Collect. Math. 49, 2-3 (1998), 519-526
(c) 1998 Universitat de Barcelona

# On the quantum cohomology of the plane, old and new, and a K3 analogue 

Z. RAN<br>Department of Mathematics, University of California, Riverside, California 929521, USA<br>E-mail: ziv@ucrmath.ucr.edu


#### Abstract

We describe a method for counting maps of curves of given genus (and variable moduli) to $\mathbb{P}^{2}$, essentially by splitting the $\mathbb{P}^{2}$ in half; then specialising to the case of genus 0 we show that the method of quantum cohomology may be viewed as the "mirror" of the former method where one splits the $\mathbb{P}^{1}$ rather than the $\mathbb{P}^{2}$; finally we indicate an analogue of the former method where $\mathbb{P}^{2}$ is replaced by a K3 quartic.


Recent work on Mirror Symmetry and Quantum Cohomology has contributed to a revival of interest in problems of a classical nature in Enumerative Geometry (cf. [2] and references therein). These problems involve (holomorphic) maps

$$
\begin{equation*}
f: C \rightarrow X \tag{1}
\end{equation*}
$$

where $X$ is a fixed variety and $C$ is a compact Riemann surface whose moduli are sometimes fixed ("Gromov-Witten") but here will not be, unless otherwise stated. While the case $\operatorname{dim} X=1$ is not entirely without interest (cf. [1]), the problem begins in earnest with $\operatorname{dim} X=2$ and naturally the simplest such $X$ is $\mathbb{P}^{2}$. Here the problem specifically is to count the images $f(C)$ of maps (1) where $C$ has genus $g, f(C)$ has degree $d$ and passes through $3 d+g-1$ fixed points in $\mathbb{P}^{2}$. This problem has already, in essence, been solved in the author's earlier paper [3] by means of a recursive method (we note however that the formula in [3], (3c.1), (3c.3) is trivially misstated and the factor $c\left(\tilde{K}_{1}, \tilde{K}_{2}\right)$ should not be present $)$.

Our purpose here is twofold. In Section 1 we give a partial exposition of the method of [3] and illustrate it on a couple of new examples, namely the curves of degree $d$ and genus $g=\frac{(d-1)(d-2)}{2}-2$ (i.e. with 2 nodes); and the rational quartics. We recover classical formulae due, respectively, to Roberts [4] and Zeuthen [6]. Hopefully, this will help make the method of [3] more accessible. In Section 2 we show that the method of Kontsevich et al., at least as exposed in [2], may be viewed as none other than the "dual" of that of [3] for the case of rational curves, "dual" meaning "interchanging source and target".

This paper owes its existence to the unfailing encouragement of Bill Fulton, who believed all along in [3]; it is indeed a pleasure to thank him here.

## 1. Old

We find it technically convenient here to work with possibly reducible curves; the modifications or "correction terms" needed to treat the irreducible case are a routine matter.

Consider the locus $V_{d, \delta}$ of (not necessarily irreducible) curves of degree $d$ in $\mathbb{P}^{2}$ having $\delta$ ordinary nodes. This is well known to be a smooth locally closed subvariety of pure codimension $\delta$ in $\mathbb{P}^{\binom{d+2}{2}-1}$ and we are interested in its degree as such, which may be interpreted as the number of curves of $V_{d, \delta}$ passing through $\binom{d+2}{2}-\delta-1$ general points in $\mathbb{P}^{2}$, a number which we denote by $N_{d, \delta}$. The idea is to get at $N_{d, \delta}$ by a recursive procedure, based on specializing $\mathbb{P}^{2}$ to a surface (called a "fan")

$$
S_{0}=S_{1} \cup S_{2}
$$

where $S_{1}=B l_{0}\left(\mathbb{P}^{2}\right)$ (the "bottom" component), $S_{2}=\mathbb{P}^{2}$ (the "top" component) and $E=S_{1} \cap S_{2}$ (the "axis") embedded in $S_{i}$ with self-intersection $2 i-3, i=1,2$. Corresponding to this is a specialization

$$
\begin{equation*}
V_{d, \delta} \rightarrow \sum m(\pi) V_{(d, e),\left(\delta_{1}, \delta_{2}\right), \pi} \tag{2}
\end{equation*}
$$

where $V_{(d, e),\left(\delta_{1}, \delta_{2}\right), \pi}$ is a family of Cartier divisors on $S_{0}$ whose general member $C_{0}$ may be described as follows:

