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Abstract

Given a spectral measure P acting in a locally convex space X , there is a subtle
connection between the properties of P and its associated space L1(P ) of
P -integrable functions and of the topological properties of the underlying space
X and the space L(X) of all continuous linear operators on X (equipped with
the strong operator topology). This paper makes a detailed study of the cano-
nical spectral measure P acting in a class of locally convex sequence spaces
X ⊆ C

N. Special emphasis is placed on developing criteria which guarantee the
σ-additivity of P and criteria which allow for an explicit identification of
L1(P ). Moreover, certain desirable features of the integration map f �→∫
fdP , f ∈ L1(P ), are established which are not true for general spectral

measures acting in arbitrary locally convex spaces X .
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1. Introduction

Spectral measures in Banach or, more generally, locally convex Hausdorff spaces
(briefly, lcHs) are natural extensions of the notion of the resolution of the identity
of a normal operator in a Hilbert space. Integration with respect to such operator-
valued measures has played an important role in the theory of operator algebras
generated by Boolean algebras of projections; see [4], [5], [6], [7], [8], [22], [26], [27],
[28] and the references therein, for example. Given a spectral measure P acting
in a lcHs X there is a subtle connection between the properties of its associated
lcHs L1(P ) of P -integrable functions and the properties of the underlying space X

and the space L(X) of all continuous linear operators of X into itself (for the strong
operator topology). There are many general results available which provide sufficient
conditions for L1(P ) to be a (complex) lattice, a complete or separable lcHs, etc.
and also many examples illustrating the limitations of such general results. Because
of the large diversity of possible lcH-spaces X and spectral measures P available it
is imperative to be able to decide about two basic questions.

(i) Given a σ-algebra of sets Σ and a multiplicative set function P : Σ → L(X),
where L(X) is the space of all linear maps of X into itself, when does P form a
genuine spectral measure in L(X)? This problem reduces to two basic criteria:
one needs to be able to determine that Px : E �→ P (E)x, for E ∈ Σ, is a
σ-additive X-valued measure for each x ∈ X, and to be able to verify that each
operator P (E) actually belongs to L(X) rather than just belonging to L(X).

(ii) Associated with each X-valued vector measure Px, for x ∈ X, is its lcHs L1(Px)
of Px-integrable functions. The general theory of vector measures is well deve-
loped and provides a variety of tools which can be applied to determine L1(Px)
rather concretely for specific examples of X and P . The problem arises in
transferring this information to determine the space L1(P ) associated with P .
It is clear that L1(P ) ⊆

⋂
x∈X L1(Px); the difficulty is to provide sufficient

conditions, often of a somewhat delicate topological nature on X and L(X)
or on properties of P , which guarantee that this containment is actually an
equality.

The aim of this paper is to investigate in depth the questions (i) and (ii) for
a particular class of lcH-spaces X and a canonical spectral measure P acting in X.
More specifically, X will come from a certain class of sequence spaces (all contained
in C

N) with the property that each linear operator P (E) ∈ L(X) given by

P (E) : x �→ χEx, x ∈ X,
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for E ∈ 2N, is well defined meaning that χEx (defined coordinatewise) is again
an element of X whenever x ∈ X and E ∈ 2N. The reason for considering this
particular setting is three-fold. Firstly, the questions (i) and (ii) are quite tractable,
which is surely not the case in the general setting alluded to earlier. Secondly, by
varying the lcH-topology to be put on X we are able to exhibit a large variety
of spaces X which, even though P is fixed throughout, illustrate many detailed
phenomena in relation to question (i). This is meant in the sense that we have quite
general positive results and at the same time a wealth of examples illustrating the
limitations involved. Thirdly, this canonical spectral measure P turns out to be
“concrete enough” so that it is possible to describe the spaces L1(P ) and L1(Px),
for each x ∈ X, accurately enough to give an exact answer to question (ii).

The structure of this paper is roughly as follows. Section 2 records some nota-
tion and preliminaries needed later. Section 3 is mainly devoted to the question (i).
The final section addresses question (ii) and also contains some additional features
of the integration map IP : L1(P ) → L(X) which are specific to our setting.

2. Preliminaries

Let Σ be a σ-algebra of subsets of a non-empty set Ω. The space of all C-valued,
Σ-simple functions is denoted by sim(Σ). Let Y be a lcHs. A function m : Σ → Y is
called a vector measure if it is σ-additive. Given y′ in the topological dual space Y ′

of Y , let 〈m, y′〉 denote the complex measure E �→ 〈m(E), y′〉, E ∈ Σ. A C-valued,
Σ-measurable function f on Ω is called m-integrable if it is 〈m, y′〉-integrable for each
y′ ∈ Y ′ and if, given any E ∈ Σ, there is a (necessarily unique) element

∫
E
fdm

of Y such that 〈
∫
E
fdm, y′〉 =

∫
E
fd〈m, y′〉 for each y′ ∈ Y ′. The linear space of

all m-integrable functions is denoted by L1(m). Given E ∈ Σ the characteristic
function of E is denoted by χE. Clearly sim(Σ) ⊆ L1(m).

Let X be a lcHs. The linear space L(X) is denoted by Ls(X) when it is equipped
with the strong operator topology, that is, the topology of pointwise convergence on
X. A vector measure P : Σ → Ls(X) is called a spectral measure if it is multiplicative
(i.e. P (E∩F ) = P (E)P (F ) for all E,F ∈ Σ) and if P (Ω) = I, the identity operator
on X.

Let P : Σ → Ls(X) be a spectral measure. For each f ∈ L1(P ) the operator∫
Ω
fdP ∈ L(X) is also denoted by P (f). For each x ∈ X, the X-valued set function

Px on Σ defined by Px : E �→ P (E)x, for each E ∈ Σ, is σ-additive. Integrability
with respect to a spectral measure P is simpler to characterize than for general
vector measures (due to the muliplicativity of P ).
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Lemma 2.1 ([19; Lemma 1.2])

Let X be a lcHs and P : Σ → Ls(X) be a spectral measure. The following

statements for a Σ-measurable function f : Ω → C are equivalent.

(i) The function f is P -integrable.

(ii) The function f is 〈Px, x′〉-integrable for all x ∈ X and x′ ∈ X ′, and there exists

T1 ∈ L(X) such that

〈T1x, x
′〉 =

∫
Ω

fd〈Px, x′〉, x ∈ X,x′ ∈ X ′.

