated if there are numbers d > 0 and λ > 1 such that∥∥Fn(x2)

∥∥
‖x2‖

:

∥∥Fn(x1)
∥∥

‖x1‖
≥ dλn (A2)

for any n ≥ 0 and x1 ∈ X1, x2 ∈ X2, π(x1) = π(x2). This means that the vectors in
the fibers of X2 are “stretched” under iterations of F faster, than those in the fibers
of X1. In this case we will write X1 ≺ X2. This definition does not depend on the
choice of the norm or quasinorm ‖ · ‖ because this choice affects d only.

Proposition A1

Let X = X1 ⊕ · · · ⊕Xp be the decomposition of the bundle X into the direct

sum of F -invariant subbundles. The following two properties are equivalent:
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1) any two vector subbundles Xi and Xj (i �= j) are exponentially separated;

2) the subbundles Xs, 1 ≤ s ≤ p, can be renumbered in such a way that for any

s, 1 ≤ s < p, subbundles

Y −
s = X1 ⊕ · · · ⊕Xs, Y +

s = Xs+1 ⊕ · · · ⊕Xp

are exponentially separated, so that Y −
s ≺ Y +

s .

Moreover, estimates (A2) for pairs of subbundles Xs, Xs+1 and Y −
s , Y

+
s will

be satisfied with the same λ’s (but, maybe, with different d’s).

Proof. This result is rather simple and well-known. The relation ≺ is an order
relation on the set {Xs} and determines the required reordering of the elements of
this set.

Remark. Under the conditions of Lemma 4, the TS-invariant bundles
⋃
r∈A

ϕs(r) → A

happen to be exponentially separated. Moreover, the corresponding estimates (A2)
are satisfied with the constant λ = κ−1.

Proposition A2

Let the conditions of Proposition A1 be met so that the pairs of subbundles

Y −
s , Y

+
s satisfy inequalities (A2) with some constants λ = λs > 1. Furthermore, let

numbers µs lie in the intervals (1, λs). Then there is a norm ‖ · ‖ in X such that for

all the pairs Y −
s , Y

+
s inequalities (A2) are valid with constants d = 1 and λ = µs,

respectively. In particular, the same holds for the pairs Xs, Xs+1. The desired norm

‖ · ‖ can be chosen to be Euclidean (in the real case) or Hermitian (in the complex

case).

So, by slightly decreasing λs, one is able to put all the constants d’s to be equal
to 1.

Lemma A1

Let the conditions of Proposition A2 be satisfied. Then there are cocycles G±
s ,

1 ≤ s ≤ p, such that the following two properties hold:

a) g−s+1(b) : g+s (b) ≥ µs, 1 ≤ s < p, b ∈ B, where g±s (·) = G±
s (·, 1).

b) g−s (b) ≤ g+s (b) and C−1G−
s (b, n) ≤ ‖Fn(x)‖/‖x‖ ≤ CG+

s (b, n), n ≥ 0, x ∈
Xs(b) ≡ X(b) ∩ Xs, b ∈ B, where constant C > 0 depends on the choice of a

quasinorm ‖ · ‖.
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Proof. Set ‖x‖∗ =
(

N−1∏
n=0

∥∥Fn(x)
∥∥

1

)1/N

, ‖ · ‖1 being some (quasi)norm and N , a

sufficiently large positive integer. Obviously, ‖·‖∗ is a quasinorm. However, ‖·‖∗ can
be not a norm even if ‖ ·‖1 is a norm (an appropriate example is easily constructed).
Let Φ∗, g−s , and g+s be the functions Φ, g−, and g+ for the invariant bundles Xs

which are determined by formulas (A1) via the constructed quasinorm ‖ · ‖∗. The
functions g±s determine the required cocycles G±

s . The item b) of the Lemma is
obviously satisfied. In order to prove item a), we recall that∥∥Fn(xs+1)

∥∥
1

‖xs+1‖1
:

∥∥Fn(xs)
∥∥

1

‖xs‖1
≥ dλns , n ≥ 0, xs ∈ Xs, xs+1 ∈ Xs+1, π(xs) = π(xs+1),

where d > 0. Therefore

Φ∗(xs+1) : Φ∗(xs) =

(∥∥FN (xs+1)
∥∥

1

‖xs+1‖1
:

∥∥FN (xs)
∥∥

1

‖xs‖1

)1/N

≥ d1/Nλs ≥ µs

ifN > 0 is chosen to be large enough. The item a) of the Lemma follows immediately
from this inequality.

