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Abstract

We describe a method for counting maps of curves of given genus (and variable
moduli) to P

2, essentially by splitting the P
2 in half; then specialising to the case

of genus 0 we show that the method of quantum cohomology may be viewed as
the “mirror” of the former method where one splits the P

1 rather than the P
2;

finally we indicate an analogue of the former method where P
2 is replaced by a

K3 quartic.

Recent work on Mirror Symmetry and Quantum Cohomology has contributed to a
revival of interest in problems of a classical nature in Enumerative Geometry (cf. [2]
and references therein). These problems involve (holomorphic) maps

(1) f : C → X

where X is a fixed variety and C is a compact Riemann surface whose moduli are
sometimes fixed (“Gromov-Witten”) but here will not be, unless otherwise stated.
While the case dimX = 1 is not entirely without interest (cf. [1]), the problem
begins in earnest with dimX = 2 and naturally the simplest such X is P

2. Here
the problem specifically is to count the images f(C) of maps (1) where C has genus
g, f(C) has degree d and passes through 3d+ g− 1 fixed points in P

2. This problem
has already, in essence, been solved in the author’s earlier paper [3] by means of a
recursive method (we note however that the formula in [3], (3c.1), (3c.3) is trivially
misstated and the factor c(K̃1, K̃2) should not be present).
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Our purpose here is twofold. In Section 1 we give a partial exposition of the
method of [3] and illustrate it on a couple of new examples, namely the curves of
degree d and genus g = (d−1)(d−2)

2 − 2 (i.e. with 2 nodes); and the rational quartics.
We recover classical formulae due, respectively, to Roberts [4] and Zeuthen [6].
Hopefully, this will help make the method of [3] more accessible. In Section 2 we
show that the method of Kontsevich et al., at least as exposed in [2], may be viewed
as none other than the “dual” of that of [3] for the case of rational curves, “dual”
meaning “interchanging source and target”.

This paper owes its existence to the unfailing encouragement of Bill Fulton,
who believed all along in [3]; it is indeed a pleasure to thank him here.

1. Old

We find it technically convenient here to work with possibly reducible curves; the
modifications or “correction terms” needed to treat the irreducible case are a routine
matter.

Consider the locus Vd,δ of (not necessarily irreducible) curves of degree d in P
2

having δ ordinary nodes. This is well known to be a smooth locally closed subvariety
of pure codimension δ in P

(d+2
2 )−1 and we are interested in its degree as such, which

may be interpreted as the number of curves of Vd,δ passing through
(
d+2
2

)
− δ − 1

general points in P
2, a number which we denote by Nd,δ. The idea is to get at Nd,δ

by a recursive procedure, based on specializing P
2 to a surface (called a “fan”)

S0 = S1 ∪ S2

where S1 = Bl0(P2) (the “bottom” component), S2 = P
2 (the “top” component)

and E = S1 ∩ S2 (the “axis”) embedded in Si with self-intersection 2i− 3, i = 1, 2.
Corresponding to this is a specialization

(2) Vd,δ →
∑

m(π)V(d,e),(δ1,δ2),π ,

where V(d,e),(δ1,δ2),π is a family of Cartier divisors on S0 whose general member C0

may be described as follows:
• C0 = C1 ∪ C2,
• C1 ∈ |dH − eE|S1 , C2 ∈ |eE|S2 nodal curves with δ1 (resp. δ2) nodes,

smooth near E,
• the divisor D = C1.E = C2.E has shape π, i.e. π is a partition having �i

blocks of size i (to be written as π = [�i]) and D =
r∑

i=1

	i∑
j=1

iQij , Qij ∈ E
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distinct. Moreover m(π) =
r∏
1
i	i and the sum is extended over all data

((d, e), (δ1, δ2), π) satisfying

(3) δ1 + δ2 +
r∑

i=1

(i− 1)�i = δ

(i.e. each i-tacnode iQij “counts as i− 1 nodes”).
Now to apply the specialization (2) to the degree question, we specialize our

point set on P
2 to a collection of points on S0, which a priori we may distribute

at will among S1 and S2, with each distribution giving rise to some formula which,
however, may or may not be usable. For the purpose of the present discussion we
will make the important simplifying assumption

δ < d ,

and put d+1 points on S1 and the remaining
(
d+1
2

)
− 1− δ on S2. It is then easy to

see that the only limit components V. that will contribute to the resulting formula
will be ones with

e = d− 1 .

For those, we can write

(4) C1 = C1,0 +
δ1∑
i=1

Ri

with C1,0 a smooth (rational) curve of “type” (d − δ1, d − δ1 − 1) (i.e. C1,0 ∈
|(d− δ1)H − (d− δ1 − 1)E|) and Ri distinct rulings.