(iii) The function f is Px-integrable for each x ∈ X, and there exists T2 ∈ L(X)
such that

T2x =
∫

Ω

fdPx, x ∈ X.

In this case T1 = T2 = P (f) and∫
E

fdP = P (f)P (E) = P (E)P (f), E ∈ Σ.

Lemma 2.1 clearly implies the inclusion L1(P ) ⊆
⋂

x∈X L1(Px). Given a func-
tion f ∈

⋂
x∈X L1(Px) let P[f ] : X → X denote the linear map defined by

P[f ] : x �→
∫

Ω

fdPx, x ∈ X.

As noted in the Introduction a fundamental question is to decide when the equality

(2.1) L1(P ) =
⋂
x∈X

L1(Px)

holds or, equivalently, when P[f ] is continuous on X for every f ∈
⋂

x∈X L1(Px).
To discuss this question let us introduce some further terminology. The lcHs X is
said to have the closed graph property if every closed linear map from X into itself is
necessarily continuous. Let [Ls(X)]P denote the sequential closure in Ls(X) of the
linear span of the range P (Σ) = {P (E) : E ∈ Σ} of P . It is known that [Ls(X)]P
coincides with the sequential closure of the range of the integration map

(2.2) IP : f �→
∫

Ω

fdP, f ∈ L1(P );

see the remark prior to Lemma 1.4 in [17]. Consider now the following three condi-
tions:
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(H1)X is barrelled.
(H2)X has the closed graph property and the linear map P[f ] ∈ L(X) is a

closed map for each f ∈
⋂

x∈X L1(Px).
(H3) The lcHs [Ls(X)]P is sequentially complete.
It was recently shown by J. Bonet [2] that not all barrelled spaces have the

closed graph property: he exhibited a class of normed, barrelled spaces on which
there exist everywhere defined, closed linear operators which fail to be continuous.

The following result, which is an extension of [6; Proposition 1.2], can be found
in [20; Theorem 1].

Lemma 2.2

Let X be a lcHs and P : Σ → Ls(X) be a spectral measure. Then the equa-

lity (2.1) is implied by any one of the conditions (H1), (H2) and (H3).

3. The canonical spectral measure in sequence spaces

We will only be dealing with sequence spaces in the setting of the space C
N of all C-

valued functions on N (the set of all positive integers). We equip C
N with the usual

product topology so that C
N becomes a Fréchet space. For more general sequence

spaces and various extensions of most of the basic notions that we will consider we
refer the reader to [10], for example.

For each n ∈ N, let en denote the characteristic function χ{n}. The linear span
of the set {en : n ∈ N} is denoted by c00. A linear subspace of C

N containing c00

is called a sequence space. Given a sequence space X, its α-dual Xα is defined to
be the space of all y ∈ C

N such that
∑∞

n=1 |x(n)y(n)| < ∞ for every x ∈ X, [12].
Clearly c00 ⊆ Xα. Given f ∈ C

N, define

Xf := {xf : x ∈ X} ,

where (xf)(n) := x(n)f(n) for n ∈ N.
Let 2N denote the σ-algebra of all subsets of N. Then sim(2N) is a sequence

space. A sequence space X is called monotone if Xϕ ⊆ X for every ϕ ∈ sim(2N).

Example 3.1: Clearly the sequence spaces c00, sim(2N) and C
N are monotone. Other

frequently used examples of monotone sequence spaces are the space �p(1 ≤ p < ∞)
of all x ∈ C

N such that
∑∞

n=1 |x(n)|p < ∞, the subspace �∞ of C
N consisting of all

bounded functions, and the space c0 of all x ∈ C
N such that limn→∞ x(n) = 0. The

sequence space c consisting of all x ∈ C
N such that limn→∞ x(n) exists (in C) is not

monotone.
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A sequence space equipped with a lcH-topology is called a locally convex se-
quence space; briefly, a lcss. The weak and Mackey topologies on a lcss X are
denoted by σ(X,X ′) and τ(X,X ′), respectively.

Let X be a monotone sequence space. Define the canonical set function P :
2N → L(X) by

(3.1) P (E)x = xχE, E ∈ 2N, x ∈ X;

note that the monotone property of X ensures that P (E) exists as an element of
L(X) for each E ∈ 2N. Moreover, P is multiplicative and satisfies P (N) = I. Let
x ∈ X. Recall that Px : 2N → X is defined by

(3.2) Px(E) = P (E)x, E ∈ 2N.

As noted in the Introduction, a fundamental question is to determine when Px

becomes σ-additive with respect to a lcH-topology on X. This question is answered
in Proposition 3.2 below. But first we require some further notation.

A monotone lcss X is said to be a weak AK-space if, given any x ∈ X, the
sequence {xen}∞n=1 is summable to x in X, i.e. x = limn→∞

∑n
j=1 xen in the

topology of X.
Given a lcss X the canonical linear map J : X ′ → C

N is defined by

(3.3) J(x′) : n �→ 〈en, x′〉, n ∈ N,

for each x ∈ X ′, where 〈·, ·〉 is the duality of the pair (X,X ′).

Proposition 3.2

Let X be a monotone lcss. Then the following statements are equivalent.

(i) For each x ∈ X, the set function Px : 2N → X defined by (3.2) is σ-additive.

(ii) The lcss X is a weak AK-space.

(iii) The lcss Xσ(X,X′) is a weak AK-space.

(iv) The range of the canonical map J : X ′ → C
N given by (3.3) is contained in the

α-dual Xα of X and the identity

(3.4) 〈x, x′〉 =
∞∑

n=1

J(x′)(n)x(n)

holds, for each x ∈ X and x′ ∈ X ′.
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Proof. (i)⇒(ii). For each x ∈ X the statement (i) implies that

x = P (N)x =
∞∑

n=1

Px({n}) =
∞∑

n=1

xen.

(ii)⇒(iii). This implication is clear.
(iii)⇒(iv). Fix x′ ∈ X ′. Let x ∈ X and E ∈ 2N. By (iii) the sequence

{xχEen}∞n=1 is summable to xχE with respect to the weak topology σ(X,X ′). Since
x′ ∈ (Xσ(X,X′))′ we have

∑∞
n=1〈xχEen, x

′〉 =
∑∞

n=1 J(x′)(n)χE(n)x(n) in C. In
other words, {〈xen, x′〉}∞n=1 is unconditionally summable and hence, by a classical
result of Riemann, is absolutely summable in C. Accordingly, J(x′) ∈ Xα and (3.4)
holds by choosing E = N.