- $\quad C_{0}=C_{1} \cup C_{2}$,
- $C_{1} \in|d H-e E|_{S_{1}}, C_{2} \in|e E|_{S_{2}}$ nodal curves with $\delta_{1}$ (resp. $\delta_{2}$ ) nodes, smooth near $E$,
- the divisor $D=C_{1} \cdot E=C_{2}$. $E$ has shape $\pi$, i.e. $\pi$ is a partition having $\ell_{i}$ blocks of size $i$ (to be written as $\pi=\left[\ell_{i}\right]$ ) and $D=\sum_{i=1}^{r} \sum_{j=1}^{\ell_{i}} i Q_{i j}, Q_{i j} \in E$
distinct. Moreover $m(\pi)=\prod_{1}^{r} i^{\ell_{i}}$ and the sum is extended over all data $\left((d, e),\left(\delta_{1}, \delta_{2}\right), \pi\right)$ satisfying

$$
\begin{equation*}
\delta_{1}+\delta_{2}+\sum_{i=1}^{r}(i-1) \ell_{i}=\delta \tag{3}
\end{equation*}
$$

(i.e. each i-tacnode $i Q_{i j}$ "counts as $i-1$ nodes").

Now to apply the specialization (2) to the degree question, we specialize our point set on $\mathbb{P}^{2}$ to a collection of points on $S_{0}$, which a priori we may distribute at will among $S_{1}$ and $S_{2}$, with each distribution giving rise to some formula which, however, may or may not be usable. For the purpose of the present discussion we will make the important simplifying assumption

$$
\delta<d
$$

and put $d+1$ points on $S_{1}$ and the remaining $\binom{d+1}{2}-1-\delta$ on $S_{2}$. It is then easy to see that the only limit components $V$. that will contribute to the resulting formula will be ones with

$$
e=d-1
$$

For those, we can write

$$
\begin{equation*}
C_{1}=C_{1,0}+\sum_{i=1}^{\delta_{1}} R_{i} \tag{4}
\end{equation*}
$$

with $C_{1,0}$ a smooth (rational) curve of "type" $\left(d-\delta_{1}, d-\delta_{1}-1\right)$ (i.e. $C_{1,0} \in$ $\left.\left|\left(d-\delta_{1}\right) H-\left(d-\delta_{1}-1\right) E\right|\right)$ and $R_{i}$ distinct rulings.

Now let us say that a partition $\pi^{\prime}=\left[\ell_{i}^{\prime}\right] \leq \pi=\left[\ell_{i}\right]$ if $\ell_{i}^{\prime} \leq \ell_{i} \forall i$, in which case we may define the complementary partition $\pi-\pi^{\prime}=\left[\ell_{i}-\ell_{i}^{\prime}\right]$; also put $|\pi|=\sum i \ell_{i}, s(\pi)=$ $\sum \ell_{i}, n(\pi)=\frac{s(\pi)!}{\ell_{1}!\cdots \ell_{r}!}$. Counting the degree of a limit component $V_{1}=\left\{C_{1} \cup C_{2}\right\}$ in terms of those of $\left\{C_{1}\right\}$ and $\left\{C_{2}\right\}$ is basically a matter of decomposing the "diagonal" condition $C_{1} . E=C_{2} . E$ correspondingly to the standard Kunneth decomposition of the diagonal class on the product of $\Pi \mathbb{P}^{\ell_{i}}$ with itself; this leads to a sum of conditions corresponding to partitions $\pi^{\prime} \leq \pi$, each amounting to fixing the location on $E$ of a portion $D^{\prime}$ of $C_{1}$. $E$ corresponding to $\pi^{\prime}$ and the complementary portion $D^{\prime \prime}$ of $C_{2}$.E corresponding to $\pi-\pi^{\prime}$. The resulting formula is as follows.

$$
\begin{align*}
N_{d, \delta}= & \sum_{|\pi|=d-1} m(\pi) \sum_{\substack{\pi^{\prime}=\left[\ell \ell_{i}^{\prime}\right] \\
\leq \pi=\left[\ell_{i}\right]}} m\left(\pi-\pi^{\prime}\right) n\left(\pi-\pi^{\prime}\right) N_{d-1, \delta-s\left(\pi-\pi^{\prime}\right)+s(\pi)-d+1, \pi-\pi^{\prime}, \pi^{\prime}} \\
& \times \sum_{j=0}^{\ell_{1}^{\prime}}\binom{\ell_{1}^{\prime}}{j}\binom{d+1}{s\left(\pi-\pi^{\prime}\right)-j} . \tag{5}
\end{align*}
$$