Now let us say that a partition π′ = [�′i] ≤ π = [�i] if �′i ≤ �i∀i, in which case we
may define the complementary partition π−π′ = [�i−�′i]; also put |π| =

∑
i�i, s(π) =∑

�i, n(π) = s(π)!
	1!···	r! . Counting the degree of a limit component V1 = {C1 ∪ C2} in

terms of those of {C1} and {C2} is basically a matter of decomposing the “diagonal”
condition C1.E = C2.E correspondingly to the standard Kunneth decomposition of
the diagonal class on the product of ΠP

	i with itself; this leads to a sum of conditions
corresponding to partitions π′ ≤ π, each amounting to fixing the location on E of a
portion D′ of C1.E corresponding to π′ and the complementary portion D′′ of C2.E
corresponding to π − π′. The resulting formula is as follows.

Nd,δ =
∑

|π|=d−1

m(π)
∑

π′=[�′
i
]

≤π=[�i]

m(π − π′)n(π − π′)Nd−1,δ−s(π−π′)+s(π)−d+1,π−π′,π′

×
	′1∑
j=0

(
�′1
j

)(
d+ 1

s(π − π′) − j

)
.(5)
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Here Ne,δ2,π′′,π′ denotes the degree of the locus of nodal curves of degree e with δ2
nodes meeting a fixed line E in a fixed divisor of shape π′′ plus a divisor of shape
π′. We have used the fact that δ1 = s(π − π′), which comes from the observation
that the number of “axis” conditions on the bottom curve C1, i.e. |π| − s(π− π′) =
d−1−s(π−π′), plus the number of “interior” points imposed, i.e. d+1, must equal
the dimension of the family (4), i.e. 2d− δ1. Also, the factor m(π − π′)n(π − π′) is
simply the degree of the “discriminant” variety of divisors of shape π−π′ on E = P

1,
while the binomial factors correspond to letting j of the rulings go through some of
the multiplicity −1 part of D′ with the remaining δ1 − j going through some of the
d+ 1 interior points.

Now of course in general the formula (5) is not by itself sufficient as one needs
a recursive formula starting and ending with the Ne,δ2,π′′,π′ or something similar.
Such a formula is indeed given in [3], and it is not our purpose to reproduce it
here. In the examples worked out below the necessary further recursion is relatively
straightforward, and will be indicated.

Example 1: Nd,2

There are seven relevant limit components and we proceed to list them and
their contributions.

A. V(d,d−1),(0,2),[d−1]; multiplicity m = 1; contribution Nd−1,2

B. V(d,d−1),(1,1),[d−1]; m = 1. As δ1 = 1 we must take π′ = [d− 2], π− π′ = [1]
so j = 0 or 1 and the contribution is (d + 1 + d − 2).Nd−1,1,[1],[d−2] =
3(2d− 1)(d− 2)2.

C. V(d,d−1),(2,0),[d−1]; m = 1; π′ = [d− 3]; j = 0, 1, 2 , contribution = (
(
d−3
2

)
+

(d− 3)(d+ 1) +
(
d+1
2

)
).Nd−1,0,[2],[d−3] = 2d2 − 5d+ 3.

D. V(d,d−1),(0,1),[d−3,1]; m = 2, δ1 = 0 ⇒ π′ = π, so contribution is
2Nd−1,1,0,[d−3,1].

By an easier but simpler recursion (involving 1 node and 1 tangency), the latter
evaluates to 12(d− 1)(d− 2)(d− 3).

E. V(d,d−1),(1,0),[d−3,1];m = 2. π′ = [d − 3] or [d − 4, 1], contribution
= 8(d− 1)(d− 3).

F. V(d,d−1),(0,0),[d−4,0,1],m = 3, π′ = π, contribution 9d− 27.
G. V(d,d−1),(0,0),[d−5,2],m = 4, π′ = π, contribution 4.4.

(
d−3
2

)
= 9d2−56d+96.

Summing up, we get

Nd,2 −Nd−1,2 = 18d3 − 81d2 + 84d+ 12 .

Moreover it is easy to see that N3,2 =
(
7
2

)
= 21 so by integrating we get

Nd,2 =
9
2
d4 − 18d3 + 6d2 +

81
2
d− 33 .
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This is a classical formula due to S. Roberts [4], which has been given modern
treatment by I. Vainsencher [5]. Note that the curves are automatically irreducible
if d ≥ 4.

Example 2: N4,3

Here we have seven limit components.
A. V(4,3),(0,3),[3],m = 1, contribution 15.
B. V(4,3),(1,2),[3],m = 1 contribution 21.7 = 147.
C. V(4,3),(2,1),[3],m = 1, contribution 15N3,1,[2],[1] = 180.
D. V(4,3),(3,0),[3],m = 1, contribution

(
5
2

)
= 10.

E. V(4,3),(1,1),[1,1],m = 2, π′ = [1] or [0, 1]. Contribution 2.2N3,1,[0,1],[1] +
2.5.N3,1,[1],[0,1].

By a similar but simpler recursion the latter N ’s evaluate respectively to 10, 16, so
the total contribution is 200.

F. V(4,3),(0,2),[1,1],m = 2, π = π′ = [1, 1], contribution 2.15.2 = 60.
G. V(4,3),(0,1),[0,0,1],m = 3, π = π′ = [0, 0, 1], contribution 3.N3,1,[0],[0,0,1].

By a similar but simpler recursion, the latter N is 21, so the contribution is 63.
Summing up, we get

N4,3 = 675 = 52.33.