(iv)⇒(i). Let x ∈ X. It follows from (iv) that the C-valued set function
〈Px, x′〉 is σ-additive for each x′ ∈ X ′. The Orlicz-Pettis theorem, [9; p.308], then
implies (i). �

Definition 3.3. A monotone lcss X has the 2N-summability property if the canoni-
cal set function P : 2N → L(X) given by (3.1) is an Ls(X)-valued spectral measure.

Let 1 ≤ p < ∞. Then the sequence space �p equipped with the usual norm
||x||p = (

∑∞
n=1 |x(n)|p)1/p, for x ∈ �p, has the 2N-summability property. The same

is true of c0 when equipped with the norm ||x||∞ = supn |x(n)|, for x ∈ c0. However,
the space �∞ does not have the 2N-summability property with respect to the norm
||x||∞ = supn |x(n)|, for x ∈ �∞.

A direct consequence of Definition 3.3 and Proposition 3.2 is the following result.

Corollary 3.4
A monotone lcss X has the 2N-summability property if and only if X is a weak

AK-space and the inclusion

(3.5) P (2N) =
{
P (E) : E ∈ 2N

}
⊆ L(X)

holds.

A lcss X is called a K-space if

(3.6) P ({n}) ∈ L(X), n ∈ N.

This is equivalent to P (E) ∈ L(X) for each finite and cofinite subset E of N which,
in turn, is equivalent to continuity of the natural injection from X into the Fréchet
space C

N. A lcss X is called an AK-space if it is both a K-space and a weak AK-
space. Since (CN)′ = c00 we see that a weak AK-space is an AK-space if and only if
X ′ ⊇ c00, where X ′ is regarded as a linear subspace of C

N; see (3.3) and Proposition
3.2. Clearly a lcss with the 2N-summability property is an AK-space. The following
example shows that there exist monotone lc-sequence spaces (even a Banach space)
which are neither K-spaces nor weak AK-spaces.
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Example 3.5: Let the monotone sequence space �1 be equipped with its usual norm
|| · ||1. Then there exists a discontinuous linear functional x∗ : �1 → C which vanishes
on c00. To see this, let Y be an algebraic complement of c00 in �1 so that �1 is the
algebraic direct sum of c00 and Y . Let π : �1 → Y denote the associated projection.
Equip the subspace Y of �1 with the relative topology. Then π is not continuous
because Y is not closed in �1. Therefore π also fails to be continuous with respect
to the topologies σ(�1, �∞) and σ(Y, Y ′) on �1 and Y , respectively. In other words,
there is y′ ∈ Y ′ for which x∗ = y′ ◦ π is not continuous on �1σ(�1,�∞). Hence x∗ also
fails to be continuous for the norm || · ||1.

Given x ∈ �1 we have x = (x(1)− 〈x, x∗〉)e1 + [〈x, x∗〉e1 + (x− e1x)]. Let X be
the vector space �1 equipped with the norm || · ||X defined by

||x||X = |x(1) − 〈x, x∗〉| + ||xe1 − x||1, x ∈ X.

Then X is complete with respect to ||·||X because X is isomorphic to the topological
direct sum of �1 and the linear span of {e1}.

Choose any x ∈ X for which 〈x, x∗〉 �= 0. Since x∗ vanishes on c00 it follows
that

∥∥∥x−
n∑

k=1

xek

∥∥∥
X

= |〈x, x∗〉| +
∥∥∥x−

n∑
k=1

xek

∥∥∥
1
→ |〈x, x∗〉|, n → ∞.

This shows that X is not a weak AK-space.
To see that X is not a K-space it suffices to verify that P ({1}) �∈ L(X). Since x∗

is not continuous on �1 we can choose a sequence {yn}∞n=1 in �1 such that ||yn||1 → 0,
yet n �→ 〈yn, x∗〉, for n ∈ N, does not converge to 0 as n → ∞. Define a sequence
{xn}∞n=1 in X by

xn = 〈yn − e1, x
∗〉e1 + (yn − e1yn), n ∈ N.

Then the sequence of complex numbers

xn(1) = 〈yn − e1, x
∗〉 = 〈yn, x∗〉, n ∈ N,

fails to converge to 0 in C, but ||xn||X → 0 as n → ∞ because ||xn||X = ||yn −
e1yn||1 ≤ ||yn||1 for each n ∈ N. Since P ({1})xn = xn(1)e1 for each n ∈ N, the
linear map P ({1}) is not continuous on X.

There also exist monotone lc-sequence spaces (even normed ones) which are
K-spaces but not weak AK-spaces.
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Example 3.6: (i) X = �∞ with norm || · ||∞ is a Banach space which is a K-space
but not a weak AK-space.

(ii) Let X = �1 as a vector space and let x∗ be as in Example 3.5. Define a
norm on X by

||x|| = |〈x, x∗〉| + ||x||1, x ∈ X.

Then X is not complete. For, if it were, then the identity map from �1 onto X would
be continuous by the open mapping theorem and so x∗ would be continuous on �1

for the norm || · ||1 (which is not the case).
Since x∗ vanishes on c00 we see that (3.6) holds, that is, X is a K-space. How-

ever, X is not a weak AK-space since

lim
n→∞

〈 n∑
k=1

xek, x
∗
〉

= 0 �= 〈x, x∗〉, x ∈ X \ (x∗)−1({0}).

We now turn our attention to finding sufficient conditions which guarantee
that (3.5) holds. A seminorm q on a sequence space X is called absolutely monotone
if q(x) ≤ q(y) for all x, y ∈ X satisfying |x| ≤ |y|, [10; p.64], where by definition |x|
has co-ordinates |x(n)|, n ∈ N, for each x ∈ C

N. For instance, the usual norm in
each space �p, 1 ≤ p ≤ ∞, is absolutely monotone.

Lemma 3.7

Let X be a monotone lcss whose topology is defined by a fundamental set of

absolutely monotone seminorms. Then the inclusion (3.5) necessarily holds.

Proof. This is a consequence of the fact that

q
(
P (E)x

)
= q(xχE) ≤ q(x), x ∈ X,E ∈ 2N,

whenever q is an absolutely monotone seminorm on X. �

It is clear that any lcss with the properties assumed in Lemma 3.7 is a K-space.
Example 3.6 (i) shows that it does not follow that such a space is an AK-space.

