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Abstract

This article deals with K- and J -spaces defined by means of polygons. First
we establish some reiteration formulae involving the real method, and then we
study the behaviour of weakly compact operators. We also show optimality of
the weak compactness results.

Introduction

The behaviour of weak compactness under real interpolation has been extensively
studied. We refer, for example, to the book of Beauzamy [1] and the papers by

∗ All three authors have been supported in part by DGICYT (PB94-0252).
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Heinrich [9], Maligranda and Quevedo [10] and Mastylo [11]. It turned out that
if 0 < θ < 1 and 1 < q < ∞ then a necessary and sufficient condition for T :
(A0, A1)θ,q −→ (B0, B1)θ,q to be weakly compact is that T : A0

⋂
A1 −→ B0 + B1

is weakly compact. In particular, if just one restriction of T is weakly compact, say
T : A0 −→ B0, then the interpolated operator is also weakly compact.

In this paper we study how weakly compact operators behave under J- and
K-interpolation methods associated to polygons. These methods are similar to the
real interpolation method, but they work on N -tuples of Banach spaces (N ≥ 3)
and they incorporate some geometrical elements that play an important role in
developing their theory.

In Section 2 we show that if just one restriction of the operator T is weakly
compact, then the interpolated operator from a J-space into a K-space also has this
property, but in general this is not the case if we consider T acting between two
J-spaces or two K-spaces. For these cases we prove that the interpolated operator
is weakly compact provided that all but two restrictions of T (located in adjacent
vertices of the polygon) are weakly compact. We also show by means of examples
that these results are best possible. In other words, the interpolated operator may
fail to be weakly compact if we leave out any of our assumptions on restrictions of
T or on parameters.

In order to give those examples we require certain relationships between spaces
defined by a polygon Π and those defined by a subpolygon Π̃ of Π. These connec-
tions are described in Section 1. We also derive there reiteration formulae between
methods associated to polygons and the real method. Reiteration results are not
connected to weak compactness, but they have interest in their own. They allow to
compute J- and K-spaces in certain cases.

1. Some properties of methods defined by polygons

We start by recalling definitions of the J- and K-spaces associated to polygons
(see [6]).

Let A = {A1, . . . , AN} be a Banach N -tuple, that is to say, a family of N -
Banach spaces Aj all of them embedded in a common linear Hausdorff space.
Then we can form their sum Σ(A) = A1 + · · · + AN and their intersection
∆(A) = A1

⋂
· · ·

⋂
AN . These two spaces become Banach spaces when endowed

with the norms

‖a‖Σ(A) = inf
{ N∑

j=1

‖aj‖Aj
: a =

N∑
j=1

aj , aj ∈ Aj

}
and
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‖a‖∆(A) = max
{
‖a‖A1

, . . . , ‖a‖AN

}
respectively.

Let Π = P1 . . . PN be a convex polygon in the affine plane R
2, with vertices

Pj = (xj , yj). From now on, each space Aj of the N -tuple A should be thought of
as sitting on the vertex Pj .

Given any two positive numbers t, s, we may equivalently renorm Σ(A) by the
K-functional (with respect to the polygon Π)

K(t, s; a) = inf
{ N∑

j=1

txjsyj‖aj‖Aj
: a =

N∑
j=1

aj , aj ∈ Aj

}
.

Similarly, an equivalent norm to ‖ · ‖∆(A) is given by the J-functional

J(t, s; a) = max
1≤j≤N

{
txjsyj‖a‖Aj

}
.

Let 1 ≤ q ≤ ∞ and let (α, β) be any point in the interior of Π [(α, β) ∈ Int Π] .
We define A(α,β),q;K to be the space of all elements a ∈ Σ(A) having a finite norm

‖a‖(α,β),q;K =
( ∑

(m,n)∈Z2

(
2−αm−βnK(2m, 2n; a)

)q)1/q

(if q < ∞)

‖a‖(α,β),∞;K = sup
(m,n)∈Z2

{
2−αm−βnK(2m, 2n; a)

}
.

The J-space A(α,β),q;J is formed by all those a in Σ(A) which can be represented as

a =
∑

(m,n)∈Z2

um,n (convergence in Σ(A) )

with (um,n) ⊂ ∆(A) and

‖a‖(α,β),q;J =
( ∑

(m,n)∈Z2

(
2−αm−βnJ(2m, 2n;um,n)

)q)1/q

< ∞

(the sum should be replaced by the supremum if q = ∞). The norm ‖ · ‖(α,β),q;J on
A(α,β),q;J is

‖a‖(α,β),q;J = inf
{( ∑

(m,n)∈Z2

(
2−αm−βnJ(2m, 2n;um,n)

)q)1/q}
where the infimum is taken over all representations (um,n) as above.