Here $N_{e, \delta_{2}, \pi^{\prime \prime}, \pi^{\prime}}$ denotes the degree of the locus of nodal curves of degree $e$ with $\delta_{2}$ nodes meeting a fixed line $E$ in a fixed divisor of shape $\pi^{\prime \prime}$ plus a divisor of shape $\pi^{\prime}$. We have used the fact that $\delta_{1}=s\left(\pi-\pi^{\prime}\right)$, which comes from the observation that the number of "axis" conditions on the bottom curve $C_{1}$, i.e. $|\pi|-s\left(\pi-\pi^{\prime}\right)=$ $d-1-s\left(\pi-\pi^{\prime}\right)$, plus the number of "interior" points imposed, i.e. $d+1$, must equal the dimension of the family (4), i.e. $2 d-\delta_{1}$. Also, the factor $m\left(\pi-\pi^{\prime}\right) n\left(\pi-\pi^{\prime}\right)$ is simply the degree of the "discriminant" variety of divisors of shape $\pi-\pi^{\prime}$ on $E=\mathbb{P}^{1}$, while the binomial factors correspond to letting $j$ of the rulings go through some of the multiplicity -1 part of $D^{\prime}$ with the remaining $\delta_{1}-j$ going through some of the $d+1$ interior points.

Now of course in general the formula (5) is not by itself sufficient as one needs a recursive formula starting and ending with the $N_{e, \delta_{2}, \pi^{\prime \prime}, \pi^{\prime}}$ or something similar. Such a formula is indeed given in [3], and it is not our purpose to reproduce it here. In the examples worked out below the necessary further recursion is relatively straightforward, and will be indicated.
Example 1: $N_{d, 2}$
There are seven relevant limit components and we proceed to list them and their contributions.
A. $V_{(d, d-1),(0,2),[d-1]}$; multiplicity $m=1$; contribution $N_{d-1,2}$
B. $V_{(d, d-1),(1,1),[d-1]} ; m=1$. As $\delta_{1}=1$ we must take $\pi^{\prime}=[d-2], \pi-\pi^{\prime}=[1]$ so $j=0$ or 1 and the contribution is $(d+1+d-2) \cdot N_{d-1,1,[1],[d-2]}=$ $3(2 d-1)(d-2)^{2}$.
C. $V_{(d, d-1),(2,0),[d-1]} ; m=1 ; \pi^{\prime}=[d-3] ; j=0,1,2$, contribution $=\left(\binom{d-3}{2}+\right.$ $\left.(d-3)(d+1)+\binom{d+1}{2}\right) \cdot N_{d-1,0,[2],[d-3]}=2 d^{2}-5 d+3$.
D. $V_{(d, d-1),(0,1),[d-3,1]} ; m=2, \delta_{1}=0 \Rightarrow \pi^{\prime}=\pi$, so contribution is $2 N_{d-1,1,0,[d-3,1]}$.
By an easier but simpler recursion (involving 1 node and 1 tangency), the latter evaluates to $12(d-1)(d-2)(d-3)$.
E. $V_{(d, d-1),(1,0),[d-3,1] ;} m=2 . \quad \pi^{\prime}=[d-3]$ or $[d-4,1]$, contribution $=8(d-1)(d-3)$.
F. $V_{(d, d-1),(0,0),[d-4,0,1]}, m=3, \pi^{\prime}=\pi$, contribution $9 d-27$.
G. $V_{(d, d-1),(0,0),[d-5,2]}, m=4, \pi^{\prime}=\pi$, contribution 4.4. $\binom{d-3}{2}=9 d^{2}-56 d+96$.

Summing up, we get

$$
N_{d, 2}-N_{d-1,2}=18 d^{3}-81 d^{2}+84 d+12 .
$$

Moreover it is easy to see that $N_{3,2}=\binom{7}{2}=21$ so by integrating we get

$$
N_{d, 2}=\frac{9}{2} d^{4}-18 d^{3}+6 d^{2}+\frac{81}{2} d-33 .
$$

This is a classical formula due to S . Roberts [4], which has been given modern treatment by I. Vainsencher [5]. Note that the curves are automatically irreducible if $d \geq 4$.

Example 2: $N_{4,3}$
Here we have seven limit components.
A. $V_{(4,3),(0,3),[3]}, m=1$, contribution 15 .
B. $V_{(4,3),(1,2),[3]}, m=1$ contribution $21.7=147$.
C. $V_{(4,3),(2,1),[3]}, m=1$, contribution $15 N_{3,1,[2],[1]}=180$.
D. $V_{(4,3),(3,0),[3]}, m=1$, contribution $\binom{5}{2}=10$.
E. $V_{(4,3),(1,1),[1,1]}, m=2, \pi^{\prime}=[1]$ or $[0,1]$. Contribution $2.2 N_{3,1,[0,1],[1]}+$ 2.5. $N_{3,1,[1],[0,1]}$.