Lemma 3.7 allows us to exhibit a large class of lc-sequence spaces which have
the 2N-summability property.
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Example 3.8: Let X be a monotone sequence space and let Y be a linear subspace
of Xα containing c00. Given y ∈ Y , the seminorm ry on X defined by

ry(x) =
∞∑

n=1

∣∣(x(n)y(n)
∣∣ , x ∈ X,

is absolutely monotone. The lcH-topology on X generated by the family of semi-
norms {ry : y ∈ Y } is denoted by |σ|(X,Y ). Proposition 3.2 implies that X|σ|(X,Y ) is
a weak AK-space. It then follows from Corollary 3.4 and Lemma 3.7 that X|σ|(X,Y )

has the 2N-summability property. See also the notion of normal topology as given
in [12].

The topology σ(X,X ′) on a monotone lcss X does not satisfy the assumption
of Lemma 3.7 unless X ′ = c00. So, to ensure the 2N-summability property in spaces
equipped with their weak topology we require other criteria; see Proposition 3.10
below. First we require a technical result.

Lemma 3.9

Let X be a monotone sequence space and let Y be a linear subspace of Xα such

that c00 ⊆ Y . Then the following statements hold.

(i) The lcss Xσ(X,Y ) is an AK-space.

(ii) The lcss Xσ(X,Y ) has the 2N-summability property if and only if Y is monotone.

Proof. Statement (i) is clear.
Statement (ii) follows because

〈P (E)x, y〉 =
∞∑

n=1

y(n)χE(n)x(n) =
∞∑

n=1

(yχE)(n)x(n) , x ∈ X,

for E ∈ Σ and y ∈ Y , and because Y is monotone if and only if Y χE ⊆ Y for all
E ∈ Σ. �

Via Lemma 3.9 it is easy to exhibit AK-spaces without the 2N-summability
property. For instance, X = �1σ(�1,c) provides such an example because Y = c is not
monotone.

The fact that the weak topology σ(X,X ′) on a lcHs X is compatible with the
duality (X,X ′) leads to the following result.
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Proposition 3.10

Let X be a monotone lcss which is an AK-space and, via (3.3) and Proposi-

tion 3.2(iv), regard X ′ as a subspace of Xα. Then the following statements hold.

(i) If X has the 2N-summability property, then so does Xσ(X,X′).

(ii) The following conditions are equivalent:

(a) X ′ is monotone.

(b) Xσ(X,X′) has the 2N-summability property.

(c) Xτ(X,X′) has the 2N-summability property.

(iii) If X has the 2N-summability property, then X ′ is monotone.

(iv) For each E ∈ 2N, suppose that

(3.7)

{
n∑

k=1

P
(
E ∩ {k}

)
: n ∈ N

}

is an equicontinuous subset of L(X). Then X has the 2N-summability property.

(v) If X is barrelled, then X has the 2N-summability property.

(vi) If X has the closed graph property, then X has the 2N-summability property.

Proof. Statement (i) follows from the fact that L(X) ⊆ L(Xσ(X,X′)).
(ii) Since c00 ⊆ X ′ (see the comments after Corollary 3.4) the equivalence of (a)

and (b) follows from Lemma 3.9 (ii). The equivalence of (b)⇔ (c) follows from
Proposition 3.2 applied to Xτ(X,X′) and the fact that L(Xσ(X,X′)) = L(Xτ(X,X′));
see [9; Corollary 8.6.5].

(iii) Apply (i) and (ii).
(iv) Fix E ∈ 2N. Let q be a continuous seminorm on X. By assumption there

is a continuous seminorm r on X such that

q

(
n∑

k=1

Px(E ∩ {k})
)

= q

([
n∑

k=1

P (E ∩ {k})
]
x

)
≤ r(x), x ∈ X,

for each n ∈ N. The σ-additivity of Px, for each x ∈ X, implies that

q(P (E)x) = q(Px(E)) = q

(
lim

n→∞

n∑
k=1

Px(E ∩ {k})
)

= lim
n→∞

q

(
n∑

k=1

Px(E ∩ {k})
)

≤ r(x) .
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Hence, P (E) ∈ L(X). Since E ∈ 2N is arbitrary it follows from Corollary 3.4 that
X has the 2N-summability property.

(v) Given x ∈ X and E ∈ 2N we have

(3.8)
n∑

k=1

P (E ∩ {k})x = Px(E ∩ {1, 2, . . . , n}) ∈ Px(2N), n ∈ N.

Moreover, the range Px(2N) of the X-valued measure Px is a bounded subset of X,
[11; II, Lemma 1.2]. Hence, (3.8) implies that the set (3.7) is bounded in Ls(X) and
so (3.7) is actually equicontinuous because X is barrelled, [13; (2),§39.3]. Then (iv)
gives the desired conclusion.

(vi) Let E ∈ 2N. Consider a net {xα} in X with the property that the nets
{xα} and {P (E)xα} are convergent to elements x and y in X, respectively. Since the
topology on X is stronger than that induced by C

N it follows that xα → x pointwise
on N and hence, also xαχE → xχE pointwise on N. Since also xαχE = P (E)xα → y

pointwise on N, we conclude that y = xχE = P (E)x. Thus P (E) ∈ L(X) is a closed
map and so P (E) ∈ L(X) by the assumption on X. The required conclusion then
follows from Corollary 3.4. �

A lcHs is called a Mackey space if its given topology is equal to its Mackey
topology τ(X,X ′). Every quasi-barrelled space is a Mackey space, [9; p.222]. Ac-
cordingly, Proposition 3.10(ii) implies that a quasi-barrelled AK-space X has the
2N-summability property if and only if X ′ is monotone. Note that the class of quasi-
barrelled spaces is quite extensive: it includes all bornological spaces and hence, all
metrizable spaces, [12; (1), (4) in §28.1].

Question. Does there exist a monotone lcss which is a quasi-barrelled AK-space
but fails to have the 2N-summability property?

Example 3.11: The following spaces X have the 2N-summability property, either
by Example 3.8 or by Proposition 3.10.
(i) A monotone sequence space X equipped with the topology σ(X, c00) =

|σ|(X, c00).
(ii) The space X = c00 equipped with lc-direct sum topology as a subspace of the

direct sum of countably many copies of C, or the topology σ(c00, Y ) for any
monotone sequence space Y containing c00.