Let us single out some important cases.
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Example 1.1: When Π is equal to the simplex {(0, 0), (1, 0), (0, 1)} and (α, β) ∈
Int Π (i.e., α > 0, β > 0 with α + β < 1), spaces A(α,β),q;K , A(α,β),q;J coincide with

Sparr spaces A
S

(1−α−β,α,β),q;K , A
S

(1−α−β,α,β),q;J , respectively. See [12] (and also [14]).

Example 1.2: If Π is the unit square {(0, 0), (1, 0), (0, 1), (1, 1)} and 0 < α, β < 1,
then we obtain spaces studied by Fernandez [8].

Example 1.3: Note that the real interpolation space (A0, A1)θ,q can be described
by a similar scheme to the one developed above, but working now in R, with the
segment [0, 1] taking the role of the polygon Π and 0 < θ < 1 being an interior point
of [0, 1]. The space A0 should be thought of as sitting on 0, while A1 on 1. In this
case

(A0, A1)θ,q;K = (A0, A1)θ,q;J = (A0, A1)θ,q (see [2] and [13]).

In contrast to the theory for couples, K- and J-spaces for N -tuples (N ≥ 3) do
not coincide in general. We only have that

A(α,β),q;J ↪→ A(α,β),q;K (see [6], Theorem 1.3).

K- and J-spaces can be equivalently defined using integrals instead of sums but the
discrete approach is more convenient for our purposes.

Let now Π̃ = Pj1 · · ·PjM be another convex polygon whose vertices all belong to
Π. Form the subtuple Ã of M spaces Ã = {Aj1 , . . . , AjM } by selecting from A those
spaces sitting on vertices of Π̃. We designate by

K̃(t, s; ·) and J̃(t, s; ·)

the K- and the J-functionals defined by means of Π̃ over Σ(Ã) and ∆(Ã), respec-
tively. For (α, β) ∈ Int Π̃ and 1 ≤ q ≤ ∞, we denote by Ã(α,β),q;K , Ã(α,β),q;J

the interpolation spaces defined by Π̃ over Ã. The next result follows easily from
inequalities

K(t, s; a) ≤ K̃(t, s; a), a ∈ Σ(Ã)

J̃(t, s; a) ≤ J(t, s; a), a ∈ ∆(A) .

Lemma 1.4

Let Π, Π̃, q, (α, β), A and Ã as above. Then the following continuous inclusions

hold

Ã(α,β),q;K ↪→ A(α,β),q;K(a)

A(α,β),q;J ↪→ Ã(α,β),q;J .(b)
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If (α, β) lies on some diagonal of Π, then we can compare A(α,β),q;K and
A(α,β),q;J with spaces obtained by using the real method for couples. Let D be
the set of all couples {i, k} such that (α, β) belongs to the diagonal joining Pi and
Pk. For {i, k} ∈ D let 0 < θi,k < 1 be the (unique) number such that

(α, β) = (1 − θi,k)Pi + θi,kPk.

Theorem 1.5

The following inclusions hold∑
{i,k}∈D

(Ai, Ak)θi,k,∞ ↪→ A(α,β),∞;K(i)

A(α,β),1;J ↪→
⋂

{i,k}∈D
(Ai, Ak)θi,k,1.(ii)

Proof. Assume that {1, 3} ∈ D, let θ = θ1,3 and for λ > 0 put

K̂(λ; a) = inf{‖a1‖A1
+ λ‖a3‖A3

: a = a1 + a3, a1 ∈ A1, a3 ∈ A3},

Ĵ(λ; a) = max{‖a‖A1
, λ‖a‖A3

}, a ∈ A1

⋂
A3.

Given (m,n) ∈ Z
2, write

(1)

{
w = m(x3 − x1) + n(y3 − y1)

v = m(x3 − x1) − n(y3 − y1)

where P1 = (x1, y1) and P3 = (x3, y3). Since

(α, β) = (1 − θ)(x1, y1) + θ(x3, y3),

we have

2−αm−βnK(2m, 2n; a)

≤ 2m(x1−α)+n(y1−β)K̂(2m(x3−x1)+n(y3−y1); a) ≤ 2 2−θ[w]K̂(2[w]; a).