Lemma A2
Let G± be cocycles such that g−(b) ≤ g+(b), b ∈ B, where g±(·) = G±(·, 1),

and

C−1G−(b, n) ≤
∥∥Fn(x)

∥∥
‖x‖ ≤ CG+(b, n), n ≥ 0, x ∈ X(b),

C > 0 being some constant and ‖ · ‖, a quasinorm in X. Let ν > 1. Then there
exists a norm ‖ · ‖0 in X such that

ν−nG−(b, n) ≤
∥∥Fn(x)

∥∥
0

‖x‖0
≤ νnG+(b, n), n ≥ 0, x ∈ X(b).

The desired norm ‖·‖0 can be chosen to be Euclidean (in the real case) or Hermitian
(in the complex case).

Proof. Without loss of generality, one can assume that ‖ · ‖ is a norm. Set

‖x‖0 =
∑
n≥0

∥∥Fn(x)
∥∥(
G+(b, n)

)−1
ν−n +

∑
n<0

∥∥Fn(x)
∥∥(
G−(b, n)

)−1
νn.

Obviously, these two series converge uniformly and ‖ · ‖0 is a norm. Then it is easily
seen that

ν−1g−(b) ≤
∥∥F (x)

∥∥
0

‖x‖0
≤ νg+(b), x ∈ X(b),

which implies that the norm ‖ · ‖0 is the desired one. If the norm ‖ · ‖ was chosen to
be Euclidean or Hermitian then the norm ‖ · ‖0 possesses the same property.
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Proof of Proposition A2. It follows easily from Lemmas A1 and A2. Apply Lemma
A1, using some numbers µ′s instead of numbers µs. Then we apply Lemma A2 to
each invariant subbundleXs, assuming thatG± = G±

s , g± = g±s , ν = νs. As a result,
some norms ‖ · ‖s in subbundles Xs will be obtained. Finally, we require inequalities
µ′s/(νsνs+1) ≥ µs and construct the desired norm ‖ · ‖ in X = X1 ⊕ · · · ⊕Xp from
the norms ‖ · ‖s in Xs. For instance, one can set

‖x1 ⊕ · · · ⊕ xp‖ =

(
p∑

s=1

‖xs‖2
s

)1/2

, xs ∈ Xs, π(xs) = b.

Historical comment. Proposition A2 for the case p = 2 was proven by I. U. Bron-
shtein [11; 12, point 6.30]. The generalization of his proof to the case p > 2 requires
some accuracy. For this purpose, we state Lemma A2 on the existence of a norm
satisfying the two-sided estimates, which generalizes the well-known result on the
existence of the adapted or Lyapunov norm. The Lyapunov norm is the norm sat-
isfying the one-sided estimate with g− ≡ const > 1 or g+ ≡ const < 1. Note that
any cocycle G and linear extension {Fn} determine a linear extension {Fn

G} via the
formula Fn

G(x) = G
(
n, π(x)

)
Fn(x). The possibility of constructing a norm satisfy-

ing the one-sided estimate follows immediately from the existence of the Lyapunov
norm for the corresponding linear extension {Fn

G}. This idea was utilized in [12, 11]
for proving Proposition A2 in the case p = 2. The case of the two-sided estimates
with g− = const, g+ = const is considered in [27, point 2.8–2.9]. The corresponding
proof generalizes the well-known construction of the Lyapunov norm. In turn, our
proof is an immediate generalization of the latter proof. The proof of Lemma A1 is
reproduced from [12].

Appendix B. Geometrical digression: induced mappings of k-jet bundles

Assume that the assumptions described at the beginning of Section 7 are met, i.e.,
the conditions 1) and 4) of Theorem 2 are satisfied and r = rj is a point such that
i = i±(j), i1 = i∓(j), the partitions ξ±i , ξ

±
i1

are right concordant, and N ≥ N±
i =

N±
i1

. Recall that, due to Remark 20, in a neighbourhood, Ur, of the point r on W±
i ,

there is a well-defined nonautonomous linearization l±:Ur → R
n± associated with

the trajectory of r and formula (20) holds in the linearizing coordinates y defined
by the diffeomorphism l±i .
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Now we draw our attention to some invariant , i.e., coordinate-free, geometrical
objects.

The element ∆g± of the finite-dimensional space F± can be found by virtue
of the itinerary scheme that determines the nonautonomous linearization l±. This
itinerary scheme corresponds to the trajectory

{
St(rj)

}
of the point rj and to the

manifolds W±
St(rj)

. One can reduce this itinerary scheme to the finite-dimensional
and invertible case if one considers, instead of the spaces of all the functions
f :W±

St(rj)
→ TSt(rj)W

±
St(rj)

such that f
(
St(rj)

)
= 0, df

(
St(rj)

)
= id, only the

spaces of the k-jets for these functions at the points St(rj), where k ≤ N . The
corresponding geometric constructions will be discussed below. It is convenient to
use the invariant coordinate-free language for this purpose. All the constructions
are easily reformulated into the coordinate language and can be used in concrete
applications.