(iii) A monotone linear subspace X of �p, 1 ≤ p < ∞, equipped with either the ||·||p-
norm topology, or one of the topologies σ(X,Y ), |σ|(X,Y ), τ(X,Y ) where Y is
any monotone linear subspace of �q (with q = p/(p − 1) if p > 1 and q = ∞ if
p = 1) containing c00.
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(iv) A monotone linear subspace X of �∞, equipped with one of the topologies
σ(X,Y ), |σ|(X,Y ) or τ(X,Y ), where Y is any monotone linear subspace of �1

containing c00.
It is known that the range of any purely atomic spectral measure is always

a sequentially closed subset of Ls(X), [25; Theorem]. For the canonical spectral
measure P of this paper, which is surely purely atomic, a stronger result is true.

Proposition 3.12

Let X be a monotone lcss with the 2N-summability property. Then the range

of the canonical spectral measure P : 2N → Ls(X) defined by (3.1) is actually a

complete subset of Ls(X). In particular, it is also a closed subset of Ls(X).

Proof. Let {P (Eα)}α∈A be a Cauchy net in Ls(X). Fix n ∈ N. Since {P (Eα)en}α∈A

is a Cauchy net in the (1-dimensional) complete subspace of X spanned by en it has
a limit of the form anen where the complex number an ∈ {0, 1}. Let E = {n ∈ N :
an = 1}. Then

(3.9) lim
α

χEα
(n) = χE(n), n ∈ N.

The claim is that {P (Eα)}α∈A converges to P (E) in Ls(X). To see this fix x ∈ X.
Let ε > 0 and let q be a continuous seminorm on X. For each n ∈ N let Fn =
N \ {1, . . . , n}. Defining

q(Px) : F �→ sup
{
q(Px(G)) : G ⊆ F

}
, F ∈ 2N,

we have that limn→∞ q(Px)(Fn) = 0; see Lemmas 1.1 and 1.2 in Chapter II of [11].
Since

q
(
Px(Eα ∩ Fn)

)
+ q

(
Px(E ∩ Fn)

)
≤ 2q(Px)(Fn)

for each α ∈ A and n ∈ N, there is an integer K ≥ 2 such that

(3.10) sup
{
q(Px

(
Eα ∩ FK)

)
+ q

(
Px(E ∩ FK)

)
: α ∈ A

}
< ε.

Since χG\H = χGχN\H for any G,H ∈ 2N it follows from (3.9) that

(3.11) lim
α

χEα\FK
(n) = χE\FK

(n), n ∈ N.

Moreover, the sets E\FK and Eα\FK are contained in the finite set {1, . . . , (K−1)},
for each α ∈ A. Accordingly, (3.11) and the inequality

q
(
Px(Eα \ FK) − Px(E \ FK)

)
≤

K−1∑
j=1

|x(j)|q(ej)|χEα\FK
(j) − χE\FK

(j)|,
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which is valid for each α ∈ A, imply that there exists α0 ∈ A for which

(3.12) q
(
Px(Eα \ FK) − Px(E \ FK)

)
< ε, α ≥ α0.

Since the identity

Px(Eα)−Px(E) = Px(Eα∩FK)+
[
Px(Eα \FK)−Px(E \FK)

]
+

[
−Px(E∩FK)

]
is valid for each α ∈ A, it follows from this identity, the triangle inequality for q, and
the inequalities (3.10) and (3.12) that q(Px(Eα) − Px(E)) < 2ε whenever α ≥ α0.
This establishes that P (Eα)x → P (E)x in X. Since x ∈ X is arbitrary it follows
that P (Eα) → P (E) in Ls(X). �

4. The space of P -integrable functions

Unless stated otherwise, throughout this section X is a monotone lcss which has the
2N-summability property. Hence, the canonical set function P on 2N defined by

(4.1) P (E)x = χEx, E ∈ 2N, x ∈ X,

is an Ls(X)-valued spectral measure. By applying (3.3) and Proposition 3.2 to
the weak AK-space X we may assume that c00 ⊆ X ′ ⊆ C

N and 〈x, x′〉 =∑∞
n=1 x(n)x′(n), for all x ∈ X and x′ ∈ X ′. For each x ∈ X recall that Px : 2N → X

is the σ-additive measure given by Px : E �→ P (E)x, for each E ∈ 2N. Finally, let
δn : 2N → C denote the Dirac point measure at each n ∈ N.

Lemma 4.1
Let x ∈ X. Then

(4.2) L1(Px) = {f ∈ C
N : xf ∈ X}

and, for each f ∈ L1(Px), we have

(4.3)
∫
E

fdPx = χExf = P (E)xf, E ∈ 2N.

Consequently,

(4.4)
⋂
x∈X

L1(Px) =
{
f ∈ C

N : Xf ⊆ X
}
.

Proof. For all x ∈ X and x′ ∈ X ′ we have 〈Px, x′〉 =
∑∞

n=1 x(n)x′(n)δn, which
implies both (4.2) and (4.3) since, for each ϕ ∈ L1(〈Px, x′〉), we have∫

E

ϕd〈Px, x′〉 =
∞∑

n=1

x(n)x′(n)χE(n)ϕ(n), E ∈ 2N.

The identity (4.4) then follows from (4.2). �
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Given a function f : N → C satisfying Xf ⊆ X we define a linear map Mf :
X → X by Mf : x �→ xf , for each x ∈ X. By using the assumption that the
topology on X is stronger than that induced by C

N it can be shown that Mf is a
closed linear map, along the same lines that P (E) was shown to be closed in the
proof of Proposition 3.10(vi). Moreover, given any f ∈

⋂
x∈X L1(Px), it follows

from Lemma 4.1 that the operator P[f ] ∈ L(X) defined by x �→
∫

N
fdPx, for each

x ∈ X, is precisely the closed linear map Mf . Accordingly, for our canonical spectral
measure P the condition (H2) may be reformulated as:

(H2)∗ X has the closed graph property.
We now turn our attention to the space L1(P ). The following result is imme-

diate from Lemma 4.1.

Proposition 4.2

A function f : N → C belongs to L1(P ) if and only if Xf ⊆ X and Mf ∈ L(X).
In this case

∫
N
fdP = Mf .