Here [w] stands for the integer part of w, that is, the largest integer which is less
than or equal to w. Hence

‖a‖(α,β),∞;K ≤ 2‖a‖(A1,A3)θ,∞
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and embedding (i) follows.
To check the other inclusion let a ∈ A(α,β),1;J and given any ε > 0 find a

representation a =
∑

(m,n)∈Z2

um,n with

∑
(m,n)∈Z2

2−αm−βnJ(2m, 2n;um,n) ≤ (1 + ε)‖a‖(α,β),1;J .

For (m,n) ∈ Z
2, let (w, v) ∈ R

2 be the numbers defined by (1). The relevant
inequality says now

2−αm−βnJ(2m, 2n;um,n) ≥ 2−θ2−θ[w]Ĵ(2[w];um,n).

We can get a representation a =
∑
r∈Z

dr of a in (A1, A3)θ,1 by putting

dr =
∑

(m,n)∈Ir

um,n

where
Ir = {(m,n) ∈ Z

2 : [w] = r}.
Then

‖a‖(A1,A3)θ,1
≤

∑
r∈Z

2−θrĴ(2r; dr) ≤
∑
r∈Z

∑
(m,n)∈Ir

2−θrĴ(2r;um,n)

≤ 2θ
∑

(m,n)∈Z2

2−mα−nβJ(2m, 2n;um,n) ≤ 2θ(1 + ε)‖a‖(α,β),1;J

This gives (ii) and completes the proof. �
Combining Theorem 1.5 with the fact that (Aj , Aj) 1

2 ,1
= (Aj , Aj) 1

2 ,∞ = Aj we
get

Corollary 1.6
Let Π = P1 · · ·P2N be a regular polygon with 2N vertices, let (α, β) be the

center of Π and let {A1, . . . , AN} be an N -tuple. Consider the 2N -tuple obtained
by sitting each space Aj on the vertex Pj and on its symmetrical vertex Pj+N . Then
we have

(A1, . . . , AN , A1, . . . , AN )(α,β),∞;K =
N∑
j=1

Aj(a)

(A1, . . . , AN , A1, . . . , AN )(α,β),1;J =
N⋂
j=1

Aj .(b)
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The corollary extends a result of Cwikel and Janson for the unit square [7],
Example 1.25.

Next we establish certain reiteration formulae between methods associated to
polygons and the real method.

Let Π = P1 . . . PN be a convex polygon with vertices Pj = (xj , yj) where xj ≥ 0,
yj ≥ 0. Let (A0, A1) be any Banach couple, let 0 < θ, η < 1 and assume that

θj = θxj + ηyj ≤ 1, j = 1, . . . , N.

Consider the N -tuple B = {B1, . . . , BN} formed by

Bj =


(A0, A1)θj ,sj if 0 < θj < 1

A0 if θj = 0

A1 if θj = 1

where 1 ≤ sj ≤ ∞.

Theorem 1.7

If (α, β) ∈ Int Π lies on some diagonal of Π, say

(α, β) = (1 − δ)P1 + δP3 (0 < δ < 1)

and θ1 �= θ3, then it holds

B(α,β),1;J = (A0, A1)αθ+βη,1(i)

B(α,β),∞;K = (A0, A1)αθ+βη,∞ .(ii)

Proof. We start with the J-method. By Theorem 1.5/(ii) and the reiteration theo-
rem for the real method, we obtain

B(α,β),1;J ↪→ (B1, B3)δ,1 =
(
(A0, A1)θ1,s1 , (A0, A1)θ3,s3

)
δ,1

= (A0, A1)αθ+βη,1.

Let us see the converse inclusion. We claim that
(2) There exists a constant C > 0 such that for any a ∈ A0

⋂
A1 we have

‖a‖(α,β),1;J ≤ C‖a‖1−αθ−βη
A0

‖a‖αθ+βη
A1

.