Let T = S±1 | W±
i and let U be a vicinity of qi in W±

i such that T (U) ⊂
U . The linear operator DT acts in the space of functions l:U → TqiW

±
i . The

restriction of DT onto the DT -invariant affine subset Z±
i of the CN -functions l,

such that l(qi) = 0 ∈ TqiW±
i and dl(qi) = id, has a hyperbolic fixed point — the

linearization l±i . To prove this it is sufficient to consider the parametrization of
U by the linearizing coordinates. Moreover, the linearizing coordinates determine
some affine parametrization F± → W∓,±

i of the outgoing separatrix W∓,±
i for the

hyperbolic point l±i of the mapping DT | Z±
i by associating the map id+∆̃l with the

element ∆̃l ∈ F±. Analogously, there is an affine parametrization of the incoming
separatrix W±,±

i by the space of functions whose (N± − 1)-jets lie in H±.

Definition B1. A class of equivalence of Ck-manifolds with respect to the equiv-
alence relation “tangency of order k at the point r” will be called the k-jet of an
m-dimensional (sub-)manifold at the point r.

The difference from the usual definition for the k-jet of a mapping (see, for
example, [9, 22]) consists in what distinguishes a manifold from a map: a particular
parametrization is ignored in the definitions for a manifold and a jet of a manifold,
and these definitions have a coordinate-free nature. An equivalent definition for a
manifold’s jet is contained in [22, Chapter 7, §3].

Consider pairs (W, f) formed by a Ck-manifold W ⊂ M and a Ck-mapping
f :W → N , where N is some manifold.

Definition B2. We say that the pairs (W, f) and (W ′, f ′) possess a tangency of
order k at the point r ∈M if the following conditions are valid: 1) the manifolds W
and W ′ of the same dimension, m, possess a tangency of order k at the point r, i.e.,
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there is a mapping i:W →M that has at the point r a tangency of order k with the
embedding W ⊂→ M and transforms a neighbourhood of the point r in W onto a
neighbourhood of this point in W ′, and 2) the mappings f and f ′ ◦ i:W → N have
a tangency of order k at the point r.

The tangency of pairs at a given point r ∈M is an equivalence relation.

Definition B3. A class of equivalence of pairs (W, f) with respect to the equiva-
lence relation “tangency of order k at the point r” will be called the k-jet of a pair
at the point r.

Analogously to the conventional notations for k-jets of mappings, we denote by
Jk
m(r) the space of k-jets of m-dimensional manifolds at the point r ∈ M , and by

Mk
m =

⋃
r∈M

Jk
m(r), the bundle of k-jets of m-dimensional manifolds (at all the points

r ∈ M . The sets Jk
m(r) and Mk

m possess, respectively, the natural structures of an
analytical manifold and a manifold whose class of smoothness is k units less than
that of M . Obviously, J1

m(r) = Gm(r) and M1
m = Mm, and there exists a natural

projection Jk+1
m (r) → Jk

m(r). Analogous objects can be defined for k-jets of pairs
(W, f), and there exist their natural projections onto the corresponding objects for
k-jets of manifolds W . However, we need only to consider k-jets of pairs lying in
some regular submanifolds in the manifold of all the k-jets. Setting N = TM and
k ≥ 1, we denote by Ĵk

m(r) the analytical manifold of the k-jets of pairs (W, f) at
the point r such that

dimW = m, f(W ) ⊂ TrW,
f(r) = 0 ∈ TrW, df(r) = id | TrW. (B1)

Obviously, M̂k
m =

⋃
r∈M

Ĵk
m(r) is a manifold whose class of smoothness is equal to that

for Mk
m. The diffeomorphism S:M →M of class CN , where N ≥ k, induces natural

analytical mappings Jk
m(r) → Jk

m

(
S(r)

)
forming a fiber mapping S:Mk

m → Mk
m of

class CN−k. Each mapping Jk
m(r) → Jk

m

(
S(r)

)
is determined by the k-jet of the

mapping S at the point r. Therefore, by some misuse of language, we denote it, as
well as the k-jet, by jkrS. Obviously, j1rS = dS |r= Ṡ |r. Furthermore, by associating
to the pair (W, f), which satisfies condition (B1), another pair

(
S(W ),D(S|W )−1f

)
,

which also satisfies condition (B1), one can introduce natural analytical mappings
ĵkrS: Ĵk

m(r) → Ĵk
m

(
S(r)