In view of the inclusion L(X) ⊆ L(Xσ(X,X′)), let Λ : Ls(X) → Ls(Xσ(X,X′))
be the natural injection. Since Λ is continuous, the set function Λ ◦ P : 2N →
Ls(Xσ(X,X′)) is a spectral measure satisfying L1(P ) ⊆ L1(Λ◦P ). Moreover, Lemma
4.1 implies that

(4.5) L1
(
(Λ ◦ P )x

)
=

{
f ∈ C

N : xf ∈ X
}

= L1(Px),

for each x ∈ X. Thus

(4.6) L1(P ) ⊆ L1(Λ ◦ P ) ⊆
⋂
x∈X

L1(Px).

By Lemma 2.2 any one of the conditions (H1), (H2)∗ and (H3) ensures that

(4.7) L1(P ) =
⋂
x∈X

L1(Px).

On the other hand, (4.7) implies the identity L1(Λ ◦ P ) =
⋂

x∈X L1((Λ ◦ P )x).
Accordingly, whenever X has the property that the inclusion

(4.8) L1(Λ ◦ P ) ⊆
⋂
x∈X

L1
(
(Λ ◦ P )x

)



110 Okada and Ricker

is strict, then also the inclusion

(4.9) L1(P ) ⊆
⋂
x∈X

L1(Px)

is strict. It turns out that the space L1(Λ ◦ P ) can be easily described.

Proposition 4.3

A function f : N → C belongs to L1(Λ ◦ P ) if and only if

(4.10) Xf ⊆ X and X ′f ⊆ X ′.

This proposition is a direct consequence of the following result.

Lemma 4.4

The following conditions on a function f : N → C satisfying Xf ⊆ X are

equivalent:

(i) Mf ∈ L(Xσ(X,X′)).
(ii) Mf ∈ L(Xτ(X,X′)).
(iii) X ′f ⊆ X ′.

Proof. The equivalence of (i) and (iii) follows from the identity

〈Mfx, x
′〉 =

∞∑
n=1

x(n)x′(n)f(n), x ∈ X,x′ ∈ X ′.

The equivalence (i)⇔(ii) is clear from L(Xσ(X,X′)) = L(Xτ(X,X′)). �

Corollary 4.5

The following statements hold.

(i) If f ∈ L1(P ), then (4.10) is satisfied.

(ii) The identity

(4.11) L1(P ) = L1(Λ ◦ P )

holds if and only if every function f : N → C which satisfies (4.10) is P -integrable.

(iii) If X is quasi-barrelled, then (4.11) holds.

(iv) If any one of (H1), (H2)∗ and (H3) holds, then every function f : N → C

satisfying Xf ⊆ X also satisfies X ′f ⊆ X ′.
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Proof. To establish (i) and (ii) we apply (4.6) and Proposition 4.3. Statement (iii)
follows from the fact that X is a Mackey space. Statement (iv) is a consequence of
statement (i) and (4.4), after noting that (4.7) holds by Lemma 2.2. �

An example of a monotone lcss X with the 2N-summability property for which
strict inclusion holds in (4.9) has been given in [20; Example 7]. An extensive
collection of additional examples is now presented (cf. Examples 4.6 and 4.7).

Example 4.6: Fix 1 ≤ p ≤ ∞. Let X = c00 be equipped with the norm topology
induced from the Banach space �p, in which case X is quasi-barrelled. Applying
Proposition 4.3 and Corollary 4.5 (iii) we see that L1(P ) = L1(Λ ◦ P ) = �∞ since
X ′ = �q (where q = p/(p − 1) if p > 1 and q = ∞ if p = 1) and because a function
f : N → C satisfies �qf ⊆ �q if and only if f ∈ �∞. On the other hand it is clear
that C

N =
⋂

x∈X L1(Px).

Example 4.7: Let Y be a monotone sequence space. Let Z be a monotone linear
subspace of Y α such that c00 ⊆ Z. Then Lemma 3.9 implies that X = Yσ(Y,Z) is
a monotone lcss with the 2N-summability property. Moreover, Proposition 4.3 then
implies that

(4.12) L1(P ) =
{
f ∈ C

N : Y f ⊆ Y and Zf ⊆ Z
}
.

On the other hand, Lemma 4.1 yields

(4.13)
⋂
x∈X

L1(Px) =
{
f ∈ C

N : Y f ⊆ Y
}
.

So, if there exists a function f : N → C satisfying Y f ⊆ Y but Zf �⊆ Z, then
the inclusion (4.9) is strict. The descriptions given by (4.12) and (4.13) allow us to
exhibit an array of “curious examples”.

(i) Let Y = �1 and Z be either c00, or c0, or �p (for any 1 ≤ p ≤ ∞). Then
L1(P ) = �∞ =

⋂
x∈X L1(Px).

(ii) Let Y = �1 and Z = sim(2N). Then L1(P ) = sim(2N), but �∞ =
⋂

x∈X L1(Px).
(iii) Let Y = sim(2N) and Z be any monotone subspace of C

N satisfying c00 ⊆ Z ⊆
�1. Then L1(P ) = sim(2N) =

⋂
x∈X L1(Px).

(iv) Let Y = c00 and Z = c00. Then L1(P ) = C
N =

⋂
x∈X L1(Px).

(v) Let Y = c00 and Z = sim(2N). Then L1(P ) = sim(2N), but C
N =

⋂
x∈X L1(Px).

(vi) Let Y = c00 and Z = c0 or �p (for any 1 ≤ p ≤ ∞). Then L1(P ) = �∞, but
C

N =
⋂

x∈X L1(Px).
(vii) Let E(1) denote the set of all odd integers in N and E(2) = N \ E(1). Let

Y = {y ∈ C
N : yχE(1) ∈ �1, yχE(2) ∈ c00}
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and
Z = {z ∈ C

N : zχE(1) ∈ sim(2N), zχE(2) ∈ c00}.
Then L1(P ) = {ϕ ∈ C

N : ϕχE(1) ∈ sim(2N)} but
⋂

x∈X L1(Px) = {ϕ ∈ C
N :

ϕχE(1) ∈ �∞}.
(viii) Let E(1) = {3n−2 : n ∈ N}, E(2) = {3n−1 : n ∈ N} and E(3) = {3n : n ∈ N}.

Let
Y = {y ∈ C

N : yχE(1) ∈ �1, yχE(2) ∈ sim(2N), yχE(3) ∈ c00}
and

Z = {z ∈ C
N : zχE(1) ∈ sim(2N), zχE(2) ∈ ∆, zχE(3) ∈ c00},

where ∆ is either c00 or �1. Then L1(P ) = {ϕ ∈ C
N : ϕχE(1)∪E(2) ∈ sim(2N)},

but
⋂

x∈X L1(Px) = {ϕ ∈ C
N : ϕχE(1) ∈ �∞, ϕχE(2) ∈ sim(2N)}.