Indeed, by [4], Theorem 1.3, there exists C1 > 0 such that

‖a‖(α,β),1;J ≤ C1 max
{
‖a‖ciBi

‖a‖ckBk
‖a‖crBr

: {i, k, r} ∈ P
}
.
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Here P is the collection of all those triples {i, k, r} such that (α, β) belongs to the
triangle with vertices Pi, Pk, Pr, and (ci, ck, cr) are the barycentric coordinates of
(α, β) with respect to Pi, Pk, Pr. On the other hand, using that

‖a‖Bj
≤ C2‖a‖1−θj

A0
‖a‖θjA1

,

we get

‖a‖ciBi
‖a‖ckBk

‖a‖crBr
≤ C3‖a‖(1−θi)ci+(1−θk)ck+(1−θr)cr

A0
‖a‖θici+θkck+θrcr

A1

= C3‖a‖1−θici−θkck−θrcr
A0

‖a‖θici+θkck+θrcr
A1

= C3‖a‖1−αθ−βη
A0

‖a‖αθ+βη
A1

and (2) follows.
Let now a ∈ (A0, A1)αθ+βη,1, and ε > 0. Put Ĵ(λ; a) = max{‖a‖A0

, λ‖a‖A1
}

and find a Ĵ-representation a =
∑
r∈Z

vr with

∑
r∈Z

2−r(αθ+βη)Ĵ (2r; vr) < (1 + ε)‖a‖(A0,A1)αθ+βη,1
.

We have

‖a‖(α,β),1;J ≤
∑
r∈Z

‖vr‖(α,β),1;J ≤ C
∑
r∈Z

‖vr‖1−αθ−βη
A0

‖vr‖αθ+βη
A1

≤ C
∑
r∈Z

2−r(αθ+βη)Ĵ(2r; vr) < (1 + ε)‖a‖(A0,A1)αθ+βη,1
.

This proves (i).
Next we pass to the K-space. One inclusion follows easily from Theo-

rem (1.5)/(i) and the reiteration theorem for the real method. Namely,

(A0, A1)αθ+βη,∞ = (B1, B3)δ,∞ ↪→ B(α,β),∞;K .

To establish the reverse inclusion, put

K̂(λ; a) = inf
{
‖a0‖A0

+ λ‖a1‖A1
: a = a0 + a1

}
and denote by Fr the space A0 + A1 normed by K̂(2r; ·). Definition of Bj ’s yields
that the operator

T : Bj −→ *∞
(
2−rθjFr

)
a −→ Ta = (. . . , a, a, a, . . .)
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is bounded. Interpolating we have that

T : B(α,β),∞;K −→
(
*∞(2−rθ1Fr), . . . , *∞(2−rθNFr)

)
(α,β),∞;K

is also bounded. But, taking into account that

sup
t>0,s>0

[
min

1≤j≤N
{txj−αsyj−β2−rθj}

]
= min{2−r(θici+θkck+θrcr) : {i, k, r} ∈ P} = 2−r(αθ+βη)

and arguing as in [5], Theorem 2.3, one can check that(
*∞(2−rθ1Fr), . . . , *∞(2−rθNFr)

)
(α,β),∞;K

↪→ *∞
(
2−r(αθ+βη)Fr

)
.

Hence, there is a constant C > 0 such that for all a ∈ B(α,β),∞;K we have

‖a‖(A0,A1)αθ+βη,∞
= ‖Ta‖�∞(2−r(αθ+βη)Fr) ≤ C‖a‖(α,β),∞;K .

The proof is complete. �

We close this section with an application of Theorem 1.7 to interpolation of
*p-spaces.

Example 1.8: Take Π equal to the unit square {(0, 0), (1, 0), (0, 1), (1, 1)}, let 1 <

p < ∞, 1
p + 1

p′ = 1 and put θ = 1
p′ , η = 1

p . Then

θ1 = 0, θ2 = θ, θ3 = η, θ4 = θ + η = 1.

The choice
(A0, A1) = (*1, *∞) , s1 = p, s2 = p′

gives then the 4-tuple
B = {*1, *p, *p′ , *∞}

and so for 0 < α < 1 we obtain the following Lorentz sequence spaces by interpola-
tion of B

(*1, *p, *p′ , *∞)(α,α),1;J = *1/(1−α),1

(*1, *p, *p′ , *∞)(α,α),∞;K = *1/(1−α),∞.
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2. Weak compactness and interpolation

Given two Banach N -tuples A = {A1, . . . , AN} and B = {B1, . . . , BN}, we write T :
A −→ B to mean that T is a linear operator from Σ(A) into Σ(B) whose restriction
to each Aj gives a bounded operator from Aj into Bj . It is not hard to verify that
if T : A −→ B then the restriction of T to A(α,β),q;K defines a bounded operator
T : A(α,β),q;K −→ B(α,β),q;K . For J-spaces, we have that T : A(α,β),q;J −→ B(α,β),q;J

is also bounded.
In this section we investigate the behaviour of weak compactness under the K-

and J-method. Recall that a linear operator T : A −→ B between two Banach
spaces is said to be weakly compact if it transforms the closed unit ball of A onto
a relatively weakly compact subset of B. For example, the identity operator of a
reflexive Banach space is weakly compact.