)
(each of them being determined by the k-jet of S at the

point r) that form the fiber mapping Ŝ: M̂k
m → M̂k

m of class CN−k.
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Remark B1. Lemma 1 and items a), b), and c) of Lemma 4, with their proofs
as well as Remarks 2, 7, and 11, can be immediately generalized to the case where
one considers, instead of the bundles M±

m, M
±
n−m, Mm, Mn−m, Am, and An−m of

1-jets of manifolds, the quite analogous bundles Mk,±
m , M

k,±
n−m, Mk

m, Mk
n−m, Ak

m,
and Ak

n−m of k-jets. However, the following restriction concerning the numbers
m and k must be imposed on the spectrum (γ1, . . . , γn) at each hyperbolic point
O = qi under consideration. The sections gk,−m = (id, fk,−m ) and uk,−m = (id, hk,−m )
(gk,+m = (id, fk,+m ) and uk,+m = (id, hk,+m ), respectively) analogous to g−m = g1,−m and
u−m = u1,−

m (g+m = g1,+m and u+
m = u1,+

m ) exist and are unique if the linear operator
Ṡ |O (Ṡ−1 |O) in TOM induces a mapping in the space of k-jets of them-dimensional
((n −m)-dimensional) manifolds W ⊂ TOM at the point 0 ∈ TOM such that the
k-jet of the linear subspace α+

m (α−
m) is a sink , i.e., a fixed point whose spectrum

lies inside the unit circle. This means exactly that

|γj ||γj′ |−s < 1
(
|γj |s|γj′ |−1 < 1

)
for all j ≤ m < j′, 1 ≤ s ≤ k

(cf. [27, Theorem 5.1]). In particular, one can always assume that m = n− or k = 1.
The following modifications must be performed in the statements of Lemmas 1 and 4
and in Remarks 2, 7, and 11:

1) to read CN−k everywhere instead of CN−1; the corresponding mapping S:
Mk

m → Mk
m (S:Mk

n−m → Mk
n−m) is a diffeomorphism if N ≥ k + 1;

2) to take some k-jet αk,∓
m such that π(αk,∓

m ) = α1,∓
m ≡ α∓

m under the natural
projection π:Jk

s (r) → J1
s (r) = Gs(r), r = O, instead of α∓

m everywhere except
for item 2f) of Lemma 1; the k-jet αk,−

m (αk,+
m ) is the unique attracting point of the

diffeomorphism jkOS (jkOS
−1) in the space Jk

m(O) (Jk
n−m(O)). (If in some coordinate

system in a neighbourhood of the point O ∈ M , the mapping S has at O the k-jet
coinciding with the k-jet of Ṡ |O, then in this coordinate system αk,∓

m is the k-jet of
the linear subspace α∓

m.);
3) to talk in item 2f) of Lemma 1 about Ck-linearizations and to assume that

α∓
m and l̇ are the k-jet of the linear subspace α∓

m ⊂ TOM at the point 0 ∈ TOM and
the k-jet of the mapping l; the latter is interpreted as the mapping of the spaces of
k-jets of manifolds;

4) to replace conditions σr ∩ f∓m(r) = {0} in item 2e) of Lemma 1 and in Re-
mark 2, and conditions σr ∩ h∓m(r) = {0} in item c) of Lemma 4 by the conditions
π(σkr ) ∩ f∓m(r) = {0} and π(σkr ) ∩ h∓m(r) = {0}, where zk,+ = (r, σkr ) ∈ Mk

m or
zk,− = (r, σkr ) ∈ Mk

n−m. In accordance with this fact, the first formula in item b)
of Lemma 4 and condition (9), that were stated above for k = 1, preserve their
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form, but one has to take into account that π
(
fk,±m (r)

)
= f1,±

m (r) ≡ f±m(r) and
π
(
hk,±m (r)

)
= h1,±

m (r) ≡ h±m(r). Moreover, obviously, fk+1,±
m (r) and hk+1,±

m (r) are
transformed into fk,±m (r) and hk,±m (r), respectively, under the natural projections
Jk+1
s (r) → Jk

s (r). The conditions that fk,+m1
(r) ⊂ fk,+m2

(r), fk,−m1
(r) ⊃ fk,−m2

(r),
hk,+m1

(r) ⊂ hk,+m2
(r), and hk,−m1

(r) ⊃ hk,−m2
(r) for m1 > m2 remain valid if the em-

bedding β1 ⊂ β2 of a jet β1 ∈ Jk
s1(r) into a jet β2 ∈ Jk

s2(r) is naturally interpreted
as the existence of manifolds W1 ⊂W2 possessing k-jets β1 and β2;

5) to consider k-jets of manifolds W± and W±
r instead of their tangent spaces

in the first formula of item 2c) of Lemma 1 and in the second formula of item b) of
Lemma 4. Note that, in accordance with items 2c) and 2d) of Lemma 1, αk,∓

n− is the
k-jet of W± at the point O.