And so on!
Either, if X is quasi-barrelled or if X is equipped with its weak topology,

then (4.11) holds; the latter case is obvious and the former is statement (iii) of
Corollary 4.5. The following example provides another sufficient condition.

Example 4.8: Let Y be a monotone sequence space and Z be a linear subspace
of Y α containing c00. Let X = Y|σ|(Y,Z); for the definition see Example 3.8. Then
every function f : N → C satisfying (4.10) is P -integrable because the dual space X ′

is the ideal generated by Z in the vector lattice C
N, [1; p.128]. Hence, (4.11) holds

by Corollary 4.5 (ii).
The condition (H3) always guarantees that

(4.14) �∞ ⊆ L1(P );

see [17; Proposition 2.2 (i)]. Example 4.7 shows that this is surely not always the
case. In order to discuss some implications of (4.14) and earlier results in this section
we recall that a sequence space Y is called solid if every function f ∈ C

N satisfying
|f | ≤ |y| for some y ∈ Y necessarily belongs to Y itself. In particular, if y ∈ Y ,
then also |y| ∈ Y . Of course, |y| is the function n �→ |y(n)|, for each n ∈ N. A
simple example of a sequence space which fails to be solid is c. It is clear that Y is
solid if and only if Y f ⊆ Y for each f ∈ �∞. Moreover, if Y is solid, then it is also
monotone.

Proposition 4.9
The following statements hold for a lcss X.

(i) X is solid if and only if �∞ ⊆
⋂

x∈X L1(Px).
(ii) X and X ′ are both solid if and only if �∞ ⊆ L1(Λ ◦ P ).
(iii) If �∞ ⊆ L1(P ), then both X and X ′ are solid.
(iv) The condition (H3) implies that both X and X ′ are solid.
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Proof. Statements (i) and (ii) follow from Lemma 4.1 and Proposition 4.3, respec-
tively. Statement (ii) and (4.6) imply (iii). Finally, (iv) is a consequence of (iii)
because (H3) implies (4.14). �

We note that statement (iii) of Proposition 4.9 need not hold if the assumption
�∞ ⊆ L1(P ) is replaced by the weaker requirement that

(4.15) �∞ ∩
( ⋂

x∈X

L1(Px)

)
⊆ L1(P ).

Indeed, the space X in (iii) of Example 4.7 satisfies
⋂

x∈X L1(Px) = sim(2N) =
L1(P ) but, X is not solid.

As noted in Section 2, the space [Ls(X)]P is the sequential closure in Ls(X) of
the range of the integration map IP . Since a set E ∈ 2N satisfying 〈Pen, en〉(E) = 0
for all n ∈ N must be empty it follows that the measure P is countably determined in
the sense of [18; p.33]. Accordingly, [18; Proposition 2.6] implies that IP (L1(P )) is
sequentially closed, from which it follows that [Ls(X)]P = IP (L1(P )). More is true;
it is shown in Proposition 4.10 to follow that IP (L1(P )) is actually closed in Ls(X).
Consequently, for our particular spectral measure P the condition (H3) turns out
to be equivalent to the condition:

(H3)∗ The range of the integration map IP : L1(P ) → Ls(X) is sequentially
complete.

Proposition 4.10

The range of the integration map IP : L1(P ) → Ls(X) is closed.

Proof. Let T belong to the closure of IP (L1(P )), in which case there exists a net
{fα}α∈A in L1(P ) such that

(4.16) Tx = limαIP (fα)x = limαxfα, x ∈ X,

in the topology of X. Since c00 ⊆ X ′ we have that

(4.17) 〈Ten, en〉 = limαfα(n), n ∈ N.

Let f : N → C be the function defined by the left-hand-side of (4.17). By (4.16)
and (4.17) we see that

(Tx)(n) = limα(xfα)(n) = x(n)limαfα(n) = (xf)(n), n ∈ N,

for each x ∈ X. Thus Mf = T ∈ L(X) and so f ∈ L1(P ) with T = P (f) ∈
IP (L1(P )). �
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In view of the condition (H3)∗ we point out that the range of IP is not always
sequentially complete.

Example 4.11: Fix 1 ≤ p ≤ ∞. Let X = �p be equipped with the topology
σ(�p, c00). Then Proposition 4.3 implies that L1(P ) = �∞. Fix any f ∈ C

N \ �∞.
Then the 2N-simple functions fn = fχ{1,...,n} belong to L1(P ) for each n ∈ N and
{P (fn)}∞n=1 is a Cauchy sequence in Ls(X) because X ′ = c00. However, {P (fn)}∞n=1

has no limit in Ls(X); if so, then the limit would have to be Mf which is impossible
as Xf �⊆ X.

In the previous example the fact that X itself is not sequentially complete is
not the only reason why IP (L1(P )) fails to be sequentially complete.

Example 4.12: Consider the following three spaces.

(a) X = c0 equipped with the topology σ(c0, �1).
(b) X = �1 equipped with the topology σ(�1, �∞).
(c) X = �∞ equipped with its weak-star topology σ(�∞, �1).

In each case IP (L1(P )) is topologically isomorphic to the quasicomplete lcHs
�∞σ(�∞,�1). Whereas the space X in (b) is sequentially complete and that in (c)
is quasicomplete, the space X of (a) is not sequentially complete.

Our canonical spectral measure P : 2N → Ls(X) is called equicontinuous if its
range is an equicontinuous subset of L(X). If X is quasi-barrelled, then P is always
equicontinuous, [19; Proposition 2.5]. Or, if the given topology on X is specified by a
fundamental set of absolutely monotone seminorms, then P is also equicontinuous;
see the proof of Lemma 3.7. In each of (a)–(c) in Example 4.12 the measure P

is not equicontinuous, [16; Proposition 4]. However, when P does happen to be
equicontinuous, then the condition (H3)∗ implies a rather desirable property of P .

Proposition 4.13

Suppose that the canonical spectral measure P : 2N → Ls(X) is equicontinuous

and that IP (L1(P )) is sequentially complete in Ls(X), i.e. (H3)∗ is satisfied. Then

IP (L1(P )) is actually a complete subspace of Ls(X).