As we said at the Introduction, for the case of the real method, it is known that
weak compactness in just one restriction of the operator T is enough to assure that
the interpolated operator is weakly compact. However, in our context of N -tuples
(N ≥ 3) this is not true in general as we show next by means of examples based on
results of Section 1.

Example 2.1: Let Π = P1 . . . PN be a convex polygon with N vertices (N ≥ 4).
Let Pi, Pk, Pr be three vertices of Π and let (α, β) be any point in the interior of
the triangle Pi, Pk, Pr. Consider the N -tuple A = {A1, . . . , AN} where

Aj =

{
*∞ for j = i, k, r

*2 otherwise,
take B = *∞ and choose T as the identity operator T (ξn) = (ξn). Since *2 is a
reflexive space while *∞ is not reflexive, all restrictions T : Aj −→ B are weakly
compact except for those to Ai, Ak, and Ar. However, for any 1 ≤ q ≤ ∞, the
interpolated operator T : A(α,β),q:K −→ B fails to be weakly compact because, by
Lemma 1.4, we have A(α,β),q:K = *∞.

Example 2.2: Let Π, (α, β) and q as in the previous example. Take the N -tuple
B = {B1, . . . , BN} where

Bj =

{
*1 for j = i, k, r

*2 otherwise,
take A = *1 and choose again T as the identity operator. It follows from Lemma 1.4
that B(α,β),q;J = *1. Hence T : A −→ B(α,β),q;J is not weakly compact although all
but three restrictions of T are weakly compact.

These two examples refer to the especial case when one of the N -tuples re-
duces to a single Banach space. Next we establish positive results in that situation.
Arguments are similar to those in the instance of Banach couples (see [9]).



On reiteration and the behaviour of weak compactness 63

Given any Banach space E, we denote by UE the closed unit ball of E, and for
D ⊂ E we write *1 (D) to mean the collection of all absolutely summable families
of scalars with D as index set.

Theorem 2.3

Let Π = P1 . . . PN be a convex polygon with Pk = (xk, yk), let Pj , Pj+1 be

two fixed adjacent vertices of Π, let (α, β) ∈ Int Π and 1 ≤ q ≤ ∞. Assume that

A = {A1, . . . , AN} is a Banach N -tuple, that B is a Banach space and that T is a

linear operator T : A −→ B.

If T : Ak −→ B is weakly compact for all 1 ≤ k ≤ N with k �= j, j + 1, then

T : A(α,β),q;K −→ B is also weakly compact.

Proof. It suffices to give the proof for q = ∞ because, according to definition of
K-spaces, we have A(α,β),q1;K ↪→ A(α,β),q2;K provided that q1 ≤ q2.

If, say the exceptional vertices are P1 and P2 we claim that
(3) For each r ∈ N there are positive constants C3,r, . . . , CN,r such that for any

a ∈ A(α,β),∞;K we have

inf
{
r‖a1‖A1

+ r‖a2‖A2
+

N∑
j=3

C−1
j,r ‖aj‖Aj

: a =
N∑
j=1

aj

}
≤ ‖a‖(α,β),∞;K .

Indeed, let px + qy = s be the equation of the line through P1 and P2 (see
Figure 2.1). Clearly px1 + qy1 = s and px2 + qy2 = s. Moreover pα + qβ < s for
(α, β) ∈ Int Π. Thus

p(x1 − α) + q(y1 − β) > 0 and p(x2 − α) + q(y2 − β) > 0.

We can then find (m,n) ∈ Z
2 so that

2m(xi−α)+n(yi−β) ≥ r for i = 1, 2.

The choice

Cj,r = 2m(α−xj)+n(β−yj), j = 3, . . . , N

gives now (3).
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Figure 2.1

As a direct consequence of (3) we get that

V ⊂ 2
r
T (UA1) +

2
r
T (UA2) +

N∑
j=3

2Cj,rT (UAj )

where V = T
(
UA(α,β),∞;K

)
. So we can construct maps

fi,r : V −→ 2
r

T (UAi), i = 1, 2

and
gj,r : V −→ 2Cj,rT (UAj ), j = 3, . . . , N

such that for any a ∈ V it holds

(4)
2∑

i=1

fi,r(a) +
N∑
j=3

gj,r(a) = a .