In conclusion, we shall explain briefly the proof of items 1), 2e) of Lemma 1 and
item c) of Lemma 4. The behaviour of the mapping S:Mk

m → Mk
m (S−1:Mk

n−m

→ Mk
n−m, respectively) near the point xk,+ = (O,αk,+

m ) (xk,− = (O,αk,−
m )) is

characterized by the expansion along the separatrix W− (W+) and the contraction
along the separatrixW+ (W−) and fiber Jk

m(O) (Jk
n−m(O)). Therefore, the outgoing

manifold W̃−
xk,+ (W̃+

xk,−) of the point xk,+ (xk,−) happens to be the image of the
section gk,−m :W− → Mk

m (gk,+m :W+ → Mk
n−m). Next, the domain of attraction of

the sink α+
m (α−

m) of the diffeomorphism F = Ṡ |O= j1OS (F = Ṡ−1 |O= j1OS
−1)

on the manifold N = Gm(O) = J1
m(O) (N = Gn−m(O) = J1

n−m(O)) is the set
P =

{
β ∈ N : α ∩ β = {0}, where α = α−

m (α = α+
m, respectively) and β are

considered as linear subspaces in TOM
}
. Moreover, the invariant set N \ P = ∂P

of the mapping F repels the neighboring points in the sense that

ρ(β, ∂P ) < ∆ ⇒ ρ
(
F (β), ∂P

)
> Cρ(β, ∂P ), where β ∈ P (B2)

for some distance ρ on N and some numbers ∆ > 0 and C > 1. It is convenient
to take as ρ(α, β) the angle between the subspaces α, β ⊂ TOM in the Rieman-
nian metric used in the proof of Lemma 1. Define also the distance function ρ on
neighboring fibers Gm(r) (Gn−m(r)) using this metric. Due to the fact that the
section g−m (g+m) is continuous and S-invariant and f−m(O) = α+

m (f+
m(O) = α−

m),
the following holds true: (B2) remains also valid for all neighboring fibers if one
uses f−m(r) (f+

m(r)) instead of α+
m (α−

m) in the definition of P . From here there
follow items 1) and 2e) of Lemma 1 and, thus, the formula of the incoming manifold
W̃+

x+ (W̃−
x−) for the case k = 1. The general case k ≥ 1 follows from the particu-

lar one, k = 1, due to the following fact: for k-jets β ∈ Jk
m(O) (β ∈ Jk

n−m(O)),
such that π(β) ∈ N is close to α+

m (α−
m), the mapping jkOS:Jk

m(O) → Jk
m(O)

(jkOS
−1:Jk

n−m(O) → Jk
n−m(O)) happens to be contractive and this property is pos-

sessed by the mappings jkrS:Jk
m(r) → Jk

m

(
S(r)

)
(jkrS

−1:Jk
n−m(r) → Jk

n−m

(
S−1(r)

)
)
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of the neighboring fibers. The item c) of Lemma 4 is proven in an analogous way. In
particular, formula (B2) turns out to be true if one carries out the following replace-
ments: firstly, using h±m(r) instead of α∓

m or f±m(r) in the definition of P ; secondly,
determining a Riemannian norm in TrM depending continuously on r ∈ A and such
that the spaces h+

m(r) and h−m(r) are orthogonal with respect to it; thirdly, taking
some power Sp, p > 0, instead of S in the definition of F . If one uses a Lyapunov
metric then the third point is unnecessary, i.e., p = 1. The proof is analogous in
other details.

Remark B2. Denote the nonautonomous linearization onW±
r , r ∈ A, by l±r :W±

r →
TrW

±
r . The k-jets of the pairs

(
W±

i , l
±
i

)
and

(
W±

r , l
±
r

)
admit a description analogous

to that considered in the previous Remark. However, there appears a series of
distinctions here in the sense that the incoming and outgoing manifolds of the fixed
points are organized in another manner. For a hyperbolic point O = qi of the CN -
diffeomorphism S:M → M , let the partition ξ− = ξ−i (ξ+ = ξ+i , respectively) be
right, N ≥ N− = N−

i (N ≥ N+ = N+
i ), W± = W±

i , l− = l−i (l+ = l+i ), Z− = Z−
i

(Z+ = Z+
i ), and W+,− = W+,−

i , W−,− = W−,−
i (W−,+ = W−,+

i , W+,+ = W+,+
i ).