As the {cubic + line} locus clearly has degree
(
11
2

)
= 55, we obtain 620 as the

number of irreducible rational quartics through 11 points, (cf. [6]).

Remark. Much progress on the computational aspect of Nd,δ was recently made by
Y. Choi (UCR dissertation, to appear).

2. New

The new approach works for maps from a fixed curve C, say to P
2. For simplicity

we will assume C = P
1. Considering rational curves of degree d in P

2 amounts to
considering curves of bidegree (1, d) in P

1 × P
2, and the old method to count them

is by specialising the P
2 factor to a fan; the new approach on the other hand is to

specialise the P
1 factor to a “1-dimensional fan”, i.e. to

C0 = C1 ∪ C2, Ci = P
1, C1 ∩ C2 = {x} .

Because P
1 is simpler than P

2 this approach works better in this case; on the other
hand it is apparently unknown how to make it work when the source curve is allowed
to vary with moduli.
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To be precise, fix a pair of points y1, y2 and a pair of lines L3, L4 in P
2 and 4

points x1, ...x4 ∈ P
1 = C and consider curves of bidegree (1, d) in C ×P

2 containing
(x1, y1), (x2, y2) and meeting x3 × L3, x4 × L4, as well as a further collection of
3d − 4 “horizontal” lines C × zj . We then specialise this to C0 × P

2 in two ways:
(A) x1..., x4 specialise to x1,1, x2,1 ∈ C1, x3,2, x4,2 ∈ C2; (B) x1, x3, x2, x4 specialise
to x1,1, x3,1 ∈ C1, x2,1, x4,2 ∈ C2. In the (A) limit it is possible to have a component
of bidegree (1, 0) in C2 × (L3 ∩ L4), while in the (B) limit all curves have bidegrees
(1, d1) ∪ (1, d2), d1 + d2 = d, di > 0. Thus letting nd denote the number of rational
curves in P

2 through 3d − 1 points, writing (A) = (B) we get an equation of the
form

nd + f(n1, ..., nd−1) = g(n1, ..., nd−1)

for suitable quadratic expressions f, g, which may be solved for nd.

Example: d = 4

f =
(

8
2

)
.12.1.1.1.3 +

(
8
3

)
.1.1.2.2.4 + 1.1.12.3.3.3 = 2228

with the summands corresponding to d1 = 3, 2, 1 and, e.g. in the first product the
factors corresponding to: choosing 2 of the 8 points zj for the image of C2 to go
through; the number of possible images of C1, C2, x3, x4, x;

g = 8.12.1.3.1.3 +
(

8
4

)
.1.1.2.2.4 + 8.1.12.1.3.3 = 2848

n4 = 620.

3. K3

We consider a general smooth quartic surface S ⊂ P
3 and wish to count rational,

i.e. trinodal or tritangent plane sections of S. For this we degenerate S to

S0 = S1 ∪E S2

where S1 is the blow-up of P
2 at a general (3, 4) complete intersection A ∩ B =

{p1, ...p12} with E the proper transform of A, S2 is a cubic surface with E as
hyperplane section, and E having opposite normal bundles in S1 and S2. It is easy
to see that S0 embeds as a divisor of type (4, 3) in a limit of P

3 analogous to the
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limit of P
2 considered above, so that S0 is a limit of a K3 quartic. Now consider

limit plane sections of S0

C0 = C1 ∪ C2.

These come in 2 types, (1,0) and (1,1), depending on whether the plane contains
the blown-up point.

Type (1,0).

Here C2 is empty while C1 corresponds to a plane quartic through {p1, ..., p12} or
equivalently {p1, ..., p11} . The rational (trinodal) curves C1 coincide with a generic
fibre (corresponding to B) of the projection of the Severi variety V4,3 from the P

2

of quartics containing A. As this P
2, however non-generic, is disjoint from V4,3,

the fibre consists of 675 generic, multiplicity-1 points, of which 620 correspond to
irreducible curves.

Type (1,1).

Here C2 is a plane section of S2 while C1 corresponds to a line L in P
2. Depen-

ding on the position of L relative to A, we get six limit components corresponding
exactly to those configurations in Example 2 above which are of “irreducible type”,
i.e. where the off-axis nodes do not disconnect the curve.

A. L is general while C2 is one of the 45 plane triangles on S2. Contribution
45.

B. L contains exactly one pi while C2 contains one of the 27 lines on S2.
Contribution 324.

C. L contains exactly two pi’s; C2 is a nodal (off E) member of a pencil of
plane sections on S2, of which there are 12. Contribution 792.

E. L contains pi and is tangent to A elsewhere (12.4 such), C2 is a singular
(off E) member of the corresponding pencil (10 such). Contribution 960.

F. C2 contains a line M on S2 and L contains M ∩E and is elsewhere tangent
to A. Contribution 216.

G. L is flex-tangent to A, C2 is one of the 9 members of the corresponding
pencil singular off A. Contribution 243.

For total we obtain the classically-known number 3200.

Remark. Recently Yau and Zaslow (hep-th/9512121) have found a remarkable for-
mula for the number of rational hyperplane sections on any K3 surface.
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