Let T̃ : *1(V ) −→ B be the operator assigning to each summable family (λv)v∈V
the sum T̃ (λv) =

∑
v∈V λvv. Since T̃

(
U�1(V )

)
= T

(
UA(α,β),∞;K

)
we see that in order
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to prove weak compactness of T it is enough to show that T̃ is weakly compact.
With this aim, let Ri,r, Sj,r : *1 (V ) −→ B be the operators defined by

Ri,r(λv) =
∑
v∈V

λvfi,r(v), i = 1, 2

Sj,r(λv) =
∑
v∈V

λvgj,r(v), j = 3, . . . , N.

By (4) we have

T̃ =
2∑

i=1

Ri,r +
N∑
j=3

Sj,r.

Besides
2∑

i=1

‖Ri,r‖ ≤

(
‖T‖A1,B

+ ‖T‖A2,B

)
r

−→ 0 as r −→ ∞.

Hence T̃ is the limit (in the operator norm) of the sequence
( N∑
j=3

Sj,r

)∞

r=1
, and

each operator Sj,r is weakly compact because

Sj,r
(
U�1(V )

)
⊂ 2Cj,rT

(
UAj

)
.

Consequently, T̃ is also weakly compact.
The proof is complete. �

Our next result refers to J-spaces. We denote by *∞(D) the collection of all
bounded families of scalars with D as indexed set.

Theorem 2.4

Let Π = P1 . . . PN be a convex polygon with Pk = (xk, yk), let Pj , Pj+1 be

two fixed adjacent vertices of Π, let (α, β) ∈ Int Π and 1 ≤ q ≤ ∞. Assume that

B = {B1, . . . , BN} is a Banach N -tuple, that A is a Banach space and that T is a

linear operator T : A −→ B.

If T : A −→ Bk is weakly compact for all 1 ≤ k ≤ N with k �= j, j + 1, then

T : A −→ B(α,β),q;J

is also weakly compact.
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Proof. Since
B(α,β),q1;J ↪→ B(α,β),q2;J if q1 ≤ q2

we may assume that q = 1.
If, say, the exceptional vertices are P1 and P2, we have this time

(5) For each r ∈ N there are positive constants C3,r, . . . , CN,r such that for any
a ∈ A it holds

‖Ta‖(α,β),1;J ≤ max
{1
r
‖Ta‖B1

,
1
r
‖Ta‖B2

, C3,r‖Ta‖B3
, . . . , CN,r‖Ta‖BN

}
.

Indeed, arguing as in (3), we can find (m,n) ∈ Z
2 such that

2m(xi−α)+n(yi−β) ≤ 1
r

for i = 1, 2.

Thus

‖Ta‖(α,β),1;J ≤2−αm−βnJ(2m, 2n;Ta)

≤max
{1
r
‖Ta‖B1

,
1
r
‖Ta‖B2

, C3,r‖Ta‖B3
, . . . , CN,r‖Ta‖BN

}
where we have put Cj,r = 2m(xj−α)+n(yj−β), j = 3, . . . , N.

We claim that

(6)
W = T ∗(UB

∗
(α,β),1;J

)
⊂ 2

r
T ∗(UB∗

1

)
+

2
r
T ∗(UB∗

2

)
+ 2C3,rT

∗(UB∗
3

)
+ · · · + 2CN,rT

∗(UB∗
N

)
.

Here T ∗ is the adjoint operator of T .
To establish (6) take any f ∈ W. Then f = gT with

|g(z)| ≤ ‖z‖(α,β),1;J ≤ max
{1
r
‖z‖B1

,
1
r
‖z‖B2

, C3,r‖z‖B3
, . . . , CN,r‖z‖BN

}
for all z ∈ T (A). Let D = {D1, . . . , DN} be the N -tuple given by

Dj =


(
T (A),

1
r
‖ · ‖Bj

)
if j = 1, 2(

T (A), Cj,r‖ · ‖Bj

)
if j = 3, . . . , N .

We have that
g ∈ ∆

(
D

)∗
= D∗

1 + . . . + D∗
N .
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Whence there are hj ∈ D∗
j with ‖hj‖ ≤ 2 such that

g(z) =
N∑
j=1

hj(z), z ∈ T (A).

Applying Hahn-Banach theorem, we can extend hj to a bounded functional gj ∈ B∗
j

with

‖gj‖ =


1
r
‖hj‖ ≤ 2

r
for j = 1, 2

Cj,r‖hj‖ ≤ 2Cj,r for j = 3, . . . , N.