Then Remark B1 for m = n− is transferable, with some modifications, to the case
where one considers, instead of mappings S of the bundles, Mk,−

m and Mk
m (Mk,+

n−m

and Mk
n−m), of the k-jets of manifolds W , the quite analogous mappings Ŝ of the

bundles, M̂
k,−
n− and M̂k

n− (M̂k,+
n+ and M̂k

n+), of the k-jets of pairs (W,χ).
There exist the bundles

Ĵk
n∓(r) Zk,∓

−−−−→ Jk
n∓(r)

M̂k
n∓

Zk,∓
−−−−→Mk

n∓
Jk

n∓−−−−→M ,

for which the mappings Ŝ and S are fibered. Here the roles of the fibers Jk
n∓ and

Zk,∓ are played, respectively, by the space of the k-jets of n∓-dimensional manifolds
at a given point and by the affine space of the k-jets of pairs (W,χ) ∈ Ĵk

n∓ at a given
point with a given k-jet of the manifold W at this point. The dynamics of the
restriction jkOS

±1 of the mapping S±1 to the invariant fiber Jk
n∓(O) lying over the

fixed point O of the base M is very simply constructed. This leads to a simple
representation of the incoming W̃±

xk,± and outgoing W̃∓
xk,± manifolds of the point

xk,± = (O,αk,±
n− ) (see above). It is more difficult to provide a description of the

incoming W̃±
x̂k,± and outgoing W̃∓

x̂k,± manifolds of a fixed point x̂k,± =
(
O, α̂k,±

n−

)
of

the mapping Ŝ±1. Over the fixed point xk,± ∈ Mk
n∓ , there lies the invariant fiber

Zk,∓(xk,±) which is formed exactly by k-jets of functions l ∈ Z∓ defined on the
manifoldW∓ having the given k-jet αk,∓

n− ∈ Jk
n∓(O). If the partition ξ∓ is right then
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the restriction ĵkO
(
S | W∓)±1 of the mapping Ŝ±1 to the invariant affine subspace

Zk,∓(xk,±) is affine hyperbolic. This restriction has a fixed point α̂k,±
n− and also

invariant affine subspaces — incoming Wk,∓,∓ and outgoing Wk,±,∓ separatrices.
The correspondence jkO that associates to a function l:W∓ → TOW

∓ its k-jet jkOl will
realize a mapping of W±,∓ onto Wk,±,∓. The latter is an isomorphism if k ≥ N∓.
Here α̂k,± = α̂k,±

n− is the k-jet jkOl
∓ of the linearization l∓ on the separatrix W∓ or,

more precisely speaking, the k-jet of the pair (W∓, l∓). (If in some coordinate system
in a neighbourhood of the point O ∈M , the mapping S has at O the k-jet coinciding
with the k-jet of Ṡ |O then in this coordinate system α̂k,± is the k-jet of the pair
formed by the linear subspace α± and the embedding α± ⊂→ TOM .) Analogously,
jkO

(
W∓,∓)

= Wk,∓,∓. Obviously, α̂k,±, Wk,±,∓, and Wk,∓,∓ are transformed onto
the analogous objects with lower values of k under the natural projections.

So, the behaviour of the mapping Ŝ±1 near the fixed point x̂k,± is characterized
by the expansion along W∓ and Wk,±,∓ and the contraction along W±, Jk

n∓(O),
and Wk,∓,∓. Therefore, the outgoing manifold W̃∓

x̂k,± of the fixed point x̂k,± of the

mapping Ŝ±1 happens now to be the total space of an affine bundle W̃∓
x̂k,± → W̃∓

xk,±

of class CN−k with fiber Wk,±,∓. Thus, W̃∓
x̂k,± will be the image of a mapping

ĝk,∓ = (id, f̂k,∓):W∓ ×Wk,±,∓ → M̂
k,∓
n∓ covering the mapping gk,∓n− :W∓ → M

k,∓
n∓

that associates the k-jet of W∓ at r to a point r ∈ W∓. It is easily verified that
for k ≥ N∓ the mapping f̂k,∓ can be determined by the following formula which is
analogous to item 2f) of Lemma 1 and should replace the latter: f̂k,∓(r, lk) ∈ Ĵn∓(r)
is the k-jet of the pair

(
W∓, χr,l

)
at the point r ∈W∓, where

χr,l(·) =
(
l̇ |r

)−1(
l(·)− l(r)

)
= Dl(·)−l(r)

(
id | TOW∓)

:W∓ → TrW
∓

and the mapping l ∈ W±,∓ is such that jkOl = lk ∈ Wk,±,∓. Indeed, the formula

ĵkrS
(
jkrχr,l

)
= jkS(r)χS(r),DS−1|W∓ l

holds true for k-jets jkrχr,l of functions χr,l at the points r ∈ W∓ and the desired
result follows immediately from here. In turn, the proof of this formula follows imme-
diately from the facts that, in accordance with Remark 20, the following propositions
are valid. Firstly, in the coordinates onW∓ defined by the mapping l(·)−l(r):W∓ →
TOW