Proof. Let N (X) denote the class of all continuous seminorms on X. For each
q ∈ N (X) and x ∈ X define a seminorm qx on L1(P ) by

qx(f) = sup
{
q

(∫
E

fdPx

)
: E ∈ 2N

}
, f ∈ L1(P ).
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If we equip L1(P ) with the lcH-topology determined by the seminorms {qx : q ∈
N (X), x ∈ X} then the equicontinuity of P implies that IP is a topological iso-
morphism of L1(P ) onto its range (with the relative topology from Ls(X)), [21;
Lemma 1.11].

Since P is absolutely continuous with respect to the σ-finite measure λ =∑∞
n=1 δn, it follows that P is a closed measure in the sense of I. Kluvánek, [11;

IV, Theorem 7.3]. In other words, the subset {χE : E ∈ 2N} of L1(P ) is a complete
uniform space [11; p.71]. Then [24; Theorem 2] implies that L1(P ) is complete and
hence, the range of the topological isomorphism IP is also complete. �

As a consequence of Propositions 4.10 and 4.13 we have the following result.

Corollary 4.14

If the lcHs Ls(X) is sequentially complete and our canonical spectral measure

P is equicontinuous, then IP (L1(P )) is a complete subspace of Ls(X).

Of course, the quasicompleteness of Ls(X) always implies its sequential com-
pleteness (but not conversely). For instance, if the lcss X is a Fréchet space, then
Ls(X) is always quasicomplete; this is a special case of the criterion which states
that if X is a Mackey space, then the lcHs Ls(X) is quasicomplete if and only if X
is both barrelled and quasicomplete, [23; Corollary 1.1]. An example of a quasicom-
plete lcss X for which Ls(X) is sequentially complete but not quasicomplete is given
in [23; Example 5]. However, even the stronger condition of X being complete need
not imply the sequential completeness of Ls(X) in general, [19; Example 3.10]. We
conclude with an example for which our canonical spectral measure P is equicontin-
uous and both the lcss X and the space IP (L1(P )) are complete, yet Ls(X) is not
even sequentially complete!

Example 4.15: Let c0 be equipped with the usual norm || · ||∞. Let X = �1 be
equipped with the lcH-topology c(�1, c0) of uniform convergence on the compact
subsets of c0, regarding X as the dual space of c0. Then X ′ = c0. The monotone
lcss X is complete but Ls(X) is not even sequentially complete, [19; Example 3.10].

First X will be shown to have the 2N-summability property. Let E ∈ 2N. Then
the linear operator P (E) : X → X given by P (E)x = χEx for each x ∈ X is the
dual operator of Q(E) ∈ L(c0) defined by Q(E)y = χEy for each y ∈ c0. In other
words,

〈y, P (E)x〉 = 〈Q(E)y, x〉, y ∈ c0, x ∈ X.

Since Q(E) maps each compact subset of c0 to a relatively compact subset of c0,
the operator P (E) belongs to L(X). Clearly the lcss X is a weak AK-space and so
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Corollary 3.4 ensures that X has the 2N-summability property. Hence, P : 2N →
Ls(X) is a spectral measure.

Secondly we claim that P is equicontinuous. Let ĉ0 be the space of all sequences
with real entries which converge to zero, equipped with the norm || · ||∞. Let K be a
compact subset of ĉ0. By [15; Theorem 2.1.12] the set K has a supremum, say y (in
the usual order of the (real) Banach lattice ĉ0), and so K is contained in the order
interval [−y, y]. Hence, the solid hull K̃, of K, also satisfies K̃ ⊆ [−y, y]. Since ĉ0
is discrete the order interval is compact, [1; Corollary 21.13] and we conclude that
K̃ is relatively compact. By the usual complexification argument it follows that c0
also has the property that K̃ is relatively compact whenever K is a compact subset
of c0. In particular, Q(2N)(K) =

⋃
{Q(E)(K) : E ∈ 2N} is relatively compact in

c0 whenever K ⊆ c0 is compact and hence, its closure Q(2N)(K) is compact. This
implies that P is equicontinuous since

sup
{
|〈y, P (E)x〉| : y ∈ K,E ∈ 2N

}
≤ sup

{
|〈z, x〉| : z ∈ Q(2N)(K)

}
,

for each x ∈ X. Alternatively, one can use the fact that a subset A of c0 is relatively
compact whenever limk supx∈A ‖(0, . . . , xk+1, xk+2, . . .)‖ = 0, [3].

Thirdly we claim that L1(P ) = �∞. In fact, it follows from Proposition 4.2 that
every f ∈ L1(P ) has to satisfy �1f ⊆ �1, which implies that f ∈ �∞. Conversely
let f ∈ �∞. From the fact that the set Kf is compact in c0 whenever K ⊆ c0
is compact, it follows that Mf ∈ L(X). So, again by Proposition 4.2 we obtain
f ∈ L1(P ) and P (f) = Mf .

In order to be able to apply Proposition 4.13 we need to verify that IP (L1(P ))
is sequentially complete in Ls(X). To this end, let {fn}∞n=1 be a sequence in �∞ =
L1(P ) such that {P (fn)}∞n=1 is Cauchy in Ls(X). Then, given x ∈ X, the sequence
{xfn}∞n=1 is norm bounded in �1 because it is bounded with respect to the topology
σ(X,X ′) = σ(�1, c0), i.e. the weak-star topology on �1. By the uniform boundedness
principle the sequence {Mfn}∞n=1 is bounded with respect to the operator norm ||·||u
on L(�1) when �1 is equipped with its norm topology || · ||1. Since ||Mfn ||u = ||fn||∞
for each n ∈ N the sequence {fn}∞n=1 satisfies β = sup{||fn||∞ : n ∈ N} < ∞.
Furthermore, {fn}∞n=1 converges pointwise on N to some function f : N → C because
c(�1, c0) is stronger than the coordinatewise convergence topology induced by C

N.
Since β < ∞ the function f belongs to �∞. To see that P (fn) → P (f) in Ls(X) let
K ⊆ c0 be compact. Fix x ∈ X and let ε > 0. Choose N ∈ N such that

|〈y, xfn − xfm〉| ≤ ε, m, n ≥ N,
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for each y ∈ K. Hence, sup{|〈y, xfn − xf〉| : y ∈ K} ≤ ε for all n ≥ N , which
implies that P (fn) → P (f) in Ls(X). This establishes that IP (L1(P )) is sequentially
complete in Ls(X).

So, we can now apply Proposition 4.13 to conclude that IP (L1(P )) is actually
a complete subspace of Ls(X).
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