Therefore

f = gT ∈ 2
r
T ∗(UB∗

1

)
+

2
r
T ∗(UB∗

2

)
+ 2C3,rT

∗(UB∗
3

)
+ · · · + 2CN,rT

∗(UB∗
N

)
.

This gives (6).
We can now construct maps

ϕi,r : W −→ 2
r
T ∗ (

UB∗
i

)
, i = 1, 2

ψj,r : W −→ 2Cj,rT
∗
(
UB∗

j

)
, j = 3, . . . , N

such that for any f ∈ W it holds

(7)
2∑

i=1

ϕi,r(f) +
N∑
j=3

ψj,r(f) = f.

Let B be the closure of T (A) in B(α,β),1;J , and let J : B −→ *∞(W ) be the
isometric embedding given by J (Ta) =

(
f(a)

)
f∈W , a ∈ A. Write T̂ = JT : A −→

*∞(W ). In order to check that T̂ is weakly compact define operators Ri,r, Sj,r :
A −→ *∞(W ) by

Ri,r(a) = (< a,ϕi,r(f) >)f∈W , i = 1, 2

Sj,r(a) = (< a,ψj,r(f) >)f∈W , j = 3, . . . , N .

It follows from

‖Sj,r(a)‖�∞(W ) ≤ 2Cj,r‖Ta‖Bj
, j = 3, . . . , N
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and weak compactness of T : A −→ Bj that each operator Sj,r is weakly compact
for 3 ≤ j ≤ N . On the other hand, (7) gives that

T̂ −
N∑
j=3

Sj,r =
2∑

i=1

Ri,r

and
2∑

i=1

‖Ri,r‖ ≤ 2
r

(
‖T‖A,B1

+ ‖T‖A,B2

)
−→ 0 as r −→ ∞.

Whence T̂ is the limit of a sequence of weakly compact operators, and it is therefore
weakly compact.

Finally, weak compactness of T : A −→ B(α,β),q;J follows from equality T̂ = JT

taking into account that J is an isometric embedding. �

Remark 2.5. Theorems 2.3 and 2.4 are best possible. That is to say, they fail if the
weakly compactness condition is not fulfilled at three of the vertices of Π or if the
exceptional vertices are not adjacent.

Indeed, Examples 2.1 and 2.2 prove the first statement. Let us check the second
statement. Let Π be the unit square {(0, 0), (1, 0), (0, 1), (1, 1)}, let (α, β) be the
center of Π and q = ∞. Take the 4-tuple A = {A1, . . . , A4} where

Aj =

{
*2 for j = 2, 3

*∞ for j = 1, 4,

take B = *∞ and choose T as the identity operator T (ξn) = (ξn). Then all except
for two restrictions of T are weakly compact but they do not correspond to adjacent
vertices. We can determine A(α,β),∞;K by using Corollary 1.6/(a) or [7], Exam-
ple 1.25. It turns out that A(α,β),∞;K = *∞. The interpolated operator coincides
then with the identity of *∞ and so it fails to be weakly compact.

A similar example can be shown for for the J-case.

We pass now to the general case of non-degenerated N -tuples. We shall work
with vector valued sequence spaces modeled on the sum Σ(B), and on the intersec-
tion ∆(A). Let

Fm,n =
(
Σ(B),K(2m, 2n; ·)

)
, Gm,n =

(
∆(A), J(2m, 2n; ·)

)
, (m,n) ∈ Z

2,
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put

*q(2−αm−βnFm,n) =
{

(bm,n)(m,n)∈Z2 : bm,n ∈ Σ(B),

‖(bm,n)‖�q =
( ∑

(m,n)∈Z2

(
2−αm−βnK(2m, 2n; bm,n)

)q)1/q

< ∞
}

and define *q(2−αm−βnGm,n) similarly. Consider also the metric injection J :
B(α,β),q;K −→ *q(2−αm−βnFm,n) defined by J(b) = (· · · , b, b, b, · · ·), and the sur-
jection Q : *q(2−αm−βnGm,n) −→ A(α,β),q;J given by Q(um,n) =

∑
(m,n)∈Z2 um,n.

As it was pointed out in [9], any bounded operator S between vector valued
*q-spaces (1 < q < ∞) is weakly compact provided all its components (regarded S

as a matrix) are weakly compact. This fact was called in [9] “the Σq-property” of
the ideal of weakly compact operators.