∓, the mapping χr,l will become the identity mapping id | TOW∓. Secondly,
the mapping S |W∓ and its differential Ṡ |O transform these coordinates into those
defined by the mapping h(·) = DS−1|W∓

(
l(·)− l(r)

)
=

(
g(·)− g(r)

)
:W∓ → TOW

∓,
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where g = DS−1|W∓ l:W∓ → TOW
∓. Thirdly, the expression in the left-hand side

of the formula under consideration is the k-jet at the point S(r) of the mapping
W∓ → TS(r)W

∓ which becomes the identity mapping id | TOW∓ in the coordinates
h. The constructed mapping f̂k,∓(r, ·) realizes an isomorphism of Wk,±,∓ onto the
fiber over the point r ∈W∓. However, this map is polynomial but not affine. Using
coordinates y(·) = l∓(·) on W∓ introduced by a given nonautonomous lineariza-
tion l∓ ∈ W±,∓, one can also determine the mapping g∓ = χ−1

r,l to be of the form
g±(·) = y(r) + l(·) (see formula (20)), where l(·) = (·) + ∆g±. In this case the map-
ping f̂k,∓(r, ·) is also polynomial. However, such a definition uses explicitly some
nonautonomous linearization l∓ and depends on it. It is natural to take l∓ being
the linearization.

Next, the incoming manifold W̃±
x̂k,± of the point x̂k,± is now the total space of

an affine bundle W̃±
x̂k,± → W̃±

xk,± of class CN−k with fiber Wk,∓,∓, i.e., W̃±
x̂k,± will

be the image of some CN−k-mapping(
π, v̂k,±

)
: W̃±

xk,± ×Wk,∓,∓ → W̃±
x̂k,± ,

where π is the projection onto the first factor. A detailed description of this bundle
is a separate question which will be formulated below as a Problem. Note only that
an affine fiber wk,∓,∓(z) ⊂ Zk,∓(z), where z ∈ W̃±

xk,± , is a stable slice determined
by the itinerary scheme for the sequence of mappings

Zk,∓(zt)
ĵkytS

±1

−−−−−→Zk,∓(zt+1), t ≥ 0 (B3)

infinite to one side. Here zt = S±t(z) → xk,±, t → +∞ and yt ∈ W± is the
image of zt under the projection M

k,±
n∓ →W±. In an analogous way, an affine fiber

wk,±,∓(z) ⊂ Zk,∓(z), z ∈ W̃∓
xk,± , of the bundle W̃∓

x̂k,± → W̃∓
xk,± described above

is an unstable slice determined by the itinerary scheme for the infinite to one side
sequence of mappings (B3) with the only difference that now t ≤ 0 and zt → xk,±

as t→ −∞ and yt ∈W∓ is the image of zt under the projection M
k,∓
n∓ →W∓.

Let now the partitions ξ−i (ξ+i ) be right concordant, the diffeomorphism S

be of class CN , where N ≥ N−
i (N ≥ N+

i ), and condition 4) of Theorem 2
be valid. Then nonautonomous linearizations l−r (l+r ) on the separatrices W−

r

(W+
r ), r ∈ A, are defined. Moreover, the pairs

(
W−

r , l
−
r

)
(
(
W+

r , l
+
r

)
, respec-

tively) satisfy condition (B1) and, consequently, they have k-jets l̂k,−r ∈ Ĵk
n−(r)

(l̂k,+r ∈ Ĵk
n+(r)). For each point O = qi we denote by fk,±i,m and W̃ k,±

i,+ , Ŵ k,±
i,+ (W̃ k,±

i,− ,
Ŵ k,±

i,− ), respectively, the mapping fk,±m and the incoming and outgoing manifolds
W̃±

xk,+ and W̃±
x̂k,+

(W̃±
xk,− and W̃±

x̂k,−) for the fixed points xk,+ =
(
O,αk,+

n−

)
and
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x̂k,+ (xk,− =
(
O,αk,−

n−

)
and x̂k,−) of the mappings S and Ŝ. Then the mani-

folds Ŵ k,−
i−(j),+ and Ŵ k,+

i+(j),+ (Ŵ k,−
i−(j),− and Ŵ k,+

i+(j),−, respectively) intersect at a

point r̂k,+j =
(
r̃k,+j , χ

)
= l̂k,−rj (r̂k,−j =

(
r̃k,−j , χ

)
= l̂k,+rj ) lying over the point

r̃k,+j =
(
rj , f

k,−
i−(j),n−(rj)

)
(r̃k,−j =

(
rj , f

k,+
i+(j),n−(rj)