By a similar but simpler recursion the latter $N$ 's evaluate respectively to 10,16 , so the total contribution is 200 .
F. $V_{(4,3),(0,2),[1,1]}, m=2, \pi=\pi^{\prime}=[1,1]$, contribution $2.15 .2=60$.
G. $V_{(4,3),(0,1),[0,0,1]}, m=3, \pi=\pi^{\prime}=[0,0,1]$, contribution $3 \cdot N_{3,1,[0],[0,0,1]}$.

By a similar but simpler recursion, the latter $N$ is 21 , so the contribution is 63 .
Summing up, we get

$$
N_{4,3}=675=5^{2} \cdot 3^{3}
$$

As the $\{$ cubic + line $\}$ locus clearly has degree $\binom{11}{2}=55$, we obtain 620 as the number of irreducible rational quartics through 11 points, (cf. [6]).

Remark. Much progress on the computational aspect of $N_{d, \delta}$ was recently made by Y. Choi (UCR dissertation, to appear).

## 2. New

The new approach works for maps from a fixed curve $C$, say to $\mathbb{P}^{2}$. For simplicity we will assume $C=\mathbb{P}^{1}$. Considering rational curves of degree $d$ in $\mathbb{P}^{2}$ amounts to considering curves of bidegree $(1, d)$ in $\mathbb{P}^{1} \times \mathbb{P}^{2}$, and the old method to count them is by specialising the $\mathbb{P}^{2}$ factor to a fan; the new approach on the other hand is to specialise the $\mathbb{P}^{1}$ factor to a "1-dimensional fan", i.e. to

$$
C_{0}=C_{1} \cup C_{2}, C_{i}=\mathbb{P}^{1}, C_{1} \cap C_{2}=\{x\}
$$

Because $\mathbb{P}^{1}$ is simpler than $\mathbb{P}^{2}$ this approach works better in this case; on the other hand it is apparently unknown how to make it work when the source curve is allowed to vary with moduli.

To be precise, fix a pair of points $y_{1}, y_{2}$ and a pair of lines $L_{3}, L_{4}$ in $\mathbb{P}^{2}$ and 4 points $x_{1}, \ldots x_{4} \in \mathbb{P}^{1}=C$ and consider curves of bidegree $(1, d)$ in $C \times \mathbb{P}^{2}$ containing $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and meeting $x_{3} \times L_{3}, x_{4} \times L_{4}$, as well as a further collection of $3 d-4$ "horizontal" lines $C \times z_{j}$. We then specialise this to $C_{0} \times \mathbb{P}^{2}$ in two ways: (A) $x_{1} \ldots, x_{4}$ specialise to $x_{1,1}, x_{2,1} \in C_{1}, x_{3,2}, x_{4,2} \in C_{2}$; (B) $x_{1}, x_{3}, x_{2}, x_{4}$ specialise to $x_{1,1}, x_{3,1} \in C_{1}, x_{2,1}, x_{4,2} \in C_{2}$. In the (A) limit it is possible to have a component of bidegree $(1,0)$ in $C_{2} \times\left(L_{3} \cap L_{4}\right)$, while in the (B) limit all curves have bidegrees $\left(1, d_{1}\right) \cup\left(1, d_{2}\right), d_{1}+d_{2}=d, d_{i}>0$. Thus letting $n_{d}$ denote the number of rational curves in $\mathbb{P}^{2}$ through $3 d-1$ points, writing $(A)=(B)$ we get an equation of the form

$$
n_{d}+f\left(n_{1}, \ldots, n_{d-1}\right)=g\left(n_{1}, \ldots, n_{d-1}\right)
$$

for suitable quadratic expressions $f, g$, which may be solved for $n_{d}$.
Example: $d=4$

$$
f=\binom{8}{2} \cdot 12 \cdot 1 \cdot 1 \cdot 1 \cdot 3+\binom{8}{3} \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 4+1 \cdot 1 \cdot 12 \cdot 3 \cdot 3 \cdot 3=2228
$$

with the summands corresponding to $d_{1}=3,2,1$ and, e.g. in the first product the factors corresponding to: choosing 2 of the 8 points $z_{j}$ for the image of $C_{2}$ to go through; the number of possible images of $C_{1}, C_{2}, x_{3}, x_{4}, x$;

$$
\begin{gathered}
g=8 \cdot 12 \cdot 1 \cdot 3 \cdot 1 \cdot 3+\binom{8}{4} \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 4+8 \cdot 1 \cdot 12 \cdot 1 \cdot 3 \cdot 3=2848 \\
n_{4}=620
\end{gathered}
$$