Theorem 2.6

Let Π = P1 . . . PN be a convex polygon, let Pj , Pj+1 be two fixed adjacent

vertices of Π, let (α, β) ∈ Int Π and 1 < q < ∞. Assume that A = {A1, . . . , AN}
and B = {B1, . . . , BN} are Banach N -tuples, and let T : A −→ B be a linear

operator such that T : Ak −→ Bk is weakly compact for all 1 ≤ k ≤ N with

k �= j, j + 1. Then

(a) T : A(α,β),q;K −→ B(α,β),q;K

and

(b) T : A(α,β),q;J −→ B(α,β),q;J

are also weakly compact.

Proof. According to Theorem 2.3, each component Pr,sJT of the operator JT :
A(α,β),q;K −→ *q(2−αm−βnFm,n) is weakly compact. So, by Σq-property, JT is
weakly compact, and therefore T : A(α,β),q;K −→ B(α,β),q;K is also weakly compact.

The proof of (b) is similar but using this time Theorem 2.4. �

Remark 2.7. Under certain density conditions on the N -tuples A and B, Theo-
rem 2.6/(a) has been independently obtained by Carro and Nikolova [3] by means
of a different approach.
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Remark 2.8. Assumption 1 < q < ∞ is essential for Theorem 2.6 as the following
example shows:

Let Π = P1 . . . PN be a convex polygon with vertices Pj = (xj , yj) and consider
the N -tuple of scalar weighted sequence spaces over Z

2 given by

*2 =
{
*2(2−mx1−ny1), *2(2−mx2−ny2), . . . , *2(2−mxN−nyN )

}
.

All spaces of *2 are reflexive. However, according to [6], Theorem 3.1, we have that(
*2

)
(α,β),1;K

=
(
*2

)
(α,β),1;J

= *1
(
2−αm−βn

)
and (

*2
)
(α,β),∞;K

=
(
*2

)
(α,β),∞;J

= *∞
(
2−αm−βn

)
which are not reflexive spaces.

Remark 2.9. Techniques used in Theorems 2.3, 2.4 and 2.6 also work if we replace the
ideal of weakly compact operators for any other surjective closed operator ideal (resp.
injective closed operator ideal) satisfying the Σq-condition (see [9] for definitions of
these concepts). Examples of such ideals are Banach-Sacks operators, Rosenthal
operators and decomposing operators.

As a direct consequence of Theorem 2.6 we have the following result on reflexi-
vity of K- and J-spaces.

Corollary 2.10

Let Π = P1 . . . PN be a convex polygon with Pk = (xk, yk), let Pj , Pj+1 be two

fixed adjacent vertices of Π and let (α, β) ∈ Int Π. If A = {A1, . . . , AN} is a Banach

N -tuple with all spaces Ak being reflexive for 1 ≤ k ≤ N with k �= j, j + 1, then the

spaces A(α,β),q;K and A(α,β),q;J are reflexive provided that 1 < q < ∞.

Our last result refers to operators acting from a J-space into a K-space. In
that case we can give a complete characterization for weak compactness of the in-
terpolated operator.

Theorem 2.11

Let Π = P1 . . . PN be a convex polygon with Pj = (xj , yj), let (α, β) ∈ Int Π
and 1 < q < ∞. Assume that A = {A1, . . . , AN} and B = {B1, . . . , BN} are Banach

N -tuples, and that T : A −→ B.

Then a necessary and sufficient condition for T : A(α,β),q;J −→ B(α,β),q;K to be

weakly compact is the weak compactness of T : ∆(A) −→ Σ(B).
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Proof. The scheme

∆(A) ↪→ A(α,β),q;J
T−→ B(α,β),q;K ↪→ Σ(B)

shows that weak compactness of T : A(α,β),q;J −→ B(α,β),q;K implies that T :
∆(A) −→ Σ(B) is weakly compact.

Let us check that the condition is sufficient. Write T̂ = JTQ. Thus T̂ acts
from *q

(
2−αm−βnGm,n

)
into *q

(
2−αm−βnFm,n

)
, and its components are Pr,sT̂Rj,k.

Since Pr,sT̂Rj,k : 2−αj−βkGj,k −→ 2−αr−βsFr,s coincides with the operator T acting
from 2−αj−βkGj,k into 2−αr−βsFr,s, our assumption on T yields that each component
Pr,sT̂Rj,k of T̂ is weakly compact. It follows then from Σq-property that T̂ is weakly
compact. But T̂ = JTQ being J a metric injection and Q a surjection. Therefore
we conclude that T : A(α,β),q;J −→ B(α,β),q;K is also weakly compact.
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