)
) of intersection of the manifolds

W̃ k,−
i−(j),+ and W̃ k,+

i+(j),+ (W̃ k,−
i−(j),− and W̃ k,+

i+(j),−). The k-jet χ = jkrj l
−
rj ∈ Zk,−(

r̃k,+j

)
(χ = jkrj l

+
rj ∈ Zk,+

(
r̃k,−j

)
) is determined by the itinerary scheme for the sequence of

mappings
ĵkyt
S : Zk,−(zt) → Zk,−(zt+1)(

ĵkyt
S−1 : Zk,+(zt) → Zk,+(zt+1)

)
, t ∈ Z

infinite in both the directions. Here zt = St
(
r̃k,+j

)
(zt = S−t

(
r̃k,−j

)
) and yt =

St(rj) (yt = S−t(rj)) is the projection of zt. Moreover, χ happens to be the
point of transversal intersection of the stable wk,−,−

i−(j) (z0) (wk,+,+
i+(j) (z0), respectively)

and the unstable wk,+,−
i+(j) (z0) (wk,−,+

i−(j) (z0), respectively) slices lying in the fiber

Zk,−(z0) (Zk,+(z0)). Here wk,±,−
i (z) (wk,±,+

i (z)) denotes the affine space wk,±,−(z)
(wk,±,+(z)) corresponding to the hyperbolic point O = qi, i.e., the fiber of the man-
ifold Ŵ k,±

i,+ (Ŵ k,±
i,− ) that lies over z ∈ W̃ k,±

i,+ (z ∈ W̃ k,±
i,− ). Therefore, in the case

N ≥ k + 1 the point r̂k,+j (r̂k,−j ) happens to be the point of transversal intersection
of the separatrices Ŵ k,−

i−(j),+ and Ŵ k,+
i+(j),+ (Ŵ k,−

i−(j),− and Ŵ k,+
i+(j),−). Thus, although

a satisfactory description of the manifolds Ŵ k,+
i,+ (Ŵ k,−

i,− ) has not been obtained, one
can state the following result. Under the conditions indicated above, items a)–c) of
Lemma 4 with suitable modifications as well as Remarks 11 and B1 are transferable
to the case where instead of bundles Mk

n∓ and Ak
n∓ , the analogous bundles M̂k

n∓

and Âk
n∓ of the k-jets of pairs are considered. We mention without any detail that

items a) and c) have to be modified if the space Wk,±,∓ is non-trivial (i.e., does not
reduce to a single point), and in the second formula of item b) instead of the tangent
spaces TrW∓

r or, more generally, the k-jets of manifolds W∓
r at the points r ∈ A,

the k-jets l̂k,∓r of the pairs
(
W∓

r , l
∓
r

)
appear. The triviality of Wk,±,∓ is equivalent

to that Φ∓ = ∅, i.e., N∓
0 = 1, where Φ∓ is the set Φ and N∓

0 is the number N0 for
the mapping T = S±1 |W±

i .

Problem. To carry out a more detailed investigation of the structure of the sepa-
ratrix W̃±

x̂k,± . In particular, what is the construction for a piece of the separatrix

that lies over a neighbourhood of the boundary ∂W̃±
xk,±? Note that to answer these

questions, one requires first of all to use a more detailed description (see [45, 46]) of
the dynamics of the mapping Ṡ |O:Gn∓(O) → Gn∓(O). An answer is easily given
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in the case of the skew product: if π:M →W∓ is some CN -retraction such that the
diagram

M
S−−−−→ M

π
� �π

W∓ −−−−→
S|W∓

W∓

commutes, i.e., S “covers” S | W∓, then the mapping v̂k,± can be defined by the
following formula: v̂k,±(z, lk) is the k-jet of the pair

(
W,χr,l

)
at the point r ∈ W±

lying under z ∈ W̃±
xk,± , the manifold W has k-jet z at r, the mapping χr,l = Dπ|W l,

and the mapping l ∈ W∓,∓ is such that jkOl = lk ∈ Wk,∓,∓. According to the
theorem of Chen [26, Chapter 9], for any natural n and k and real 0 < ρ1 <

ρ2 < 1 there is N such that the following statement holds. If the eigenvalues λi
of the n-dimensional CN -diffeomorphism S at the hyperbolic fixed point O satisfy
the inequalities ρ1 < min

{
|λi|, |λi|−1

}
< ρ2 and admit no resonances (2′) up to

order N (i.e., for 2 ≤ |m| ≤ N) then S will be Ck-equivalent (i.e., conjugated by
a Ck-diffeomorphism) to its linear part, i.e., it becomes linear in some local Ck-
coordinates. Let π:M → W∓ be the Ck-retraction which is the projection along
W± in these coordinates. Then the formula determining v̂k,± remains valid.
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