## 3. K 3

We consider a general smooth quartic surface $S \subset \mathbb{P}^{3}$ and wish to count rational, i.e. trinodal or tritangent plane sections of $S$. For this we degenerate $S$ to

$$
S_{0}=S_{1} \cup_{E} S_{2}
$$

where $S_{1}$ is the blow-up of $\mathbb{P}^{2}$ at a general $(3,4)$ complete intersection $A \cap B=$ $\left\{p_{1}, \ldots p_{12}\right\}$ with $E$ the proper transform of $A, S_{2}$ is a cubic surface with $E$ as hyperplane section, and $E$ having opposite normal bundles in $S_{1}$ and $S_{2}$. It is easy to see that $S_{0}$ embeds as a divisor of type $(4,3)$ in a limit of $\mathbb{P}^{3}$ analogous to the
limit of $\mathbb{P}^{2}$ considered above, so that $S_{0}$ is a limit of a K 3 quartic. Now consider limit plane sections of $S_{0}$

$$
C_{0}=C_{1} \cup C_{2}
$$

These come in 2 types, $(1,0)$ and $(1,1)$, depending on whether the plane contains the blown-up point.

Type ( 1,0 ).
Here $C_{2}$ is empty while $C_{1}$ corresponds to a plane quartic through $\left\{p_{1}, \ldots, p_{12}\right\}$ or equivalently $\left\{p_{1}, \ldots, p_{11}\right\}$. The rational (trinodal) curves $C_{1}$ coincide with a generic fibre (corresponding to $B$ ) of the projection of the Severi variety $V_{4,3}$ from the $\mathbb{P}^{2}$ of quartics containing $A$. As this $\mathbb{P}^{2}$, however non-generic, is disjoint from $V_{4,3}$, the fibre consists of 675 generic, multiplicity-1 points, of which 620 correspond to irreducible curves.

Type $(1,1)$.
Here $C_{2}$ is a plane section of $S_{2}$ while $C_{1}$ corresponds to a line $L$ in $\mathbb{P}^{2}$. Depending on the position of $L$ relative to $A$, we get six limit components corresponding exactly to those configurations in Example 2 above which are of "irreducible type", i.e. where the off-axis nodes do not disconnect the curve.
A. $L$ is general while $C_{2}$ is one of the 45 plane triangles on $S_{2}$. Contribution 45.
B. $L$ contains exactly one $p_{i}$ while $C_{2}$ contains one of the 27 lines on $S_{2}$. Contribution 324.
C. $L$ contains exactly two $p_{i}{ }^{\prime}$ s; $C_{2}$ is a nodal (off $E$ ) member of a pencil of plane sections on $S_{2}$, of which there are 12 . Contribution 792.
E. $L$ contains $p_{i}$ and is tangent to $A$ elsewhere $\left(12.4\right.$ such), $C_{2}$ is a singular (off $E$ ) member of the corresponding pencil (10 such). Contribution 960.
F. $\quad C_{2}$ contains a line $M$ on $S_{2}$ and $L$ contains $M \cap E$ and is elsewhere tangent to $A$. Contribution 216.
G. $L$ is flex-tangent to $A, C_{2}$ is one of the 9 members of the corresponding pencil singular off $A$. Contribution 243.

For total we obtain the classically-known number 3200 .
Remark. Recently Yau and Zaslow (hep-th/9512121) have found a remarkable formula for the number of rational hyperplane sections on any K3 surface.

## References

1. R. Dijkgraaf, Mirror symmetry and elliptic curves, (preprint).
2. W. Fulton and R. Pandharipande, Notes on enumerative geometry and quantum cohomology, in: Proc. Santa Cruz Symposium 1995, Amer. Math. Soc. (to appear).
3. Z. Ran, Enumerative geometry of singular plane curves, Invent. Math. 97 (1989), 447-465.
4. S. Roberts, Sur l'ordre des conditions de la coexistence des équations algébriques à plusieurs variables, J. Reine Angew. Math. 67 (1867), 266-278.
5. I. Vainsencher, Counting divisors with prescribed singularities, Trans. Amer. Math. Soc. 267 (1981), 399-422.
6. H.G. Zeuthen and M. Pieri, Géométrie Enumerative, Encyclopaedia Sci. Math. III (2), 260-331, Leipzig: Teubner 1915.
